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Abstract

Natural organic matter (NOM) is a complex organic material present in natural surface water. NOM can cause problems during
water treatment — most notably the formation of toxic disinfection by-products. This study was undertaken in order to assess
the effectiveness of some of the water treatment techniques employed by selected water supply companies in South Africa in
dealing with NOM. Total organic carbon (TOC) and ultra violet (UV) absorbance at wavelength of 254 nm were measured and
used to calculate specific ultra violet absorbance (SUVA), which was used to determine the changes in NOM concentration
throughout the water treatment train. Other parameters measured include pH, turbidity, chemical oxygen demand (COD) and
conductivity. Water samples were collected from two water treatment plants in South Africa, namely Sedibeng (Balkfontein)
and Midvaal. The overall TOC reduction after the water treatment processes was 33% and 30% at Midvaal and Sedibeng,
respectively. SUVA values were generally low (<2 'mg’-m™) indicating the presence of aliphatic compounds and less ‘aro-
maticity’ in NOM of the water samples. Water insoluble B-cyclodextrin (f-CD) polyurethanes were then applied to the water
to compare TOC reduction in addition to ‘normal’ water treatment processes, and were found to provide up to 19% additional
TOC decrease, and UV absorbance reduction was up to 78%. Results obtained using gas chromatography-mass spectrom-
etry (GC-MS) analysis after chlorination, revealed that the water had the potential to form halomethane compounds with
chloroform being the most dominant. Again, water-insoluble $-CD polyurethanes were applied to the water as a treatment
to remove trihalomethanes (THMs) and were found to efficiently remove up to 95% of THMs formed during the disinfection
step. The treatment processes studied have limited ability in dealing with NOM and are not individually effective in NOM
removal. Results obtained indicate that the application of B-CD polyurethanes in addition to the water treatment processes

may enhance NOM removal in water and significantly reduce the THMs formed.
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Introduction

The goal of potable water treatment is primarily to produce
drinking water that does not pose any health hazard to humans.
During the drinking water treatment processes some microbio-
logical and physiochemical components are removed from the
water, or chemicals are added to kill pathogens. Natural organic
matter (NOM) is a complex organic material found in natural
surface water sources derived primarily from the degradation
of plant and microbial residues (Vanloon et al., 2005). NOM is
found in sources of drinking water at levels generally between
2 and 15 mg/t (Hepplewhite et al., 2004), causing the yellow or
brown colour in water. This colouration is aesthetically unpleas-
ant to consumers, but NOM is also an energy source for bacterial
re-growth (Moreau, 2006) and can cause other treatment-related
problems like the formation of disinfection by-products (DBPs)
and resin or membrane fouling. Furthermore, it consumes treat-
ment chemicals and hence increases the cost of treatment. Treat-
ment chemicals also need careful consideration, since NOM can
facilitate the transportation of inorganic and organic content due
to humic complexation (AW WA, 1990).

The processes and technologies used to remove contami-
nants from water and to improve water quality are common
in many parts of the world. The presence of NOM in water is
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an important factor in determining the cost and complexity of
water treatment. The choice of water treatment processes and
their efficiency depend on the characteristics of the water, while
balancing the costs of the treatment methods (Richardson,
2007). NOM in raw water that is earmarked for drinking pur-
poses comprises a wide range of organic compounds some of
which are susceptible to removal, due to their size, polarity, or
reactivity, but most NOM is not easily removed since it is poorly
characterised and its composition and impact is not often fully
understood. NOM in a body of water can be estimated using
dissolved organic carbon (DOC), while its removal has relied
on conventional methods such as coagulation, flocculation and
sand filtration. However, each of these treatment methods has
certain limitations: DOC reduction by coagulation, for example
is influenced by the dose and pH at which coagulation occurs
(Van Leeuwen et al., 2005; Qin et al., 2006).

