Teaching and training in orthopaedics

Marais LC¹, Dunn R²

¹ MBChB, FC Orth SA, MMed Ortho, PhD; Head Clinical Unit, Department of Orthopaedics, School of Clinical Medicine, University of KwaZulu-Natal
² MBChB, FCS (SA) Orth, MMed Ortho; Pieter Moll and Nuffield Chair of Orthopaedic Surgery, Division of Orthopaedic Surgery, University of Cape Town

Corresponding author: Dr LC Marais, Department of Orthopaedic Surgery, School of Clinical Medicine, University of KwaZulu-Natal, Grey’s Hospital, Pietermaritzburg, 3200, South Africa; Tel: +2733 897 3424; Email: maraisl@ukzn.ac.za

Abstract

This article aims to review the current trends in the pedagogy of orthopaedic surgery, with specific reference to teaching philosophies, training methods and assessments tools that may be used. Our expanding knowledge base and the complexity of skills required, combined with the pressure created by medical negligence litigation increases the emphasis on knowledge of disease in contrast to pure competency in practical procedures. At specialist level, the drive now appears stronger than ever to develop less- or non-invasive ways to treat musculoskeletal disease. As a disease specialist the trainee, therefore, needs to develop a wider vision than one held by a competent technician. A combination of educational philosophies can be employed to achieve these objectives. Cognitive task analysis (CTA) and constructivism may be useful strategies for skills acquisition. In terms of theoretical knowledge, the emphasis remains on an evidence-based approach, delivered in an active student-centred environment. Clinical teaching as a whole, however, demands the promotion of critical thinking and a problem-oriented approach in a situated learning setting. The pedagogy of skill and knowledge assessment in orthopaedics remains unresolved. However, the educational impact of assessment through its value as a driver for learning has been recognised.

Level of evidence: Level 5

Key words: teaching, training, assessment, orthopaedics, trauma, review

Introduction

Orthopaedic surgery is expanding exponentially with evolving subspecialities demanding increased technical and academic competencies. This results in both undergraduate and postgraduate students having to assimilate an intimidating amount of knowledge during their training. In addition, registrars are required to provide evidence of research proficiency to register as a specialist. With the concurrent service demands and training time constraints, we need to review the way we educate.

Teaching of surgical skills is challenging but not necessarily more important than theoretical knowledge as we cannot focus on creation of competent technicians alone. Theoretical knowledge is crucial in order to apply the technical skills, and forms the basis of clinical care in musculoskeletal medicine. Being able to perform a knee replacement does not mean you can treat osteoarthritis. This principle holds true for both under- and postgraduate students and trainees need to develop a wider vision than one held by competent technicians.
This article aims to review the current trends in the pedagogy of orthopaedic surgery with regard to teaching philosophies, training methods and assessments tools.

Teaching and training

Skills acquisition

Orthopaedics is a procedure-oriented discipline. Teaching and training therefore requires emphasis on acquiring a heterogeneous group of technical and non-technical skills. Traditionally, this involved exposure to a high volume of cases. The following factors challenge this strategy and necessitate a rethink:

- Increasing complexity of procedures, fixation devices and implants
- Reduced training time, primarily because of reduced availability of theatre-time
- Diluted exposure to high-cost elective cases as state hospitals are inundated with trauma
- Shortage of trainers in the clinical academic environment
- Greater awareness of medico-legal implications and ethical issues surrounding training involving patients

In order to address these issues, the above-mentioned automated skills can be deconstructed by providing a detailed description of the task that makes the steps easier to understand. This process is referred to as Cognitive Task Analysis (CTA). The trainee needs to understand the reason for each decision and therefore information should be provided on the specific cognitive decisions that are made at each step. Focusing on mental learning of the steps, CTA does not include only manual or technical aspects of surgical training.

Constructivism is the theory that learners acquire knowledge and understanding through the interaction of their experiences with their ideas. This implies that trainees are more likely to acquire a practical skill if it is based on a similar previous clinical or learning experience. It is a useful method in orthopaedics and can be implemented by means of promoting pattern recognition and procedure-oriented problem list development. Building on the competence a trainee has acquired in terms of the basic skills to perform a surgical procedure (intramedullary nailing of a Winquist and Hansen type I diaphyseal femur fracture, for example) the trainee is taught to identify patterns (Seinsheimer type V femur fracture, for example) that necessitate the implementation of more advanced techniques, building on the same skill set. Once the trainee has shown adequate comprehension, the pathology can be broken down into the problems that specifically need to be addressed over and above the standard procedural technique that is required. The trainee then has to develop his operative plan with cognisance of this problem list. This process then ties in with the CTA methodology used in the learning of the intervention.

