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Pesticide residues and heavy metal content of cassava, yam, cocoyam, potato, water yam and carrot were 

evaluated by gas chromatography–mass spectrometry and atomic absorption spectroscopy. The detected 

pesticide residues in the samples were 2,4-dichlorophenoxyacetic acid, glyphosate, hexachlorobenzene 

(HCB), dichlorobiphenyl, aldrin, endosulfan, profenofos, g-chlordane, carbofuran, biphenyl, heptachlor, 

lindane and t-Nonachlor. The concentration of HCB ranged between 0.0799 ± 0.06 mg/kg and 0.1596 

± 0.00 mg/kg, which was greater than the permitted maximum limit of 0.5 mg/kg established by the US 

Environmental Protection Agency. The concentration of aldrin and profenofos detected was lower than the 

predetermined maximum allowed limits. Endosulfan concentrations in cocoyam (0.2500 mg/kg) and potato 

(0.3265 mg/kg) were higher than the limits allowed by the Canadian Department of Industrial Research. The 

heavy metals detected in these samples include cobalt, nickel, lead, manganese, chromium, arsenic and 

mercury in at least one of the samples evaluated. There was not much difference between the concentration 

of cobalt in yam (0.036 mg/kg) and the maximum allowed concentration (0.043 mg/kg). Lead was detected 

in potatoes and carrots but was below detectable concentration in cassava, yam, cocoyam and water yam. 

Similarly, cocoyam was found to have a significant mercury content (0.658 mg/kg), but mercury content was 

below detectable concentrations in cassava, yam and water yam.

Significance:

Heavy metal pollutants and pesticide residues can impair human health, and their presence in food can cause 
various illnesses and health issues. It is important to prevent exposure to these contaminants and ensure that 
food is safe by identifying and monitoring them. Farmers may provide consumers with more assurance that 
their products are safe by identifying and monitoring pesticide residues and heavy metal contamination in 
these food crops. Overall, it is crucial to find and monitor pesticide residues and heavy metal contamination 
in food to safeguard customer confidence, ensure legal compliance and preserve human health.

Introduction
Pesticides are chemicals that are used to control pests which are harmful to humans, plants and the environment.1 
In parallel, pesticide residues are described as substances that are found in foods for consumption by humans 
or other animals, and are chemical derivatives considered to be toxic to living organisms.2 Similar to pesticide 
residues, the entrance of heavy metals into the food chain is their major route into the human system, which 
could cause autoimmune disorders and inhibit the functions of some biochemical processes.3 Heavy metal toxicity 
has been reported regularly in recent times, with some deaths attributed to it. Other effects of heavy metals on 
humans include cancers, high blood pressure and gene mutation.2,4,5 Uncontrolled disposal of household and 
electronic waste, animal dung and abandoned metallic parts are some of the environmental sources of heavy 
metals.6 Environmental pollution is a serious problem in today’s modern world, with pesticides and heavy metal 
pollution being the most prevalent due to their ability to contaminate air and water.7

Cassava, yam, cocoyam, potato, water yam and carrot are commonly cultivated in Nigeria due to their multiple 
usage and nutritional values. These tubers are tropical crops consumed by about 2 billion people and are the 
major sources of carbohydrates providing energy for the roughly 700 million residents of tropical and subtropical 
regions.8 The production of these products and their conversion into goods derived from food is expanding, and 
farmers profit significantly from their market.8 Their high post-harvest losses, due to contamination by external 
and internal hazardous substances (such as mycotoxins, heavy metals and insecticides), reduce economic 
value and income. These roots/tubers have a crude fat content on the fresh weight of 0.1–0.5% and 1–3% on 
the dry weight, of which 80% is starch. The carbohydrate content of cassava is larger than that of potatoes.8 
Cassava is a potent source of energy despite being deficient in lipids, minerals and proteins.9 On the other hand, 
yam provides energy in the range of 80–120 kcal/100 g.10 Vitamin A is produced from beta-carotene, and it is 
present in adequate amounts in potatoes.11 These tubers’ essential amino acid composition is higher than that 
recommended by the Food and Agriculture Organization (FAO) for daily protein intake and greater than that of 
soybean protein.12 These tubers may become polluted during cultivation and food processing and also contain 
certain endogenous antinutrients.

