Prenatal BoBs™ in the cytogenetic analysis of products of spontaneous miscarriage

S Mellali,1,5 PhD; K Haoud,1,3,4 PhD; I Gouas,2,3 PhD; M B Khaled,1 PhD; P Vago,2,3 MD, PhD; S Moulessehoul,1,5 PhD

1 Laboratoire de biotoxicologie, Department of Biology, Djillali Liabes University, Algeria
2 UFR médecine, cytotologie, histologie, embryologie cytogénétique, université Clermont 1, Clermont-Ferrand, France
3 Service de cytogénétique médicale, CHU d’Estaing, Clermont-Ferrand, France
4 ERTICA EA4677, UFR médecine, université Clermont 1, Clermont-Ferrand, France
5 Faculty of Life and Natural Science, Department of Biology, Djillali Liabes University of Sidi Bel Abbès, Algeria

Corresponding author: S Mellali (sara.mellali@yahoo.fr)

Background. Fifty percent of spontaneous miscarriages (SMs) are attributed to chromosomal abnormalities. Cytogenetic analysis is an important tool for patient counselling and assessment of the risk of recurrence in future pregnancies. Conventional karyotyping has been the gold standard for chromosomal investigation of products of conception (POC), but it has limitations due to sample maceration, culture failure and maternal cell contamination. Molecular cytogenetic approaches have therefore been developed and found valuable in the cytogenetic investigation of these samples. The Prenatal BoBs™ and KaryoLite BoBs™, based on the newly developed BACs-on-Beads™ technology, have been described as reliable tests for rapid detection of aneuploidies in prenatal and POC samples, respectively.

Objective. To describe our clinical experience of routine screening of POC samples with Prenatal BoBs™, the test used by our laboratory in France.

Methods. Seventeen samples collected at the University Hospital of Sidi Bel Abbès (Western Algeria) and a further 60 from the University Hospital of Clermont-Ferrand (France) were analysed (19 chorionic villi from products of curettage, 12 placentas, 9 amniotic cells and 37 biopsy specimens). All were screened for the frequent aneuploidies (chromosomes 13, 18, 21, X and Y) in addition to nine microdeletion/microduplication syndrome regions by Prenatal BoBs™. Standard karyotyping was performed on 51 samples, but failed in 38 cases.

Results. Prenatal BoBs™ identified one trisomy 21 and one deletion of 17p13.3. Furthermore, it provided a conclusive result in cases of culture failure (n=38) and in samples with macerated tissue (n=19). The overall failure rate was 11.4%.

Conclusions. Prenatal BoBs™ is a promising technology that represents a fast, sensitive and robust alternative to routine screening for chromosomal abnormality in products of SM. Furthermore, it overcomes the limitations of conventional karyotyping and current molecular cytogenetic techniques.


Of all diagnosed pregnancies, 10 - 15% end in spontaneous miscarriage (SM).10 Chromosomal abnormalities are the most common cause, more than 50% of aborted fetuses in the first trimester showing numerical abnormalities including trisomies, X monosomies and triploides. Aneuploidies become less prevalent as pregnancy progresses (30% in the second trimester), because most abnormal fetuses have miscarried earlier. A number of other factors (maternal factors, infections, etc.) may also play a role.11,12

Cytogenetic analysis of fetal tissue after SM is recommended for prognostic and diagnostic purposes, and to give a better estimate of the risk of recurrence in future pregnancies. It enables detection of possible unbalanced segregation associated with advanced maternal age or the presence of balanced structural rearrangement.13,14 Conventional karyotyping has been the gold standard for the cytogenetic analysis of products of SM. However, SM products in the first trimester are often collected at advanced stages of maceration as a result of tissue disintegration of the dead fetus in utero, which may cause significant DNA damage, or are haemorrhagic samples contaminated with maternal blood. Because karyotype analysis requires cell culture to obtain metaphase spreads, the poor quality of SM products often means that it is impossible to obtain a result because of culture failure, or that results are invalid due to maternal cell contamination (MCC).