Theoretical knowledge

Teaching in surgical disciplines differs from other forms of teaching in that our practice relies as much on the practical aspects as it does on theory. This leads to the tendency to base our practice, and thus our teaching, on past experience. The mentor who relies only on his or her own experience (even if it can be qualified as an expert opinion) has, however, not completely fulfilled their role as a teacher. For this reason, evidence-based medicine (EBM) emerged as a key principle in surgical training. With several treatment options available for each fracture or pathology (a lot of which is based on rapidly advancing biomedical technology associated with significant commercial interest), selection of the optimal treatment method has to be based on sound clinical evidence. While the need for an evidence-based approach is widely accepted it has been criticised and it may, however, not always contribute to improve patient outcomes.

The pedagogy of ‘what’ is taught appears to be a lot more evolved than ‘how’ it should happen. In accordance with the recognised principles of evidence-based surgery, teaching methods should be patient- and learner-centred, as well as active and interactive. Educational theory suggests that interactive discussion is not only more popular but possibly also better at promoting knowledge retention in comparison to didactic lectures. This has also been shown in randomised trials involving group discussions in orthopaedics. While not always possible, discussions in small group format is preferred. In order to minimise didactic lectures (level 3 EBM teaching) and increase learner-centred, interactive, clinically orientated teaching (level 1 EBM teaching) the ‘flipped classroom’ model can be employed. The first step involves providing evidence-based material to learners to study in their own time. These student-centred assignments promote self-paced student involvement. It is thought that the actual practice of offloading content and engaging in active learning in the classroom is far more important than the specific method of offloading. The scheduled teaching event that follows then involves patient-centred problem-based discussion followed by inquiry. This may become quite chaotic and focus should be maintained through micro-lectures and clinical examples. In this way, the classroom time is active, student-centred and clinically orientated with the emphasis...
on an evidence-based approach. This teaching method can be highly effective as it reinforces the knowledge attained through interaction with well-prepared learners. It may also result in improved attitudes towards learning and knowledge retention. The main drawback of this method is that it is more time-consuming than more traditional teaching methods. While less active, a didactic platform may still be required to facilitate exposure to vital knowledge not covered in the more active components of the teaching programme.

Clinical teaching

Contemporary educational themes in clinical teaching methodology include:

- Critical thinking
- Problem-oriented learning
- Evidence-based approach
- Situated learning
- CANMED principles

Critical thinking can be defined as the ability to apply cognitive skills (analysis, synthesis, perspective-taking) and the disposition to be deliberate about thinking (being open-minded or intellectually honest) that leads to action that is logical and appropriate. It is a fundamental skill for clinicians who have to gather, integrate and act upon constantly changing complex data. Deficits in critical thinking have significant implications in practice, including misdiagnosis, delays in diagnosis and treatment errors. It has been suggested that a significant portion of students are not acquiring the necessary critical thinking skills thought to be at the core of higher education.

The sheer volume of available ‘evidence’ (literature) and the rapid advancement of the science of orthopaedic surgery may distract somewhat from the focus on acquisition of complex reasoning skills. In order to address this, a problem-oriented approach with emphasis on pattern recognition and solution-oriented problem-list development can be employed. The aim is to engender a culture of higher-order thinking during problem analysis, synthesis and solution. Reflective thinking should be promoted and learners should acquire the ability to zoom in and out during the process (between critical technical detail and the ‘big picture’ of ultimate clinical outcome). This should ideally be performed in the clinical environment and during small group discussions (morning X-ray meetings, peer-review sessions, out-patient clinics, ward rounds or theatre planning sessions). Irrespective of the setting, one should strive to keep the discussion patient-centred and clinically relevant. The introduction of the CANMED principles can improve clinical outcomes in surgery. Apart from the fact that trust in the physician may have a certain ‘placebo’ effect, the trainee’s sense of purpose and belonging to the team. While this can be achieved relatively easily through the student having to consult with patients in the clinic, on a ward round or while on call, independent interaction with the patient alone does not constitute complete inclusion of the learner. If the student presents the patient to the teacher who then prescribes the diagnostic procedures and treatment modalities to be employed, the value of the method is diminished. By insisting that learners provide their diagnostic and treatment plans (with reasoning) when presenting patients for discussion, this method focuses the trainee’s assessment of the patient on solving the problem at hand, rather than on just being able to perform generic symptom and sign reporting during the case presentation. It forces the trainee to think beyond the symptoms and signs, and begin to integrate the problem list with the treatment options. The process ties in with the over-riding aim, which is to engender a culture of critical thinking. The situated learning theory also supports the concept of ‘scaffolding’ where the learner is temporarily supported by an expert tutor who places them in the so-called ‘zone of proximal development’ where the student is able to progress in problem solving through interaction with more capable peers.