Currently, there are common applications of several agrochemicals in the cultivation of these crops to ward 
off pests. All the grown food crops are highly vulnerable to various insect attacks, especially on the farm or 
in the cultivation area, which has a detrimental impact on both the financial and dietary elements of product 
quality. Pesticides must be used to control pest infestations, which helps to improve the quality of crops and their 
production on farms.13 Consequently, these tubers may get contaminated, and the risks associated with consuming 
these roots can be divided into two groups: those related to potentially harmful substances present in the crop 
itself, and those related to processing and product development. However, there are some significant concerns 
regarding food safety and security. A lot of research still needs to be carried out concerning the level of heavy metal 
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and pesticide pollution, especially that seen in Nigerian food crops like 
the tubers that are commonly consumed, such as cassava, yam and 
cocoyam.14,15

The amount of residues from pesticides and heavy metals in tuber-
derived food products varies based on the location of the growing area 
and the system of farming. In Nigeria, pesticide residues detected in 
some tubers (cassava and yam) were HCB (0.0247), endosulfan (0.0340 
and 0.090) and aldrin (0.0000 and 0.0937) mg/kg, respectively.15 The 
concentration of isopropylamine in yam was 0.2165 ± 0.00 mg/kg 
and in cassava was 0.1649 ± 0.00 mg/kg, while the concentration 
of t-Nonachlor in yam was 0.1093 ± 0.00 mg/kg and in cassava was 
0.0006 ± 0.00 mg/kg, as reported by Omeje et al.15 Adeyeye and 
Osibanjo16 detected high concentrations of organochlorine residues in 
yam (aldrin = ~5.0 µg/kg; dieldrin = ~24.0 µg/kg and p,p´-DDE = 
~13.0 µg/kg) and cassava (aldrin = ~6.0 µg/kg; dieldrin = ~31.0 µg/
kg and p,p´-DDE = ~21.0 µg/kg) in their study. Heavy metals have been 
found in tubers like potatoes, yams and cassava in previous studies. The 
amount of cadmium (Cd) found in yam was reported to be 0.11 mg/kg, 
and lead (Pb) and nickel (Ni) were also detected.17 In addition, 0.21 mg/
kg of Pb, 42 mg/kg of copper (Cu), 24 mg/kg of zinc (Zn), 18 mg/kg of 
manganese (Mn) and 12 mg/kg of Ni were reported by Wilberforce and 
Nwabue18. Arsenic (As) concentration in cassava was detected to be 
0.017 mg/kg.15 According to Onianwa et al.19, the range reported for Ni 
concentrations in tubers is 0.93–1.79 mg/kg. Akinyele and Shokunbi20 
detected Mn in yams (~4.42 mg/kg), and Orisakwe et al.21 reported Pb 
(~0.33 mg/kg), Cd (~0.10 mg/kg) and Ni (~0.30 mg/kg) in cassava.

To enrich the existing body of information, we assessed the presence 
and concentration of common food pesticide residues and heavy 
metal contaminants in essential and commonly consumed tuber crops 
cultivated in Nigeria using gas chromatography–mass spectrometry 
(GC–MS) and atomic absorption spectroscopy.

Materials and methods

Chemicals and materials

The chemicals and reagents used were of analytical quality and included 
chloroform, perchloric acid, sodium sulfate, concentrated sulfuric acid 
(Sigma-Aldrich), n-hexane (Loba Chemie, India) and concentrated nitric 
acid, anhydrous sodium sulfate, methanol (Sigma-Aldrich) and benzene. 
The pesticide standards (purity > 95%) were obtained from Restek 
(Sigma-Aldrich, USA). With concentrations ranging from 50 ng/mL to 
200 ng/mL, stock standard solutions of 47 organochlorine pesticides 
(OCPs), organophosphorus pesticides (OPPs) and other pesticides were 
made in ethyl acetate and stored at 4 °C in a dark location until analysis. 
Pesticides are present in spiking solutions in amounts of 10–50 ng/L. 
The internal standard was aldrin solution (Sigma-Aldrich) in acetone at a 
concentration of 50 ng/L.