Ozonation has been employed in water treatment for disin-
fection purposes because of its high oxidation potential. Accord-
ing to the literature, ozone destroys algal taste and odour (Qin
et al., 2006). However, ozonation partially degrades NOM to
smaller compounds which may themselves be toxic. While ozone
is a very strong disinfectant, it does not remain in water for a
very long time, thus chlorine is commonly added to protect the
water from bacterial re-growth while in the distribution system.
Chlorination on its own is a common disinfection method, but
aqueous free chlorine can interact with NOM suspended in natu-
ral water to form halogenated disinfection by-products (DBPs)
such as trihalomethanes (THMs) (Freese and Nozaic, 2004).
The presence of various functional groups within NOM (both
charged and neutral) can result in a high yield of DBPs during
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TABLE 1
Quality of acceptable drinking water

Property Recommended Maximum allowable Consumption period,?

operational limit for limited duration maximum
Conductivity pS/m <150 000 150 000 - 370 000 7 years
pH 50-95 4.0-10.0 No limits
Turbidity NTU <1 1-5 No limit ¢
DOC mgt* C <10 10-70 No limit ¢

2 Limits based on consumption of 2 € of water per day by a person of mass 70 kg over a period of 70 years

4 Process efficiency and risks associated with pathogens

¢ When DOC is deemed of natural origin, the consumption period can be extended

chlorination (Van Leeuwen et al., 2005). These DBPs have been
linked epidemiologically to cancers of the lower intestinal tract
and adverse birth outcomes (Yang, 2004; Richardson, 2007).

Activated carbon (AC) is also used in water treatment plants
and through physical adsorption it removes contaminants espe-
cially micro-organic contaminants from water. In the process,
AC improves taste, odour and colour associated with organ-
ics present in water (Bolto et al., 2004). However, when NOM
is adsorbed by AC it blocks the adsorption sites thus limiting
adsorption of other micro-organic pollutants such as 2-methyl-
isoborneol (MIB) (Newcombe et al., 2002).

To control water quality, drinking water quality standards
have been developed by the South African National Standards
(SANS, 2006) as hown in Table 1.

Recently, water-insoluble cyclodextrin (CD) polyurethanes
have been investigated for the removal of a range of organic
compounds in water and were found to be efficient at removing
these organics to very low concentration levels (parts per billion
levels) (Mamba et al., 2007). Cyclodextrins are cyclic oligosac-
charides formed by the action of bacterial enzymes on starch and
have a hydrophobic interior cavity and a hydrophilic exterior of
the cavity. This feature allows for the encapsulating of various
organic materials to produce complexes or supramolecular spe-
cies in aqueous solutions (Li and Ma, 2000). They can either be
natural or synthetic, and can be polymerised with complimen-
tary bi-functional monomers such as hexamethylene diisocy-
anate (HMDI) to produce water-insoluble polyurethanes.

This study was undertaken to investigate the effectiveness of
some of the current water treatment processes currently in use at
the Midvaal and Sedibeng water treatment plants in the removal of
NOM and related disinfection by-products. These two plants were
chosen because of their slightly different water treatment regimes
and the differing sources and type of raw water. The Midvaal
Water Treatment Plant has a plant capacity of 320 M(/d with a
registered use of 238 M{/d. Its source of water is the Vaal River, a
tributary of the Orange River which is stressed by urban develop-
ment. The treatment processes used include flotation, ozonation,
filtration and chlorination. Sedibeng water treatment plant on the
other hand has a similar capacity of 360 M{/d but the current flow-
through is on average 160 M{/d. The raw water at this plant is also
highly eutrophic and contains a large fraction of treated effluent
and industrial sources as well as agricultural runoff. The treat-
ment processes used include coagulation, sedimentation, filtration
and chlorination. Both of these treatment plants have source water
with higher-than-acceptable NOM. Against this background
there is a need to analyse the existing technologies and improve
or introduce new innovative strategies to reduce or completely
remove acceptable amounts of NOM. Consequently, we report on
the extent to which current treatment methods can reduce NOM,
and introduce the application of B-CD/HMDI polyurethanes for
the removal of NOM and particularly THMs found in water.
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Experimental
Sampling

Water samples were taken at two water treatment plants, namely
Midvaal and Sedibeng. Sampling was done twice in each water
treatment plant, from source and after each of the water treat-
ment stage. Finally, samples were taken from the distribution
network at Bothaville and Orkney. Two litres of sample were
collected in triplicate at each site and stored in the refrigerator at
4°C, and analysed within 24 h.

Total organic carbon (TOC) analysis

NOM was quantified in each sample by determining TOC, using
an Apollo 900 Tekmar TOC analyser. The samples were filtered
through a 0.45 pm membrane filter and poured into 40 m¢ TOC
vials with Teflon septum caps for analysis. Potassium hydrogen
phthalate (KHP) standard solutions of concentrations of 5, 10, 15
and 20 mg-¢* were used to calibrate the instrument and blanks
were analysed throughout the process.

