One goal of the US$700 million Women’s Health Initiative Randomized Controlled Dietary Modification Trial was to determine whether post-menopausal women who adopted what was regarded as a ‘heart healthy’ low-fat diet, high in vegetables, fruits and grains, reduced their risk of developing cardiovascular disease (CVD). The trial substantially favoured the outcome in the intervention group, who also received an intensive nutritional and behaviour education programme not offered to the control group.

The conclusion after 8.1 years of study was that: ‘… a reduced total fat intake and increased intake of vegetables, fruits, and grains did not significantly reduce the risk of [coronary heart disease] (CHD), stroke, or CVD in postmenopausal women and achieved only modest effects on CVD risk factors’ (p. 655). However, the abstract notes that these conclusions apply only to women who were healthy at the start of the trial since it excludes ‘participants with baseline CVD (3.4%)’. It is not clear whether the inclusion of these unhealthy women would have altered the overall conclusion.

The study’s only statistically significant finding, reported on the seventh page of the published manuscript (p. 661),3 has yet to enter the scientific discourse: ‘The H(azard)R(atio) for the 3.4% of women with diabetes mellitus (DM) if assigned to the low-fat diet …’. The authors concluded: ‘… caution should be exercised in recommending a reduction in overall dietary fat in women with diabetes unless accompanied by additional recommendations to guide carbohydrate intake’ (p. 84).4

In fact, there were a number of negative findings from the WHIRCDMT. The leanest women at the start of the trial gained weight on the low-fat diet5 and those with the least insulin resistance at the start of the trial were at greater risk of developing type 2 diabetes mellitus (DM) if assigned to the low-fat diet.5–7 The low-fat diet also worsened glucose control in women with diagnosed diabetes,6 a finding that ‘agrees with some, but not all, previous studies evaluating the effects of high- and low-carbohydrate diets in persons with diabetes’ (p. 83).6 The authors concluded: ‘… caution should be exercised in recommending a reduction in overall dietary fat in women with diabetes unless accompanied by additional recommendations to guide carbohydrate intake’ (p. 84).4

In fact, these studies neatly disprove the diet-heart hypothesis since adoption of ‘heart healthy’ eating not only failed to influence future cardiac events in the healthy but it increased such events in the unhealthy and worsened diabetic control in those with type 2 diabetes mellitus.

The project leader’s opinion was: ‘This study shows that just reducing total fat intake does not go far enough to have an impact on heart disease risk. While the participants’ overall change in [low-density lipoprotein (LDL)] ‘bad’ cholesterol was small, we saw trends towards greater reductions in cholesterol and heart disease risk in women eating less saturated and trans fat’.6 However, this explanation is false for three reasons.

First, the prognosis of women with diagnosed CVD worsened when they ate the ‘heart healthy’ low-fat diet that would produce ‘favourable’ changes in ‘bad’ cholesterol. Second, the focus of this uniquely expensive study was to measure outcomes, not changes in biological markers. The latter could have been done with a far less expensive trial. Third, the project leader’s statement confirms that the WHIRCDMT was not designed to test a null hypothesis. Instead, the inconvenient finding supporting the null hypothesis was promoted as evidence for a false-negative finding on the grounds that the intervention did ‘not go far enough’.

In fact, these studies neatly disprove the diet-heart hypothesis since adoption of ‘heart healthy’ eating not only failed to influence future cardiac events in the healthy but it increased such events in the unhealthy and worsened diabetic control in those with type 2 DM.

The recently (February 2013) recovered data from the Sydney Diet Heart Study7 confirm that a key component of the ‘healthy heart’ diet...
PUFAs (from fish, certain vegetables and pasture-raised ruminants) initiate and promote atherosclerosis is understood. (p. 4).

This month in the SAMJ ...

Richard van Zyl-Smit**† qualified at the University of Cape Town (UCT) in 1996. He is head of the Lung Clinical Research Unit at the UCT Lung Institute and an honorary consultant pulmonologist at Groote Schuur Hospital. After completing his pulmonology training in 2007, he completed a PhD investigating the effects of tobacco smoking on human immune responses to mycobacterial infection. He directs the smoking cessation services at Groote Schuur Hospital as well as being actively involved in asthma, chronic obstructive pulmonary disease (COPD) and tuberculosis research.

Brian Allwood**† is an honorary consultant pulmonologist and senior lecturer in the Division of Pulmonology at the University of Cape Town (UCT). He received his undergraduate degree from the University of the Witwatersrand and completed his training as a specialist physician (2008) and consultant pulmonologist (2012), at Groote Schuur Hospital. He also attained Masters in Public Health in Clinical Research from UCT (2012), at Groote Schuur Hospital. He also attained a Masters in Public Health in Clinical Research from UCT (2012), at Groote Schuur Hospital. After completing his pulmonology training in 2007, he completed a PhD investigating the effects of tobacco smoking on human immune responses to mycobacterial infection. He directs the smoking cessation services at Groote Schuur Hospital as well as being actively involved in asthma, chronic obstructive pulmonary disease (COPD) and tuberculosis research.