Samples

In April 2022, fresh tubers weighing 500 g each (cassava, yam, 
cocoyam, potato, water yam and carrot) were purchased from Nsukka 
open market situated in Enugu State (6°51’24” N and 7°23’45” E) in 
southeast Nigeria, and transported to the laboratory of the Department 
of Biochemistry, University of Nigeria, Nsukka. They were processed and 
stored at 4 °C for further analysis.

Pesticide residue analysis

The pesticide residues were determined with the help of a GC analysis 
and prepared following the AOAC method22, with minor modifications. 
Ten grams (10 g) of the homogenised sample was mixed with 60 g of 
anhydrous sodium sulfate in an agate mortar to absorb moisture. The 
homogenate was transferred into a 500 mL beaker, and the extraction 
was carried out with 300 mL of n–hexane for 24 h. The obtained crude 
extract was concentrated using a rotary vacuum evaporator at 40 °C  
to dryness. The sample residue (1 mL) was measured into 50 mL of 
chloroform transferred to a 100 mL volumetric flask and diluted. Most of 
the chloroform was evaporated at room temperature before adding 1 mL 
of the solvent mixture (20% benzene and 55% methanol). The mixture 

was sealed and heated at 40 °C using a water bath for 10 min. After 
heating, the organic sample was extracted with n–hexane and water 
in a proportion of 1:1. The mixture was shaken vigorously for 2 min, 
and n-hexane phase was transferred onto a small test tube for injection 
into a Buck 530 Gas Chromatograph (GC) equipped with an on-column, 
automatic injector, electron capture detector and an HP 88 capillary 
column (100 mm X 0.25 µm film thickness) (Agilent Technologies, Santa 
Clara, CA, USA), with injector and detector temperatures of 180 °C and 
300 °C, respectively. Overall, the GC enabled the identification of pesticide 
residues, which were recorded in mg/kg, as the results emerged.

Heavy metal analysis

The heavy metal analysis (Co, Ni, Pb, Mn, Cr, As, Hg and Cd) was 
performed using a Varian AA240 Atomic Absorption Spectrophotometer 
(AAS; Varian Inc., Palo Alto, CA, USA) equipped with an acetylene air 
flame, adapting the protocol described by Quarcoo and Adotey23, with 
slight modifications. The pyrolytic-coated graphite tubes of the AAS 
were equipped with platform instrument settings and furnace programs 
that helped to ascertain the peak signals. A known concentration of 
the sample (~2 g) was put into a digestion flask, along with 20 mL of 
acid mixture (which consisted of 650 mL concentrated HNO

3
; 80 mL 

perchloric acid; 20 mL concentrated H
2
SO

4
), and subsequently heated 

until a clear digest was obtained. The digest was diluted with distilled 
water to the 100 mL mark. The acid level samples as they came along 
were monitored by a pH meter. The digestate was quantified, assayed for 
heavy metals using a Varian AA240 Spectrophotometer, and reported in 
mg/kg. The reference standards (Fluka Analytical, Sigma-Aldrich Chemie 
GmbH, Switzerland) for the detected element, blanks and their duplicates 
were digested using conditions consistent with those of the samples.