Chemical oxygen demand (COD) analysis

The COD analysis was done at Magalies Water Scientific Serv-
ices Laboratory. The rationale for the COD test is that nearly
all organic compounds can be fully oxidised to carbon dioxide
with a strong oxidising agent (potassium dichromate (K,Cr,0.))
under acidic conditions, and hence this is a good comparison for
the TOC values. The excess K,Cr,O, is then titrated with fer-
rous ammonium sulphate. An oxidation-reduction indicator (fer-
roin) is also added during this titration step. Once all the excess
dichromate has been reduced, the ferroin indicator changes from
blue-green to reddish-brown.

Conductivity, pH, and turbidity analysis

Conductivity and pH were measured at 25°C using HANNA
combo EC and pH waterproof meter. The pH meter was cali-
brated using pH 4, 7 and 9 buffer solutions. HANNA HI98703
Turbidimeter fast track was used to measure the turbidity of the
water samples using purchased calibration solutions of 0.1, 15
and 100 NTU.

UV/Visible and SUVA analysis

UV absorbance was measured at 254 nm using a Varian Cary 50
UV/Visible spectrophotometer in a 1 cm quartz cuvette. Humic
acid was used as a standard to represent NOM. The calibration
curve was drawn from standard humic acid concentrations of
5, 10, 15 and 20 mge™.
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TABLE 2
GC-MS conditions
Parameter Condition
Column type VF,5ms, 30 x 0.25 mm, 0.25 um
Injector Splitless, 3 min sample exposure
Injector temperature |200°C

Oven temperature 35°C (hold for 4 min) @ 9°C /min and

120°C (hold for 3 min)

lonisation Electron impact

Carrier gas Helium

Flow rate 1 m{/min

Detector Mass spectrometer (ion trap)
Mode Full Scan (m/z = 40-650)

Determination of trihalomethane formation potential
(THMFP)

To determine potential for THM formation during disinfection,
water samples were chlorinated with granular chlorine, buffered
to a pH value of 9 using borate buffer, and then incubated for
7 days at 25°C to allow the reaction to reach completion. The
chlorinated samples were placed in 100 m{ glass vials with
screw caps. The vials were filled to prevent the trapping of air
bubbles inside. Ascorbic acid (30%) was used to destroy the
remaining free active chlorine, and the samples were analysed
by Gas Chromatography-Mass Spectrometry (GC-MS) follow-
ing solid-phase micro-extraction.

Solid-phase micro-extraction (SPME) and GC-MS
analysis

A 10 mg-? calibration standard was prepared using 2 000
pgme? THM calibration mix in methanol purchased from
Supelco. THMs in standard solution were extracted using a
100 um polydimethylsiloxane (PDMS) SPME fibre which was
conditioned by exposing it to the injector at an analysis tem-
perature of 200°C for 30 min. The fibre was then immersed in
10 m{ aliquots of each standard solution for 20 min at 70°C. To
enhance extraction, a PTFE-coated magnetic stirrer was used to
constantly stir the water throughout the extraction time. THMs
in water samples were extracted the same way as described for
standard solutions. After extraction the fibre was then exposed
into the GC injector port for 3 min. GC-MS conditions used for
analysis are shown in Table 2.

NOM and THMs removal using B-CD/HMDI poly-
urethanes

The synthesis of cyclodextrin polyurethanes has been previ-
ously reported by Li and Ma (2000). In a typical cross-linking
reaction B-cyclodextrin was polymerised with an 8-fold excess
of hexamethylene diisocynate (HMDI) in N,N-dimethyl for-
mamide (DMF) to form water-insoluble 3-CD/HMDI poly-
urethanes. After synthesis the polymer was heated at 156°C
under vacuum to remove excess DMF and to also open the CD
cavities. Solid phase extraction (SPE) cartridges were loaded
with 0.3 g of the B-CD/HMDI polymer and then treated with
deionised water until the TOC levels were <1 mg-t? (this
removes any un-reacted cyclodextrin). Water samples and
chlorinated water samples were then passed through the
B-CD/HMDI polyurethanes at a filtration rate of 10 cm®*min™.
The filtrate was then analysed to determine the removal effect
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of the B-CD polyurethanes on the organic pollutants in the
water.

Results and discussion
NOM removal by water treatment processes

The efficiency of water treatment processes at two water treat-
ment plants (Midvaal and Sedibeng) was determined by meas-
uring different parameters, i.e. TOC, UV absorbance, SUVA,
COD, conductivity, pH, turbidity and THMs, throughout the
water treatment train. In principle these treatment processes
should reduce these parameters to below the accepted SANS
values (Table 1). Tables 3 and 4 (next page) list the water quality
parameters at Midvaal and Sedibeng Water Treatment Plants,
respectively.

