Preventing diabetic blindness: A priority for South Africa

K J Hofman, C Cook, N Levitt

Karen Hofman is a medical graduate of the University of the Witwatersrand, Johannesburg, South Africa, and a paediatrician. She is Director of PRICELESS SA (Priority Cost Effective Lessons for Systems Strengthening), focused on ‘best buys’ in public health and based at the Medical Research Council/Wits Rural Public Health Unit (Agincourt) in the School of Public Health, Faculty of Health Sciences, University of the Witwatersrand. Colin Cook is a graduate of the University of Cape Town, South Africa, and Morris Maisberger Professor of Ophthalmology in the Department of Surgery, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town. Dinky (Naomi) Levitt, also a UCT graduate, is Head of the Division of Diabetes and Endocrinology in the Department of Medicine at UCT and Groote Schuur Hospital and Director of the Chronic Diseases Initiative for Africa, Cape Town.

Corresponding author: K J Hofman (karen.hofman@wits.ac.za)

The prevalence of diabetes in South Africa is increasing rapidly, and diabetes is a significant cause of blindness. Diabetic complications can induce a cycle of poverty for affected families. Early detection of retinopathy and appropriate management can prevent blindness. Screening for retinopathy using a mobile retinal camera is highly cost-effective, with costs of screening and follow-up treatment being less than the expense of one year of a disability grant. Such a programme is a prime example of a ‘best buy’ that should be part of the national diabetes care package.

Relevance to policy

Advocacy for preventive screening of diabetic retinopathy intersects early stages in the development of SA’s National Health Insurance (NHI). As the NHI will not cover diagnostic procedures outside its approved guidelines and protocols, it is essential that screening for diabetic retinopathy be considered for scale-up nationally and therefore for inclusion in these guidelines. At present, screening for retinopathy at primary care level is almost non-existent, despite current guidelines recommending annual screening. In addition, ophthalmic referral and treatment in the form of laser therapy and operations are reserved for the tertiary care sector.

Difficulty of access to screening and treatment of diabetic blindness is exacerbated by the 55% of diabetic patients who remain undiagnosed. The government provides support through monthly disability grants for the blind, totalling ZAR12 120 per year per blind person. In comparison, the cost-effectiveness study showed that the ZAR10 500 per blindness case averted is less than the expense of one year of a disability grant. Prevention of blindness would also extend the number of working years for every diabetic patient. The use of mobile fundus cameras has huge savings potential compared with the current situation of diabetes treatment and disability coverage.

International comparisons

Canadian researchers found fundus cameras to be cost-effective compared with their alternative specialist-based programme. Camera screening saved 67 sight-years at US$3 900 per sight-year, while the alternative programme saved only 56 sight-years at US$9 800 per sight-year. Although the SA pilot project was performed in an urban setting, similar projects in rural communities in Australia and France proved to be effective. US researchers have also built a prototype mobile fundus camera that will cut costs significantly and potentially make screening for diabetic blindness even more cost-effective. Smartphone technology that might allow screening for diabetic retinopathy using mobile phones is now being tested elsewhere in Africa.

International examples show that camera screening for diabetic vision impairment is successful at a national scale. Such systematic screening
has been established in Iceland for over 30 years. In 1980, 2.4% of Iceland’s population was legally blind, but by 2005 the prevalence had dropped to 0.5%. Similarly, Israel’s prevalence of preventable blindness dropped by half from 33.8/100,000 in 1999 to 16.6/100,000 in 2008. These declines can be attributed to the availability of treatment and preventive measures and illustrate the importance of implementing treatment guidelines for diabetic vision impairment.

In sub-Saharan Africa, countries have utilised other alternatives by task-shifting cataract operations from ophthalmologists to non-physician cataract surgeons (NPCSs). NPCSs in Kenya, Tanzania and Ethiopia, for example, performed over 77,000 operations in 2000-2004. Results showed no difference between specialised ophthalmologists and NPCSs in respect of the quality of surgeries conducted. Although the use of NPCSs is not widely accepted, they represent a cost-effective alternative solution. Laser treatment for diabetic retinopathy-related blindness is how value for money and affordability can be balanced across competing priorities. This approach is one example of a ‘best buy’ that could potentially be incorporated in a diabetes care package.

‘Best buys’ for policy makers

Under the current economic circumstances, every ZAR must work more effectively, efficiently and equitably. In order for the SA government to discern a ‘best buy’ among cost-effective options, it needs access to valid, reliable and comparable information on costs and consequences of policy alternatives. International examples do provide useful information, but this must be complemented by local context-specific evidence. Prevention interventions offer particularly good value, as they produce the largest gain.

Conclusion

The use of mobile fundus cameras to screen for diabetic vision impairment is a paradigm of an innovative approach to achieve economies of scale to reduce preventable blindness effectively on a national level. The use of mobile fundus cameras would interface well with the screening strategy recommended by the Ophthalmology Society of South Africa. One of the challenges for the evolving NHII

This month in the SAMJ ...

Candy Day* is a Technical Specialist in Information Dissemination at the Health Systems Trust. She is a pharmacist with a master’s degree in clinical pharmacology and subsequent training in medical informatics through the International Training in Medical Informatics Fellowship and other courses.

Over the past 18 years Candy has worked on developing information resources in the field of public health. The current focus of her work includes monitoring and evaluation, data analysis, health systems performance assessment, and maintaining a dynamic web-based repository of South African health and related indicators. She collaborates with international and local experts as well as the World Health Organization, National Treasury, National Department of Health, Health Economics Unit and Medical Research Council.