Statistical analysis

The emergent heavy metal and pesticide residue data were obtained 
from triplicate determinations of different samples from a given food 
crop batch. A one-way analysis of variance (ANOVA), using SPSS 
for Windows (version 16, SPSS Inc., Chicago, IL, USA), was used to 
establish differences in heavy metals/pesticide residues across the 
studied food crop samples. Data are expressed as mean ± standard 
error (SE). A simple t-test was used to compare the heavy metals/
pesticide residue concentration data and the established/referenced 
maximum permissible limits (MPLs). The probability level was set at  
p < 0.05 (95% confidence level).

results
The concentrations of nickel (Ni), chromium (Cr), cobalt (Co), arsenic 
(As), manganese (Mn), cadmium (Cd), lead (Pb) and mercury (Hg) in 
the tubers are shown in Table 1.

All the heavy metals evaluated were present in the samples, except for 
Cd, which was below the detectable concentration in all the samples 
studied (Table 1). Among the samples, the maximum level of Ni (0.012 
± 0.00 mg/kg) was found in cassava. The concentration of Ni was 0.009 
± 0.00 mg/kg in cocoyam,  0.006 ± 0.00 in yam,  0.007 ± 0.00 in 
water yam, 0.001 ± 0.00 in carrot and 0.006 ± 0.00 in potato (Table 1).

Co, one of the common heavy metals in the environment, was among 
those evaluated. The maximum Co concentration of 0.036 ± 0.00 mg/kg  
was detected in yam. A Co concentration of 0.026 ± 0.00 mg/kg was 
detected in cocoyam, 0.016 ± 0.00 mg/kg in water yam, 0.011 ± 0.00 
mg/kg in cassava, 0.010 ± 0.00 mg/kg in carrot and 0.002 ± 0.00 mg/
kg in potato. According to Leyssens et al.24, Co is an essential constituent 
of nature, which is released during many anthropogenic activities and is 
a cofactor of vitamin B

12
.

Cr was also detected in all the samples. Cr concentrations of 0.093 
± 0.00 mg/kg and 0.083 ± 0.00 mg/kg were found in cocoyam and 
cassava, respectively. Potato and water yam had Cr concentrations of 
0.073 ± 0.00 mg/kg and 0.078 ± 0.00 mg/kg, respectively. The lowest 
level of Cr was detected in carrots (0.010 ± 0.00 mg/kg). Similarly, 
cobalt was detected in all the samples, with the highest concentration 
(0.036 ± 0.00 mg/kg) found in yam. Co was detected in the potato 
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sample, although at the lowest concentration (0.00 ± 0.00 mg/kg) when 
compared to those of the other samples.

Similarly, As was found in the samples in various amounts. The amounts 
found in cassava, yam and cocoyam were 0.045 mg/kg, 0.010 mg/
kg and 0.049 mg/kg, respectively. Also, 0.056 ± 0.00 mg/kg, 0.037 
± 0.00 mg/kg and 0.019 ± 0.00 mg/kg As were detected in samples 
of potato, water yam and carrot, respectively. Potatoes had the 
highest concentration of As discovered, whereas yam had the lowest 
concentration (0.010–0.00 mg/kg) (Table 1). The presence of Mn, Cd 
and Pb was evaluated in the samples. High concentrations of Mn (0.838 
± 0.00 and 0.750 ± 0.00 mg/kg) were detected in water yam and potato. 
Cassava contained 0.138 ± 0.00 mg/kg of Mn, as shown in Table 1.

Lead was not detected in cassava, yam, cocoyam or water yam. 
However, higher concentrations of 0.032 mg/kg and 0.028 mg/kg 
were detected in cassava and carrots, respectively. The World Health 
Organization (WHO) limit for Mn is not yet established.15 Mn serves as a 
cofactor for some enzymes but could cause neurological disorders when 
above >5 mg/dm3.5,25

The concentrations of Pb were 0.032 ± 0.00 and 0.028 ± 0.00 mg/kg 
in cassava and carrot, which were below FAO/WHO established MPLs 
(10 ± 0.00 mg/kg). The concentration of Pb in cassava, yam, cocoyam 
and water yam was below the detectable range, as shown in Table 1.  
The concentration of mercury (Hg) was lowest in potato (0.153 ± 
0.00 mg/kg) and highest in cocoyam (0.658 ± 0.02 mg/kg), but below 
the detectable range in cassava, yam and water yam.