Some molecular cytogenetic approaches such as FISH (fluorescence in situ hybridisation), MLPA (multiplex ligation probe amplification) and QF-PCR (quantitative fluorescence-polymerase chain reaction) have been described as valuable in the cytogenetic analysis of SM products.15-17 Performed within 24 - 48 hours, as opposed to weeks for karyotyping, these do not require cell culture, and DNA can be analysed directly after it is extracted. However, while it is possible to investigate several regions with FISH, the number of regions that can be explored with QF-PCR is limited, and MLPA requires the use of two commercial kits to investigate subtelomere regions.18 An additional approach is array-comparative genomic hybridisation (CGH), which has a better diagnostic yield than conventional karyotyping in the screening of products of conception (POC)13 but with the disadvantage of high cost.

A new rapid method for the detection of whole-chromosome aneuploidies, based on a BACs-On-Beads™ technology (Perkin Elmer, Finland), has recently been introduced. Two assays are available, Prenatal BoBs™ for the detection of trisomy 13, 18, and 21 and the most frequent syndromes associated with microdeletions, and KaryoLite BoBs™, which can detect aneuploidy in all chromosomes by quantifying the proximal and terminal regions of each chromosome arm. Prenatal BoBs™ has been shown to be a robust technology for the prenatal investigation of fetuses with or without abnormalities on ultrasound19, whereas KaryoLite BoBs™ has been found clinically useful for the investigation of SM products.20

Since September 2012, Prenatal BoBs™ has been used for prenatal diagnosis in the routine clinical setting in the Medical Cytogenetic Service of the University Hospital of Clermont-Ferrand (France). We describe our clinical experience of the screening of SM products collected at the university hospitals of Clermont-Ferrand and Sidi Bel Abbès (Western Algeria) using Prenatal BoBs™.
Patients and methods
Biological samples and DNA extraction
Seventeen POC were collected after SMs in the maternity department of the Hassani Abdellaker University Hospital of Sidi Bel Abbès, and 60 additional samples were collected at the University Hospital of Clermont-Ferrand after medical abortion due to suspicion of a molar pregnancy (n=1), spontaneous abortion (n=8) or fetal death in utero (n=51). Samples included chorionic villi from products of curettage (n=19), placenta (n=12), amniotic cells (n=9) and biopsy specimens (n=37).

Gestational ages ranged from 5 to 40 weeks (mean 21.5): 17 specimens were from the first trimester (5 - 12 weeks), 35 from the second trimester (13 - 24 weeks) and 25 from the third trimester (25 - 41 weeks). Women who had SMs were between 19 and 43 years of age (mean 30.3), 23.3% being of advanced maternal age (≥35). All women provided written consent.

Placental chorionic villi from maternal decidua, blood clots and mucus were dissected under a dissecting microscope into fragments a few millimetres in size. DNA was obtained from chorionic villus cells, amniotic cells or fetal skin fibroblasts without cell culture using the QIAamp DNA Mini Kit (Qiagen, Germany).

Prenatal BoBSTM assay
All the samples collected were analysed using the Prenatal BoBSTM kit. Fig. 1 shows the main steps of the assay. Prenatal BoBSTM is a multiplex bead-based suspension array technology designed for gain-and-loss screening of chromosomes 13, 18, 21, X and Y and nine targeted microdeletion regions. It uses the LumineXSTM xMAPSTM technology (Luminex Corp., USA), a multiplexing technology utilising polystyrene beads approximately 5 μm in diameter that have been impregnated with a specific ratio of two different fluorescent dyes. Ten concentrations of both dyes were used, and a range of >100 different dye/bead combinations with distinct fluorescent signatures or spectral addresses that can be identified through excitation of the impregnated dyes when read by the LumineXSTM analyser was created. In Prenatal BoBSTM, each bead was coupled with bacterial artificial chromosomes (BACs) derived from chromosome regions of interest. Using a flow cytometry approach, each bead was read by two separate lasers in a LumineXSTM 100/200STM analyser equipped with xPONENT 3.1 software. The BoBSofSTM software generated a ‘Results tab’ with a numerical and graphical representation of the fluorescent probe ratio v. female and male references. A sample was defined as ‘normal disomic’ when the fluorescent ratio was ~1.0 for all loci analysed.

