Guidance to the applicability of the Global Lung Initiative spirometry reference equations for South African populations

To the Editor: The lack of appropriate reference data for assessment of respiratory function in African populations and its implications for correct diagnosis and management of respiratory disease are longstanding concerns. The Global Lung Initiative 2012 (GLI-2012) has the largest data set that provides guidance for spirometry reference equations across all ages for diverse populations across the world. Until recently, the major limitation to its use in Africa was the lack of data from black African populations. A similar limitation applies to other currently used equations, and it is the reason for current recommendations for ethnic corrections, although the latter are not broadly validated, particularly in paediatric and adolescent populations. The only contribution of African population data to the GLI data set is from North Africa, where the ethnic background of the population was categorised as ‘Caucasian’ in the data set. The limitations of the recommendation from the North African population were also noted as being inappropriate compared with locally derived Tunisian reference equations. The challenges associated with lack of data from healthy populations in Africa are linked to multiple factors, some of which are lack of access to resources, technical expertise and equipment to collect large data sets of healthy African populations.

The South African Thoracic Society adult spirometry guidelines published in 2013 recommend that for SA black African and mixed-ethnicity populations the GLI ‘Other’ reference equation should be utilised when performing spirometry. The GLI-White equation should be utilised for white South Africans, and the GLI-SE Asian equation for Indians. A critical finding of this study, which has been replicated in multiple studies, is that the forced expiratory volume in 1 second (FEV₁)/forced vital capacity (FVC) ratio is stable and is independent of the reference utilised, and can be relied on to diagnose airway obstruction in a good-quality test and using age-adjusted cut-offs for disease (Table 1).

While we are aware of the limitations of the recent SA study, which mainly included black Africans of Zulu and Xhosa descent, it represents a major step towards appropriate prediction values for the vast majority of South Africans, and an evidence-based implementation of the GLI reference values in southern Africa.

The change in the reference values suggested in this letter is endorsed by the South African Thoracic Society.

Refiloe Masekela
Department of Paediatrics and Child Health, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa

Coenraad F N Koegelenberg
Division of Pulmonology, Department of Medicine, Faculty of Health Sciences, Stellenbosch University and Tygerberg Academic Hospital, Cape Town, South Africa

Diane M Gray
Department of Paediatrics and Child Health and MRC Unit on Child and Adolescent Health, Faculty of Health Sciences, University of Cape Town, South Africa


Table 1. Reference equations and fit for South African populations

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>FEV₁ z-score, mean (SD)</th>
<th>FVC z-score, mean (SD)</th>
<th>FEV₁/FVC z-score, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black African (GLI-‘Other’)</td>
<td>0.13 (1.28)</td>
<td>0.13 (1.32)</td>
<td>-0.01 (0.87)</td>
</tr>
<tr>
<td>Mixed ethnicity (GLI-‘Other’)</td>
<td>0.22 (1.44)</td>
<td>0.24 (1.56)</td>
<td>-0.02 (0.85)</td>
</tr>
<tr>
<td>Indian (GLI-SE Asian)</td>
<td>0.18 (1.03)</td>
<td>-0.13 (1.09)</td>
<td>-0.1 (0.93)</td>
</tr>
<tr>
<td>White (GLI-White)</td>
<td>0.21 (1.22)</td>
<td>0.19 (1.24)</td>
<td>0.02 (0.91)</td>
</tr>
</tbody>
</table>

GLI = Global Lung Initiative; FEV₁ = forced expiratory volume in 1 second; FVC = forced vital capacity; SD = standard deviation.

*A z-score of 0.0 would denote a perfect fit.