Metallic mercury exposure has been reported to cause lung damage.26 
The concentration of Hg in the cocoyam (0.658 ± 0.00 mg/kg) was 
greater than the 0.5 mg/kg FAO/WHO maximum acceptable limits.27 
However, potatoes showed a Hg concentration below the MPL.27

Table 2 shows the concentrations of pesticide residues present in 
the tubers studied. 2,4-dichlorophenoxyacetic acid, dichlorobiphenyl, 
HCB, endosulfan, aldrin, profenofos, carbofuran, lindane, g-chlordane, 
dichlorvos (DDVP), heptachlor, glyphosate, t-Nonachlor and biphenyl were 
the different pesticide residues detected in the six tubers studied. Aldrin was 
observed in all the samples studied; the highest amounts were detected 
in potato (0.1161 ± 0.00 µg/m3) and cocoyam (0.0779 ± 0.000µg/m3), 
followed by carrot (0.0711 ± 0.00µg/m3), cassava (0.0617 ± 0.00 µg/
m3), water yam (0.0580 ± 0.00 µg/m3) and then yam (0.0004 ± 0.00 
µg/m3). Similarly, DDVP was found in every sample studied, with the 
maximum concentration observed in cassava (0.5208 ± 0.00), potato 
(0.3635 ± 0.05 µg/m3), followed by carrot (0.3632 ± 0.06), yam (0.1334 
± 0.04) µg/m3, cocoyam (0.0683 ± 0.00 µg/m3) and then water yam 
(0.0562 ± 0.00µg/m3). Endosulfan (0.2500 ± 0.01 µg/m3), lindane 
(0.0914 ± 0.01µg/m3), g-chlordane (0.0000 ± 0.120 µg/m3), biphenyl 
(0.9228 ± 0.00 µg/m3), 2,4-dichloro phenoxy acetic acid (0.1127 ± 
0.00 µg/m3), HCB (0.1018 ± 0.00 µg/m3), profenofos (0.2138 ± 0.00 
µg/m3), glyphosate (0.1876 ± 0.00 µg/m3) and t-Nonachlor (0.1084 
± 0.001 µg/m3) were detected only in cocoyam. Furthermore, cassava 
contained 0.0431 ± 0.00 µg/m3 2,4-dichlorophenoxyacetic acid, 0.1596 
± 0.00 µg/m3 HCB, 0.1693 ± 0.00 µg/m3 p’p’-DDD, 0.1476 ± 0.00 µg/m3  
profenofos and 0.0988 ± 0.00 µg/m3 glyphosate. Also, 0.1285 ± 0.00, 

Parameter Cassava Yam Cocoyam Potato Water yam Carrot MPL MPL reference

Nickel (mg/kg) 0.012 ± 0.00A 0.006 ± 0.00A 0.009 ± 0.00A 0.006 ± 0.00A 0.007 ± 0.00A 0.001 ± 0.00A 0.10 mg/kgB

US Environmental 

Protection Agency28,  

Wani et al.29

Chromium (mg/kg) 0.083 ± 0.00A 0.010 ± 0.00A 0.093 ± 0.00A 0.073 ± 0.00A 0.078 ± 0.00A 0.016 ± 0.00A 0.10 mg/kgB

US Environmental 

Protection Agency28, 

Food and Agriculture 

Organization / World 

Health Organization30

Cobalt (mg/kg) 0.011 ± 0.00A 0.036 ± 0.00B 0.026 ± 0.00A 0.002 ± 0.00A 0.016 ± 0.00A 0.010 ± 0.00A 0.043 mg/kgB
Institute of Medicine (US) 

Panel on Micronutrients31

Arsenic (mg/kg) 0.045 ± 0.00A 0.010 ± 0.00A 0.049 ± 0.00A 0.056 ± 0.00A 0.037 ± 0.00A 0.019 ± 0.00A 1.4 mg/kgB