Where deletions or duplications were present, probe ratios were outside the normal expected ratio range determined by the software for each sample.

The contents of the Prenatal BoBSTM kit were sufficient for 96 reactions. This assay was used for the rapid detection of gains and losses of DNA in 75 regions, including aneuploidies of chromosomes 13, 18, 21, X and Y, as well as gains and losses in nine microdeletion syndrome regions that are often associated with genetic disorders. Eighty-three BAC probes were used in the Prenatal BoBSTM panel: five for each of chromosomes 13, 18, 21, Table 1. Microdeletion syndromes with the chromosomal regions targeted by Prenatal BoBSTM

<table>
<thead>
<tr>
<th>Aneuploidies/microdeletion syndromes</th>
<th>Target chromosomal region</th>
<th>Number of probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolf-Hirschhorn syndrome</td>
<td>4p16.3</td>
<td>5</td>
</tr>
<tr>
<td>Cri du chat syndrome</td>
<td>5p15.3-p15.2</td>
<td>8</td>
</tr>
<tr>
<td>Williams-Beuren syndrome</td>
<td>7q11.2</td>
<td>5</td>
</tr>
<tr>
<td>Langer-Giedion syndrome</td>
<td>8q23-q24</td>
<td>7</td>
</tr>
<tr>
<td>Prader Willi/Angelman syndrome</td>
<td>15q11-q12</td>
<td>7</td>
</tr>
<tr>
<td>Miller-Dieker syndrome</td>
<td>17p13.3</td>
<td>6</td>
</tr>
<tr>
<td>Smith-Magenis syndrome</td>
<td>17p11.2</td>
<td>4</td>
</tr>
<tr>
<td>Di George 1 syndrome</td>
<td>22q11.2</td>
<td>4</td>
</tr>
<tr>
<td>Di George 2 syndrome</td>
<td>10p14</td>
<td>4</td>
</tr>
<tr>
<td>Patau syndrome (trisomy 13)</td>
<td>13q13.3-q21.2</td>
<td>5</td>
</tr>
<tr>
<td>Edwards syndrome (trisomy 18)</td>
<td>18p11.32-q22.1</td>
<td>5</td>
</tr>
<tr>
<td>Down syndrome (trisomy 21)</td>
<td>21q22.11-q22.3</td>
<td>5</td>
</tr>
<tr>
<td>Aneuploidy of chromosome X</td>
<td>Xp22.31-q27.3</td>
<td>5</td>
</tr>
<tr>
<td>Aneuploidy of chromosome Y</td>
<td>Yp11.2-q11.23</td>
<td>5</td>
</tr>
</tbody>
</table>

and losses of DNA in 75 regions, including aneuploidies of chromosomes 13, 18, 21, X and Y, as well as gains and losses in nine microdeletion syndrome regions that are often associated with genetic disorders. Eighty-three BAC probes were used in the Prenatal BoBSTM panel: five for each of chromosomes 13, 18, 21,
X and Y, four to eight each for the nine well-defined target loci, and six autosomal controls, as shown in Table 1.

Selection of the nine microdeletion syndrome regions was based on their association with chromosomal disorders with a relatively high prevalence, and syndromes in which the deletion was the major mechanism underlying the pathology. Deletions of these regions are generally not detectable or may be missed by conventional karyotyping. The syndromes have well-described phenotypes and known clinical significance.[11]

Results
We attempted analysis using Prenatal BoBs™ in 70 of the 77 samples collected. Of the remaining seven, six were empty gestational sacs, haemorrhagic samples with MCC or macerated samples with absence of chorionic villi; the last sample was excluded owing to a low DNA amount after DNA extraction (<5 ng/μL).