Although clinical acumen is essential, it is not all that is required of a competent clinician. The introduction of the CANMED principles into medical teaching recognises this. This approach emphasises the acquisition of all the necessary competencies to be able to function as an effective:

1. Medical expert
2. Communicator
3. Collaborator
4. Manager
5. Health advocate
6. Scholar
7. Professional

The aim should be to incorporate these aspects into clinical training and there is some evidence that implementation of CANMED principles can improve clinical outcomes in surgery. Apart from the fact that trust in the physician may have a certain ‘placebo’ effect,
strength in leadership may improve outcomes through the establishment of effective health care systems. Young et al. found that, when comparing surgical services with low and high complication rates, the difference was not in the training and experience of the surgeons but in the performance of the team as a health care system. They recognised the role of the surgeon as a leader of the team, who should not only be proficient in terms of management and the administrative aspects of running a team (protocols, systems and coordination etc.) but also with regard to the human resource side of things (communication, motivation and empowerment). This, again, emphasises the requirement to train a surgeon as more than a mere ‘technician’.

Assessment

Assessment of trainees forms a crucial part of supervision as it not only describes the progress of the learner, but also serves as a measurement of the efficacy and relevance of the training programme and the trainers. A recent study from the United Kingdom suggested that UK medical schools may be failing to ensure that medical students have acquired a basic competence in musculoskeletal medicine. In fact only 21% of students passed the Freedman and Bernstein musculoskeletal cognitive examination. The situation does not appear to be much better in South Africa, where a similar study (involving interns) found a 91% failure rate. These results are worrying and indicate that we need to intensify efforts to improve education in musculoskeletal disease. Indeed, recent studies have emphasised the underrepresentation of orthopaedic surgery in undergraduate curricula. While these studies illustrate the importance of training programme development and delivery it also highlights the need for appropriate assessment of learners. Assessment typically drives learning in students and therefore assessments should be designed to direct study in the relevant direction. The learning goals should therefore be considered when developing assessment tools to ensure that they remain relevant while not compromising quality. The challenge is that trainees must be assessed on the traditional competencies (knowledge and skills) but also on the other educational elements embodied in the CANMED principles.

At postgraduate level, the assessment of both aspects of cognition (knowledge and competence as referred to in Miller’s pyramid) is challenging. The evolution of single-best answer questions based on a clinical scenario appears to hold benefit as it promotes patient-centred analytical thinking. This format of assessment addresses several dimensions (remember, understand, apply, analyse and evaluate) of the revised taxonomy of educational objectives, as proposed by Krathwohl. In terms of formative assessment of knowledge, open-ended essay-style questions may not necessarily be superior to the multiple-choice format. However, it may still have an educational impact through its value as a driver for learning.

The assessment of skills has received some attention in recent literature. While the use of simulation is currently very prominent in orthopaedic literature, it is not always a realistic option in our resource-restricted environment. Furthermore, the cost efficiency of simulation-based assessments has been questioned. While OSATS (Objectively Structured Assessment of Technical Skills) was initially heralded as a reliable and valid tool, its validity has recently been called into question. The problem is that evaluating a technical competency does not equate to an acceptable outcome in orthopaedics. Assessing drilling and screw insertion techniques may all play a role. Some of the aspects involved are so subtle or complex that they are extremely difficult to capture in a checklist. Obviously, the best way to assess the trainees’ ability to ‘do’ is to evaluate their performance in carrying out their normal clinical duties. The coaching method, as used by the AO foundation, is primarily formative in nature and experienced as a training opportunity in a realistic environment. The trainee’s actions can be assessed by their ‘coach’, who (similarly to a sporting coach) is seen to be on their side (rather than a critical examiner). Improvement is then achieved through the trainee and the coach’s combined ‘post-match’ analysis.

Conclusion

With the massively expanding curriculum and required skillset, exposure restrictions and litigious environment, we need to adopt safer and well-proven educational strategies to prepare our trainees for Orthopaedic Specialist practice.

Compliance with ethics guidelines

This article does not contain any studies with human participants or animals performed by any of the authors. For this study, formal consent was not required.

References