Food and Agriculture 

Organization / World 

Health Organization30, 

Institute of Medicine (US) 

Panel on Micronutrients31

Manganese (mg/kg) 0.138 ± 0.00A 0.571 ± 0.00A 0.172 ± 0.00A 0.750 ± 0.09A 0.838 ± 0.11A 0.516 ± 0.10A 2.0 mg/kgB

Onianwa et al.19, US 

Environmental Protection 

Agency28

Cadmium (mg/kg) 0.00 ± 0.00A 0.00 ± 0.00A 0.00 ± 0.00A 0.00 ± 0.00A 0.00 ± 0.00A 0.00 ± 0.00A 0.3 mg/kgB

Food and Agriculture 

Organization / World 

Health Organization30, 

Institute of Medicine (US) 

Panel on Micronutrients31

Lead (mg/kg) 0.00 ± 0.00A 0.00 ± 0.00A 0.00 ± 0.00A 0.032 ± 0.00A 0.00 ± 0.00A 0.028 ± 0.00A 1.0 mg/kgA

Food and Agriculture 

Organization / World 

Health Organization30, 

Institute of Medicine (US) 

Panel on Micronutrients31

Mercury (mg/kg) 0.00 ± 0.00A 0.00 ± 0.00A 0.658 ± 0.02B 0.153 ± 0.00A 0.00 ± 0.00A 0.404 ± 0.00A 0.5 mg/kgB

US Environmental 

Protection Agency28, 

Institute of Medicine (US) 

Panel on Micronutrients31

The values were triplicate determinations. Values with various superscripts (uppercase [A–D]) are statistically significant (p < 0.05) in comparison to the uppermost allowable 

limits; mean standard error (SE).

table 1: Heavy metals and their maximum permissible limits with regulator references
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0.799 ± 0.00, 0.0732 ± 0.00, 0.0000 ± 0.00 and 0.1098 ± 0.00 µg/
m3 were the concentrations of 2,4-dichlorophenoxyacetic acid, HCB, p’p’-
DDD, profenofos and glyphosate detected in yam, as shown in Table 2.  
For potato, 2,4-dichloro and p’p’-DDD were not detected, HCB (0.1415 
± 0.00 µg/m3), profenofos (0.3130 ± 0.00 µg/m3), glyphosate (0.3130 
± 0.00 µg/m3), endosulfan (0.3265 ± 0.08 µg/m3), biphenyl (0.7418 ± 
0.00 µg/m3) and dichlorobiphenyl (0.1653 ± 0.02 µg/m3) were detected. 
Lindane, g-chlordane, t-Nonachlor, carbofuran and heptachlor were 
also not detected in the sample, as shown in Table 2. Subsequently, 
2,4-dichlorophenoxyacetic acid, HCB, p’ p’-DDD, profenofos and 
glyphosate were detected in water yam as 0.0527 ± 0.00, 0.0000 ± 0.00, 
0.0002 ± 0.00, 0.0000 ± 0.00 and 0.0000 ± 0.00 µg/m3, respectively. 
Biphenyl and carbofuran concentrations were 0.2472 ± 0.00 and 0.1256 
± 0.05 µg/m3, respectively. Some pesticide residues found in potatoes 
include 2,4-dichloro (0.0957 ± 0.00 µg/m3), HCB (0.0000 ± 0.00 µg/
m3), p’p’-DDD (0.1603 ± 0.00 µg/m3), profenofos (0.0011 ± 0.00 µg/
m3), glyphosate (0.1039 ± 0.00 µg/m3), lindane (0.0015 ± 0.00 µg/m3), 
biphenyl (1.1842 ± 0.00 µg/m3) and heptachlor (0.0867 ± 0.00 µg/m3). 
The chemical abstract service (CAS) numbers of some of the pesticide 
residues tested are listed in Supplementary table 1.