As can be seen from the above tables, there is a general
decrease in TOC from raw water to distribution networks. This
decrease from 14.53 t0 9.73 mg-* and from 16.14 to 11.25 mg-¢*
at Midvaaal and Sedibeng, respectively, represents a 33% reduc-
tion in TOC. The values in the network distribution at Sedibeng
were higher than the SANS-recommended operational limit
(<10 mg-th), and those at Midvaal were slightly higher. It was
also noted in water samples from Midvaal that there is a slight
increase in TOC after treatment, which may be due to biofilm
formation in the distribution pipes. Although a decrease in TOC
was observed as the water passes through the water treatment
train, some of the treatment processes did not cause a decrease
in TOC levels in water; this was noted for example, after sand
filtration at Midvaal Water Treatment Plant. The effect of sand
filtration can be limited by overloaded or defective filtration
units (Obi et al., 2007) which could be one of the contributing
factors for the lack of TOC reduction. A slight increase was
observed after sedimentation at the Sedibeng Water Treatment
Plant. Common problems experienced with simple sedimenters
are that the design flow rates are rarely achieved in practice and
a certain element of ‘short-circuiting’ can occur unless construc-
tion, operation and maintenance are carefully carried out (WHO,
2000). It has been noted that NOM enables the micro-organisms
to grow in the treatment unit or distribution system (Khan et al.,
1998). Thus, exposure to light, bacterial growth and degradation
on edges of sedimentation tanks when water has been standing
for a long time may be the cause for the slight TOC increase.

A TOC reduction of 12% was observed after coagulation
at Midvaal and a probable contributing factor to the low NOM
removal could be due to the high pH value (7.48) which has an
effect on NOM removal especially when coagulants are added.
The higher the pH the less the NOM will be removed. For coagu-
lants like ferric salts and aluminium sulphate to function at their
optimum a pH within a range of between 4 and 6 is required
(Swartz et al., 2004). TOC reduction of 11 % was also observed
after ozonation. Ozone partially degrades NOM by breaking
the bonds of the NOM structure and convert organic carbon to
biodegradable organic carbon (Selcuk et al., 2007). Also, a low
reduction in TOC was also observed after chlorination.

Absorbance at 254 nm and SUVA

In the water industry UV absorbance at 254 nm is generally use-
ful as an indicator for monitoring the concentration of dissolved
organic carbon on line once the correlation between DOC and
UV254 has been established (Marrow and Minear, 1987). A
reduction in the UV absorbance was observed from raw water
to treated water, with a range of 0.04 to 0.17. In both plants,
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TABLE 3A
Water quality parameters at Midvaal Water Treatment Plant

Parameter Raw After After After After sand After Distribution

water flotation sedimen- ozonation filtration chlori- network

tation nation (Orkney)
TOC mgt? 14.53 12.03 11.76 10.40 10.54 9.19 9.73
Absorbance @ 254 nm 0.16 0.13 0.10 0.09 0.04 0.05 0.06
SUVA ¢mgim™ 1.03 1.00 0.78 0.79 0.35 0.54 0.62
pH 8.85 9.12 9.00 8.92 8.40 8.21 8.07
Conductivity uS 665 683 700 735 733 744 716
Turbidity NTU 0.36 0.11 0.10 0.12 0.07 0.06 0.07
COD mgt! O 24.06 23.00 22.98 20.60 20.34 2118 19.04
THMFP/TOC pgmg* 112.6 96.3 911 99.7 92.1 129.0 120.4
TABLE 3B
Water quality parameters at Sedibeng Water Treatment Plant

