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Faults arising in photovoltaic (PV) systems can result in major energy loss, system shutdowns, financial 
loss and safety breaches. It is thus crucial to detect and identify faults to improve the efficiency, reliability, 
and safety of PV systems. The detection of faults in large PV installations can be a tedious and time-
consuming undertaking, particularly in large-scale installations. This detection and classification of 
faults can be achieved using thermal images; use of computer vision can simplify and speed up the fault 
detection and classification process. However, a challenge often faced in computer vision tasks is the lack 
of sufficient data to train these models effectively. We propose the use of variational autoencoders (VAEs) 
as a method to artificially expand the data set in order to improve the classification task in this context. 
Three convolutional neural network (CNN) architectures – InceptionV3, ResNet50 and Xception – were 
used for the classification of the images. Our results provide evidence that CNN models can effectively 
detect and classify PV faults from thermal images and that VAEs provide a viable option in this application, 
to improve model accuracy when training data are limited.

Significance:
• Faults in PV systems can be labour and time consuming to detect and classify. This process can be 

automated by using computer vision and thermal images.

• CNN models (InceptionV3, ResNet50 and Xception) are effective in the detection and classification of 
PV faults from thermal images.

• Small data sets are a common barrier to entry for computer vision assessments. VAEs provide an 
effective method to artificially expand a limited data set to allow for the successful use of CNN models.

• The expansion of training data using VAEs for CNN models can improve the prediction accuracy in 
these models.

Introduction
The growing realisation that fossil fuels are not a long-term solution to the global energy demand has led to 
the exploration of alternative, environmentally sustainable, energy resources.1 In recent years, solar power has 
emerged as a leading renewable energy technology and is experiencing rapid adoption globally.2 South Africa is 
well placed to benefit from this drive towards renewable energy – particularly from photovoltaic (PV) systems – as 
the average annual 24-h global solar radiation for South Africa is 220 W/m2, which is higher than the 150 W/m2 
observed for parts of the United States, and 100 W/m2 for Europe and the United Kingdom.3 

The maintenance of such PV systems is often labour intensive and costly, particularly when there are undetected 
faults in the system. Such faults can result in major energy loss, system shutdowns, financial loss, and safety 
breaches. It is thus crucial to detect and identify such faults to improve the efficiency, reliability, and safety of such 
systems.4 Dunderdale et al.5 investigated the use of convolutional neural network (CNN) architectures on infrared 
(IR) thermal images to detect and classify module-level faults within PV systems in South Africa. The results of 
the study showed that this approach can provide a quick and effective solution to this problem. The challenge with 
many of these applications, however, is that CNN models typically require a considerably large data set to train 
effective models. In many smaller applications, and at the start of such an initiative, these data are not readily 
available. In the present study we propose the use of variational autoencoders (VAEs) to create synthetic training 
images based on a small sample of collected data. The CNN testing data were sampled prior to the VAE training, 
to ensure complete separation of the testing and training data. This approach can artificially increase the size of 
an image data set, thus overcoming this barrier to entry and opening up computer vision application to smaller PV 
operations. We also used the InceptionV36, ResNet507 and Xception8 CNN models to determine the effectiveness 
of this data augmentation approach and to expand upon the original study of Dunderdale et al.5

Literature review
Photovoltaic systems and fault detection
PV modules absorb energy from sunlight and convert this energy into electricity through a process called the 
‘photovoltaic effect’.9 These PV systems are typically composed of one or more modules, an inverter and other 
mechanical and electrical hardware, all of which are susceptible to faults. PV faults can lead to prolonged reduction 
in power output or the complete failure of a cell, module or system.10 The detection of faults is therefore critical to the 
optimal functioning of a PV system. However, in large-scale PV plants, the inspection of solar modules is typically a 
manual and time-consuming process. As such, recent studies have used various techniques to improve this process. 

Faults can be classified as those originating on the direct current (DC) side or on the alternating current (AC) side 
of the module.11 Garoudja et al.4 proposed a model-based fault-detection approach for the early detection of faults 
on the DC side of PV systems and the identification of whether shading was present. This approach made use 
of extracted original design manufacturer model parameters and their associated residuals. Although this study 
provided useful results, noisy and correlated data degraded the fault detection quality. 
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Fault detection using electroluminescence and thermal imagery has 
gained interest over the last few years owing to the relative ease in 
which data can be collected. Electroluminescence imaging consists of 
applying a direct current to a PV module and measuring the resulting 
photoemissions using an IR-sensitive or charge-coupled device 
camera.12 This type of imaging is normally done in a dark room. Fioresi 
et al.13 made use of electroluminescence imagery to identify cracks and 
contact PV cell faults with promising results. However, this was done 
manually and proved time-consuming. Dos Reis Benatto et al.14 proposed 
the use of daylight electroluminescence images captured by a drone to 
detect faults in PV systems. This daylight-based electroluminescence 
system was able to capture electroluminescence images during high 
solar irradiance, but unfortunately resulted in lower-quality images when 
compared to indoor and stationary systems. More recent studies, such 
as those of Demirci et al.15 and Tang et al.16, have investigated the use 
of CNNs to automate this detection process using electroluminescence 
images. Maximum accuracies of 76% and 83% were obtained by these 
studies, respectively, but small data set sizes and significantly long 
training times were identified as limitations to the studies.