Discussion
Currently, due to the advances in crop production and cultivated food 
crops, there is an increase in the pollution of heavy metals and chemical 
residues. Thus, there is a need for continuous evaluation of their 

presence and concentration to aid in mitigating or preventing any public 
health issues that could occur as a result.

Several heavy metals, including nickel, lead, cobalt, arsenic, manganese, 
chromium, cadmium and mercury, were detected in the six samples 
(cassava, yam, cocoyam, potato, water yam and carrot) using atomic 
absorption spectroscopy and efficient techniques. The levels of Co in 
yam did not differ significantly from one another (0.036 ± 0.00 mg/
kg) and from the MPL (0.043 mg/kg) established by the US Food and 
Nutrition Board (2004).

Although Ni was present at varying concentrations in the samples, its 
concentration was below the MPLs (100 µg/L) as stipulated by the US 
Environmental Protection Agency and, thus, may not pose any serious 
health challenges to consumers, such as skin allergies and lung cancer, 
which are signs of Ni toxicity manifestation. A higher concentration of Ni 
residue (0.93–0.179 mg/kg) in tubers has been reported by Onianwa et al.19. 
Ni occurs naturally as part of different mineral complexes, with its deficiency 
in the human system causing retardation of intra-uterine development 
and reduced iron reabsorption.20 The highest Co intake in humans occurs 
through diet. Co has been detected in okra, as reported by Orisakwe et al.21

One of the major sources of As in the environment is arsenic-rich 
fertilisers36, which are released when applied. Previous researchers have 
shown high heavy metal accumulation in leafy vegetables.31 The MPL for 
Cd is 0.3 mg/kg as set by the FAO/WHO (2006). It has been detected in 
different food materials such as cassava, yam15 and cereals. Onianwa 

Parameter Cassava Yam Cocoyam Potato Water yam Carrot

Maximum 

permissible 

limit (MPL)

MPL reference

2,4-dichlorophenoxy 

acetic acid (µg/m3)
0.0431 ± 0.00 0.1285 ± 0.00 0.1127 ± 0.00 BDL 0.0527 ± 0.00 0.0957 ± 0.00

HCB (µg/m3) 0.1596 ± 0.00 0.0799 ± 0.06 0.1018 ± 0.09 0.1415 ± 0.00 0.0000 ± 0.00 BDL 0.002 mg/m3 Opaluwa et al.32

Aldrin (µg/m3) 0.0617 ± 0.00 0.0004 ± 0.00 0.0779 ± 0.00 0.1161 ± 0.00 0.0580 ± 0.00 0.0711 ± 0.00 0.25 mg/m3 Zamora33

p’p-DDD (µg/m3) 0.1693 ± 0.00 0.0732 ± 0.00 BDL BDL 0.0002 ± 0.00 0.1603 ± 0.00

Profenofos (µg/m3) 0.1476 ± 0.00 0.0000 ± 0.00 0.2138 ± 0.05 0.0817 ± 0.00 BDL 0.0011 ± 0.00 0.25 mg/m3 FAO/WHO34

Glyphosate (µg/m3) 0.0988 ± 0.00 0.1098 ± 0.00 0.1876 ± 0.00 0.3130 ± 0.06 BDL 0.1039 ± 0.09

Dichlorovos (DDVP) 

(µg/m3)
0.5208 ± 0.00 0.1334 ± 0.04 0.0683 ± 0.00 0.3635 ± 0.05 0.0562 ± 0.00 0.3632 ± 0.06 1.0 mg/m3

International Food 

Standards/Codex 

Alimentarius FAO/

WHO35

Endosulfan (µg/m3) BDL BDL 0.2500 ± 0.01 0.3265 ± 0.08 BDL BDL 0.10 mg/m3 FAO/WHO34