Water quality parameters Raw After After After sand After Distribution
at Sedibeng Water Treat- water coagulation sedimen- filtration chlorination network
ment Plant tation (Bothaville)
TOC mgt? 16.14 14.15 14.27 13.54 11.43 11.25
Absorbance @ 254 nm 0.17 0.14 0.12 0.13 0.14 0.1
SUVA ¢mgim™ 0.98 0.59 0.79 0.89 0.90 0.89
pH 8.59 7.48 7.86 7.99 7.79 8.00
Conductivity uS 665 695 672 677 691 694
Turbidity NTU 0.26 0.10 0.14 0.13 0.13 0.08
COD mgt! O 110.73 100.51 88.85 20.08 20.17 13.28
THMFP/TOC gmg? 94.98 88.24 82.90 78.98 109.54 102.87

the SUVA values were generally low (<2 £:mg?* m?) indicating
a low aromatic content of NOM in the water samples. This is
in contrast with studies done by Swartz et al. (2004) on South
African coloured surface waters whereby the SUVA values were
>2 {‘mglm? because of the low DOC values. This, in fact, con-
firms our hypothesis of the non-uniformity of South African
waters in terms of NOM content and its composition. Notably,
there was a decrease in the SUVA values throughout the water
treatment train which indicated a decrease in the aromatic com-
ponent of NOM in the water samples.

COD

COD is a measure of the oxygen equivalent of organic matter
content of a sample that is susceptible to oxidation by a strong
chemical oxidant. The COD values ranged between 19.04 and
24.06 mg-e* and between 13.28 and 110.73 mg-¢* for the Mid-
vaal and Sedibeng water treatment plants respectively. Raw
water COD levels were higher at Sedibeng than at Midvaal and a
decrease in the COD levels was observed after each water treat-
ment stage. COD can be related empirically to DOC and is a
useful test for monitoring and controlling the amount of organic
pollutants found in surface water after correlation with DOC has
been established (Swartz et al., 2004). It was observed in both
water treatment plants that COD decreases with a reduction in
TOC. Noteworthy, a sharp decrease was observed after sand fil-
tration at Sedibeng suggesting that the sand-filtration process
removed most of the oxidisable organic matter.

pH

The pH of the water samples after each treatment process
ranged between 7.48 and 9.12. The pH at the network distribu-

124

tion ranged between 8.00 and 8.07, which is within the SANS
recommended operational limit and the South African Target
Water Quality (SATWQ) limits for no risks (6.00 to 9.00 pH
units). Furthermore, pH has an effect on NOM removal espe-
cially when coagulants are added. For instance, at higher pH
values less NOM is removed whereas low pH promotes the
aggregation of organic matter (Weishaar, 2003) making it easy
to remove. This is evident with the low TOC reduction after
coagulation where the pH was > 6.

Conductivity

The conductivity of the water samples at both water treatment
plants ranged between 665 and 744 uS, which is within the
recommended operational standards. It was noted that the con-
ductivity increases as the water passes through the treatment
processes. This increase can be associated with the addition of
coagulants like ferric chloride, and aluminium sulphate dur-
ing coagulation and chlorine during chlorination. The presence
of inorganic dissolved solids such as chlorides, sulphates, iron
and aluminium can increase the conductivity of water (USEPA,
2006).

Turbidity

Turbidity can limit the effectiveness of chlorine during disin-
fection (Obi et al., 2007) which may be the result of the low
TOC removal observed after chlorination. The turbidity of
the water samples varied between 0.06 and 0.26 NTU which
fell within with the SANS limits (<5 NTU) and was within
the SATWQ range (<1 NTU). A decrease in turbidity was
observed from raw water to treated water in both water treat-
ment plants.
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Figure 1
GC-MS chromatogram of 10 mg+#* calibration standard
showing peaks of chloroform, bromodichloromethane,
dibromochloromethane and bromoform

THM formation potential and THM removal using
B-CD/HMDI polyurethanes

Figure 1 shows the GC-MS chromatogram of a 10 mg-¢* calibra-
tion standard with peaks showing the presence of chloroform,
bromodichloromethane, dibromochloromethane and bromo-
form.

The water samples showed the potential to form THMs,
i.e. chloroform and bromodichloromethane in all the different
treatment stages. This suggests that there is an inherent link
between the presence of NOM and the formation of THMs.
Figure 2 shows GC-MS representative chromatograms of
THM formation potential of the raw water, and after the water
samples had been passed through the water-insoluble -CD/
HMDI polyurethane. The graphs are scaled to the same value
for visual comparison only.

The B-CD/HMDI polyurethane effectively removed
THMs in water with a removal efficiency of 95% based on
ion count. These results concur with studies reported by
(Mhlanga et al., 2006 and Salipira et al., 2008) which showed
that B-CD polyurethane demonstrated an ability to remove
organic pollutants from water by absorbing these pollut-
ants into the cyclodextrin moiety hydrophobic cavities and
through general adsorption on the polyurethane substrate,
which also acts as a sorbent.