Cytogenetic analysis using Prenatal BoBs™ gave a conclusive result for 62 of the 70 samples (88.6%). Failure to deliver a result in the remaining eight cases (11.4%) was due to poor DNA quality. Of the 62 samples, 60 were considered normal (96.8%) and two had abnormal results (3.2%) (Table 2): one trisomy 21 (intrauterine fetal death at 11 weeks’ gestation), and a deletion of 17p13.3 (Miller-Dieker syndrome, MDS) (Fig. 2).

Standard karyotyping was not attempted in 26 samples, 19 of which were too macerated for cell culture. Karyotyping failed in 38 samples because of absence of cell proliferation and microbial contamination in the cell cultures. Thirteen samples had normal karyotypes.

Trisomy 21 was detected in a female fetus who died in utero at 11 weeks’ gestation. At autopsy, the fetus was found to have a hygroma and generalised subcutaneous oedema. As the cell culture failed, we could not determine whether the trisomy was total or partial.

The deletion of 17p13.3 (MDS) was identified in a female fetus who died in utero at 38 weeks’ gestation. MDS is characterised by a developmental defect of the brain (type 1 lissencephaly), which is caused by incomplete neuronal migration. This microdeletion syndrome is also characterised by distinctive facial features and other congenital malformations. Serum markers in the first and second trimester were normal and the second ultrasound scan revealed a single umbilical artery. At autopsy, the fetus was found to be hypotrophied and short in length (<25th percentile) and

![Fig. 2. Prenatal BoBs™ profiles of case 1 (left) and 2 (right). Red spots show sample-to-female references ratios and blue spots sample-to-male references ratios. Arrows show the range of (A) normal ratios, and (B) abnormal ratios. C = female gonosome profile showing that the patient has the same number of copies of chromosome X as female references (red dots in the normal range) but more than male references (blue dots in amplification), and has the same number of copies of chromosome Y as female references (red dots in the normal range) and less than male references (blue dots in deletion). D = 21q22 amplification showing trisomy 21 profile. E = 17p13.3 deletion.](image)
to have a decreased head circumference (<3rd percentile). However, there were no facial dysmorphic features or cardiac, pulmonary or renal abnormalities. Neuroanatomical examination did not show lissencephaly. FISH analysis showed that the LIS1 gene, monosomy of which is responsible for MDS, was not deleted. The deletion was characterised further by array genomic comparative hybridisation (4 × 180K, Agilent, USA), which showed a deletion of 2.3 Mb encompassing 40 genes. This deletion, which is not typical of the MDS, was probably responsible for the short stature of the fetus, but the fact that the single umbilical artery could have contributed to death could not be excluded.

Discussion

Prenatal BoBs™ is a recently developed molecular cytogenetic screening tool for the most common aneuploidies (chromosomes 13, 18, 21, X and Y) and the nine most frequent microdeletion syndromes found in POCs, which are not detectable or may be missed by conventional karyotyping. This rapid targeted assay is dependent on DNA extraction and does not require live or intact cells, and represents an interesting alternative to conventional cytogenetics that require cell culture because of cell culture failure (owing to culture failure in one case and low resolution in the second). Prenatal BoBs™ appears to be fast, sensitive and a good alternative to other conventional technologies such as karyotyping in the routine screening of SM products, especially when tissue is damaged and macerated, preventing cell culture. In combination with other molecular approaches, use of Prenatal BoBs™ could improve detection of chromosomal abnormalities in POCs and prove helpful in parental counselling.

Acknowledgments. We gratefully acknowledge Prof. Philippe Vago, Dr Laetitia Gouas and all the staff of the medical cytogenetic service, CHU d’Estaing, Clermont-Ferrand, for their technical experience and advice on Prenatal BoBs™.

References