
CLINICAL ARTICLE

No loosening of an uncemented acetabular component at a minimum of 15 years

Nicolas Martin MBChB, FCS(Orth)

Marc Nortje MBChB, FC Orth, MMed

Brendan Dower MBChB, FCS(Orth)

Prof Ian Learmonth MBChB, FRCS(Orth)

Garth Grobler MBChB, FCS(Orth), MMed

Reprint requests:

Dr M Nortje

Department of Orthopaedic Surgery

University of Cape Town

H 49 OMB Groote Schuur Hospital

Observatory, 7700

Cape Town

South Africa

Tel: +27 21 4045108

Email: mbnortje@yahoo.com

Abstract

One hundred consecutive total hip replacements using a cementless Duraloc 300 cup were reviewed at a minimum of 15 years. All acetabular metal components were found to be stable with no evidence of loosening.

Key words: Hip, arthroplasty, acetabular, loose, fixation

Introduction

In our previous 10-year review of these patients we found a zero rate of loosening and a mean polyethylene wear rate of 0.12mm per year.¹

The purpose of this paper is to retrospectively review the ongoing radiological results of this cohort of consecutive total hip replacements.

Patients and methods

Between August 1991 and July 1993, we performed 100 consecutive total hip replacements in 93 patients (48 men and 45 women). Two experienced hip surgeons performed 93 operations and seven were undertaken by registrars under supervision. The surgery was performed via a modified anterior approach as previously described.¹ The Duraloc 300, tri-spiked, Porocoat acetabular implants were used with a polyethylene liner containing a 10° long wall, that was gamma irradiated in air.

Of the original 100 hips, 35 patients died (37 hips) at an average of seven years post surgery. None of these patients had undergone a re-operation and all had a satisfactory fixation of the acetabular cup as seen on radiographs taken on average 1.7 years before death. Six patients (seven hips) were lost to follow-up leaving 56 hips available for analysis after a minimum duration of follow-up of 15 years.

The patients' radiographs (post-operative, 10 year, 15 year) were analysed with respect to loosening,^{2,3} liner wear,^{4,5} granuloma evolution⁶ as well as bone graft incorporation post liner revision. Migration or position of the liner was assessed according to the method of Massin *et al.*³

We defined loosening as cup migration or lucent lines of more than 1 mm diameter present in all three zones

Results

At 15-year follow-up none of the acetabular implants showed any evidence of loosening. We defined loosening as cup migration or lucent lines of more than 1 mm diameter present in all three zones (as per Hodgkinson *et al.*²).

The average wear at 15-year follow-up was 0.08 mm/y. This was less than the 0.12 mm/y at 10-year follow-up. Fourteen hips had granulomas at 15-year follow-up. Eleven of these granulomas were situated in zone 2, which may be related to the fact that a hole eliminator had not been used in these cups.

Eleven patients required revision surgery. Two had well-fixed cups removed at the time of stem revision at another institution, one had the long wall repositioned for early dislocation, five had liner revision and underwent impaction bone grafting to granulomas, three had liner exchange for excessive wear without granuloma present.

Four of these revisions took place in the last 5 years. Three were liner revisions only (two for excessive wear, one during granuloma bone-grafting), while one had the liner changed during revision of a loose stem post periprosthetic fracture.

In the five hips that were revised for granuloma around the cup, all showed good graft incorporation and remodelling. There were no complications related to the revision surgery.

Statistics

Kaplan-Meier survivorship analysis was performed with radiological loosening and liner revision as an end point. The survival at 15 years for loosening was 100%. The survival for liner revision was 84.93% (95% confidence interval of 76.02–93.83%).

Discussion

The zero radiological loosening rate of the Duraloc 300 cups at 15 years would indicate that spiked Porocoated cups provides sufficient bone in-growth for long-term stability even in cases with granuloma formation.

The wear rate of 0.08 mm/year is less than the one found at 10-year follow-up. We assume that this decrease is due to a combination of decreased activity levels in the ageing study cohort as well as less statistical impact of the initial running-in wear over the extended time period.⁷

The predominance of zone 2 granuloma indicates that wear particles gained entry to the bony acetabulum via the apex hole for the cup introducer. Use of a hole eliminator would be prudent (*Figures 1–4*).

The cases that required liner revision and bone grafting were easy to perform and in all cases graft material showed evidence of incorporation.

At 15 years all surviving patients had well-fixed, functioning acetabular components.

Figure 1. Post primary surgery in 1992

Figure 2. Seven years post-op with granuloma in zone 2 and polyethylene wear

Figure 3. Post liner exchange and bone graft through the insertion hole

Spiked Porocoated cups provide sufficient bone in-growth for long-term stability even in cases with granuloma formation

Figure 4. Ten years later with remodelling of the bone graft

Improvements in bearing surfaces may improve wear rates and granuloma formation in the future but fixation rates cannot be improved. If we solve the problem of wear, could joint replacement surgery offer a permanent solution?

This article is the sole work of the authors. No benefits of any form are to be received from a commercial party related directly or indirectly to the subject of this article.

References

1. Grobler GP, Learmonth ID, Bernstein BP, Dower BJ. Ten-year results of a press fit, porous-coated acetabular component. *J Bone and Joint Surg (Br)* 2005;87-B:786-89.
2. Hodgkinson JP, Shelley P, Wroblewski BM. The correlation between the roentgenographic appearance and operative findings at the bone-cement junction of the socket in Charnley low friction arthroplasties. *Clin. Orthop.* 1988; 228:105-109.
3. Massin P, Schmidt L, Engh CA. Evaluation of cementless acetabular component migration. An experimental study. *Journal of Arthroplasty*. 1989;4:245-51.
4. Hui A, McCalden R, Martell J, MacDonald S, Bourne R, Rorabeck L. Validation of two and three dimensional radiographic techniques for measuring polyethylene wear after total hip arthroplasty. *Journal of Bone and Joint Surgery [Am]*. 2003;85-A:3;505-11.
5. Martell J, Berdia S. Determination of polyethylene wear in total hip replacements with use of digital radiographs. *Journal of Bone and Joint Surgery [Am]*. 1997;79:1635-41.
6. De Lee JG, Charnley J. Radiological demarcation of cemented sockets in total hip replacements. *Clinical Orthopaedics*. 1976;121:20-32.
7. Garvin KL, Hartman CW, Mangla J, Murdoch N, Martell JM. Wear analysis in THA utilizing oxidized Zirconium and crosslinked polyethylene. *Clin Orthop Relat Res* 2009;467:141-14.

• SAOJ

Criteria for authorship and co-authorship of articles

The following are internationally acknowledged criteria for authors/co-authors.

With the increase in faculty and in research projects, there is a potential for increased confusion and conflict regarding appropriate authorship credit on manuscripts and presentations. The following are some relatively standardised criteria that can be helpful. These may be overstrict when considering clinical studies in which surgeons often do the "hands on work" that create the study but may not perform major analysis and writing functions. However, all authors should read and contribute editing comments prior to submission.

Relman criteria for authorship

In particular, to qualify as an author a person should fulfil at least three of the following five requirements:

1. Conception of idea and design of experiment
2. Actual execution of experiment; hands on lab work
3. Analysis and interpretation of data
4. Actual writing of manuscript
5. Be able to present to a learned gathering a lecture on the work; interpret it, defend it and take responsibility for it.

These are just guidelines. On the other hand it is probably far worse to leave someone off the list who feels they may have contributed than to include someone who did a bit less.

We should all be as inclusive as possible, offer our interested colleagues the opportunity to provide input, analysis and editing of our works to support each other and improve our papers.