Lindane (µg/m3) BDL BDL 0.0914 ± 0.01 BDL BDL 0.0015 ± 0.07 0.50 mg/m3 FAO/WHO34

g-chlordane (µg/m3) BDL BDL 0.000 ± 0.00 0.0000 ± 0.00 BDL BDL 0.0020 mg/L

International Food 

Standards/Codex 

Alimentarius FAO/

WHO36

Biphenyl (µg/m3) BDL BDL 0.9228 ± 0.20 0.7418 ± 0.00 0.2472 ± 0.00 1.1842 ± 0.44 1.30 mg/m3 FAO/WHO34

t-Nonachlor (µg/m3) BDL BDL 0.1084 ± 0.06 0.0000 ± 0.00 BDL BDL 0.040 mg/m3

International 

Programme on 

Chemical Safety 

(IPCS)37

Dichlorobiphenyl (µg/

m3)
BDL BDL BDL 0.1653 ± 0.02 BDL BDL 0.10 mg/m3 Singh38

Carbofuran (µg/m3) BDL BDL BDL 0.2688 ± 0.08 0.1256 ± 0.05 BDL NA

Heptachlor (µg/m3) BDL BDL BDL BDL BDL 0.0867 ± 0.00 0.050 mg/m3 FAO/WHO34

BDL, below detectable limit

table 2: Pesticide residue concentration (µg/m3) in cassava, yam, cocoyam, potato, water yam and carrot
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et al.19 reported Cd concentrations of 0.03–0.28 mg/kg in tubers. Also, 
Commission Regulation (EC) No 1881/200646 reported the presence of 
Cd in rice. Due to its slow excretory rate, high Cd levels threaten human 
health and could damage the kidneys and liver.46

Pb is made available to the environment through lead-containing pipes, 
combustion of leaded gasoline and the use of lead-based paint.30 Lead 
is known to affect the cardiovascular, nervous, skeletal, muscular and 
immune systems, and causes gastrointestinal symptoms and organ 
damage when ingested or from prolonged exposure.30 The maximum 
exposure permissible limits of some pesticide residues established by 
international regulators are shown in Table 3.

The concentration of HCB was greater than the MPL (0.002 mg/m3) 
reported by OSHA, the US government’s workplace safety and health 
authority. The concentrations of aldrin and profenofos were below the 
MPL, as reported by FAO/WHO. The pesticide residual amounts in the tests 
were lower than the permitted exposure level specified by international 
organisations such as WHO/FAO, the US Environmental Protection Agency 
and CDIR. However, care should be taken when consuming these food 
tubers, as prolonged consumption could lead to their bioaccumulation in 
the body of organisms.

A similar study by Lien et al.47 reported high concentrations of 
organochlorine residues in yam. Some pesticide residues are highly 
persistent in the environment.47 Oyinloye et al.48 also detected different 
concentrations of aldrin, carbofuran, endosulfan and profenofos in  T. 
occidentalis. There are many risks associated with pesticide residue 
exposure, including effects on human health; thus, concentrations of 
these residues in food samples should be monitored regularly.

Increased d-glutaric acid metabolism and allergic reactions/skin rashes 
have both been linked to aldrin and lindane.15 Aldrin, heptachlor, endosulfan 
and dieldrin were some of the pesticide residues that were detected by 
Njoku et al.49 Jayaraj et al.50 reported some adverse effects of aldrin, 
heptachlor and lindane, including neurotoxic effects. This could be why 
the Nigerian government prohibits their use.

Conclusions
Using AAS and GC–MS, we assessed the levels of heavy metals and 
pesticide residues in regularly grown tuber crops in Nigeria. In all the 
samples, 13 different pesticide residues were found. In every sample 
examined, the Cd concentration was below the threshold for detection.

Similarly, Pb and Hg were below the detectable concentration in cassava, 
yam and cocoyam. Other heavy metals present were lower than the MPLs 
established by standard organisations. Aldrin and dichlorvos (DDVP) were 
present in all the samples, with cassava having the highest concentration. 
Almost all the pesticide residues were detected in cocoyam, potato and 
carrot. Thus, there should be continuous monitoring of these staple foods 
to ensure their consumption does not predispose the consumer to heavy 
metal toxicities, as continuous consumption could potentially threaten 
people’s health.
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