Figure 2
GC-MS chromatograms showing THM formation potential in
raw water sample from Midvaal (A) and after passing through
B-CD polyurethane (B)

The effect of 3-CD/HMDI polyurethanes on TOC and
UV absorbance

The removal efficiency of TOC and UV254 nm by -CD/HMDI
polyurethanes are shown in Tables 4 and 5.

TOC reduction by B-CD/HMDI polyurethanes on the water
coming from each water treatment step was up to 19%. Cyclo-
dextrins have a central cavity that provides an excellent resting
site for hydrophobic molecules such as organic compounds. This
cavity is non polar and provides a micro environment in which
appropriately sized non-polar compounds can be encapsulated
to form inclusion complexes (Li and Ma, 2000). The low reduc-
tion in TOC could be due to the fact that NOM is not appropri-
ately sized for the formation of inclusion complexes with 3-CD/
HMDI polyurethanes. However, the B-CD/HMDI polyurethanes
were very effective at reducing the UV absorbance in the water
samples, as an up to 78% reduction was observed. This implies
that the f-CD/HMDI polyurethanes could effectively absorb the
aromatic chromophores of NOM measured at 254 nm.

We have previously reported on a comparative study between
B-CD/HMDI polyurethanes and activated carbon in the removal
of organic pollutants from water at very low concentration levels
(ng-Y) (Salipira et al., 2008). The polyurethanes removed pol-
lutants at concentration levels of parts-per-billion and could be
recycled at least 18 times while still maintaining their adsorption

TABLE 4
The effect of B-CD/HMDI polyurethanes on TOC and UV absorbance on water from the Midvaal Water
Treatment Plant

Water treatment Initial Final TOC Initial Final uv
process TOC TOC reduction uv @ UV@ 254 nm reduction

(mg€?) (mg-€?) (%) 254 nm (%)
Raw water 14.53 12.27 16 0.16 0.05 70
After flotation 12.03 10.68 11 0.13 0.04 66
After sedimentation 11.76 10.48 11 0.10 0.03 69
After ozonation 10.40 9.37 10 0.09 0.04 64
After sand filtration 10.54 8.54 19 0.04 0.01 66
After chlorination 9.19 7.81 15 0.05 0.01 71
Network distribution 9.73 8.56 12 0.06 0.03 57
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TABLE 5
The effect of B-CD/HMDI polyurethanes on TOC and UV absorbance on water from the Sedibeng
Water Treatment Plant

Water treatment Initial Final TOC Initial Final UV@ uv
process TOC TOC reduction uv @ 254 nm reduction

(mg€?) (mg-€?) (%) 254 nm (%)
Raw water 16.14 15.87 7 0.17 0.04 75
After coagulation 14.15 13.64 8 0.14 0.03 79
After sedimentation 14.27 12.13 15 0.12 0.03 79
After sand filtration 13.54 12.71 13 0.13 0.04 71
After chlorination 11.43 10.06 12 0.14 0.03 78
Distribution network 11.25 10.17 10 0.11 0.03 76

efficiency (Mhlanga et al., 2007). Activated carbon was, on the
other hand, only effective at removing contaminants present in
water at parts-per-million and lost its adsorption effectiveness
once saturated with moisture. Its regeneration is costly since it
has to be reheated if it were to be reused for further adsorption
studies.

Conclusion

The water samples collected have a relatively high NOM con-
centration. Although there is a reduction in TOC which is used
as a measure of NOM, the treatment processes have limited abil-
ity in dealing with NOM and are not individually effective in
NOM removal. The SUVA values are generally low, which is an
indication of the presence of aliphatic compounds and low aro-
maticity. The aromatic component of NOM in the water samples
decreases from raw water to treated water. The -CD/HMDI
polyurethanes were effective in absorbing the aromatic constitu-
ent of NOM. The chlorinated water samples from both water
treatment plants demonstrated that indeed the presence of NOM
in water sample leads to formation of THMs. The water-insolu-
ble p-CD/HMDI polyurethanes used in this study significantly
reduced the THMs (95%), which is significant when considering
that these species can cause ill-health effects. The application of
B-CD/HMDI polyurethanes may have a huge impact in water
treatment in the future due to their ability to reduce a wide range
of organic pollutants to very low concentration levels (ng-€*)
including the carcinogenic THMs. This may eliminate the nega-
tive publicity associated with the use of disinfection processes
such chlorination which results in high yields of DBPs. Further-
more, the recyclability f-CD/HMDI polyurethanes can greatly
reduce the cost of water treatment.
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