Unlike electroluminescence images, IR thermography images are created 
by IR radiation emitted from the object, whereby a thermal camera 
detects the temperature at the surface of an object and converts this 
temperature into colour-assigned electrical signals depending on the 
intensity reading.17 IR thermography has been applied as an effective 
tool for detecting faults in PV modules, and the recent development 
of unmanned aerial vehicles (UAV) has increased cost-effectiveness 
for large-scale PV plants to detect such faults.18 A UAV (e.g. a drone) 
equipped with a thermal camera can be flown over a PV system and 
images can be taken and analysed. Faults are identified as localised 
areas of higher heat, or ‘hot spots’, on the PV modules. These hot spots 
occur because the faults impede the flow of electricity, and the excess 
energy built up by this is dissipated as heat in these areas. These hot 
spots are evident in IR imaging as areas of discolouration, typically with 
darker colours indicating hotter regions. Using IR thermography in this 
manner has the potential for widespread adoption because the fault 
detection process, through statistical modelling, can be automated.19 
Ancuta et al.20 investigated the use of IR thermography as well as solar 
module measurements, such as module surface temperature, for PV fault 
analysis, and showed that PV faults become evident as hot spots in IR 
images, with different fault types exhibiting different hot spot patterns. The 
identification of fault types in this study was done manually and without 

the aid of computer vision and classification techniques. Tsanakas et al.21 
performed a study implementing wide area orthophoto IR thermography 
to detect and classify faults in large-scale PV plants. In addition to IR 
thermography, electrical performance characterisation using current-
voltage characteristic (IV) curves, as well as electroluminescence images, 
were used to successfully validate results. According to the preliminary 
results, it was found that all detected faults were diagnosed, classified, 
and quantified in terms of fault type and electrical power loss per module. 
Jaffrey et al.22 produced a PV fault analysis algorithm for thermal images 
of PV modules using fuzzy logic and a six-class fuzzy logic categorical 
framework, which was implemented successfully to classify faults. 

In a pioneering study in South Africa, Dunderdale et al.5 used thermal 
images for the detection and classification of faults in PV systems. In the 
first (detection) phase of the study each panel was classified as either 
faulty or non-faulty. Faulty panels were further classified according to the 
type of fault exhibited by the panel. The study made use of feature-based 
approaches with support vector machine and random forest classifiers as 
well as CNNs for the detection and classification. The study showed that 
the CNN approaches performed better for fault classification, obtaining an 
89.5% average cross-validated accuracy, in comparison to a maximum 
accuracy of 82.9% obtained using the feature-based approach.

Photovoltaic fault types
The study of Dunderdale et al.5 proposed the classification of PV module 
faults as block faults, patchwork faults, single-cell faults, soiling faults, 
and string faults. These fault types were defined according to the shape 
of the hot spots present on thermal images. Depictions of these faults, as 
they would appear on thermal images, are provided in Figure 1. 

A block fault is identified as a vertical band exhibiting temperatures 
significantly higher than those of the rest of the module. A single-cell 
fault can be identified as a small rectangular shape exhibiting higher 
temperatures than the rest of the module. Patchwork and string faults 
are considered extensions of single-cell faults, where multiple rectangular 
shapes exhibit temperatures higher than the rest of the module. 
Patchwork faults occur as single-cell faults in a random pattern across 
a module, while string faults consist of single-cell faults occurring in a 
straight vertical line on a module. Lastly, soiling faults are typically difficult 
to identify, mostly because they can differ in size, intensity, and shape. 
A lack of sufficient examples of the soiling fault class led to its omission 
in the classification study.5

Source: Based on Dunderdale et al.5

Figure 1: Classification of photovoltaic module faults.
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Computer vision and image classification
Deep learning, a specialised form of machine learning, is fundamental in 
modern computer vision tasks. Computer vision refers to a computer’s 
ability to perceive and understand three-dimensional (3D) shapes 
and objects from two-dimensional (2D) imagery, using mathematical 
techniques and algorithms.23 In many applications, the purpose of the 
computer vision task is for image classification. That is, for the purposes 
of identifying and classifying images according to their attributes or 
contents. In such applications, supervised CNNs are the most prevalently 
used technique.24 

Basic neural networks are designed to mimic the workings of biological 
neurons, which receive an input (or stimulus), process it, and respond 
accordingly. In their simplest form, these artificial neural networks (ANNs) 
consist of exactly this – an input layer, hidden layer(s), and an output layer. 
Deep neural networks can be thought of as ‘stacked’ ANNs, or ANNs 
which have numerous hidden layers, with deep learning representing the 
process of training or building these networks. According to some recent 
studies, deep learning models achieve state-of-the-art accuracy in many 
application areas such as object recognition (computer vision)25 and 
natural language processing26.

In image classification tasks, the input layer of a neural network receives 
a digital image as a matrix of pixel values. The hidden layer(s) process 
the image in an effort to provide an accurate output – the label or 
classification of the image contents. CNNs are a class of artificial neural 
networks which use a convolution operation in at least one layer of the 
implemented neural network, although in most cases this operation is 
used in multiple layers.27 A convolution operation is a linear operation 
between matrices I and H, and can be defined as28: 

where I(u,v) indicates the element located at row u and column v on the 
matrix (or digital image) I, and H(i,j) represents position of the element 
on the filter kernel matrix which specifies the weights assigned to each 
pixel in the convolution operation. The output matrix of the convolution 
operator is denoted I’.

In supervised computer vision tasks, CNNs are trained to detect and 
classify images based on a given set of input data (training images). 
This process is achieved through using the backpropagation algorithm 
– which is ubiquitous in the field of neural networks. CNNs have proven 
to be highly successful in the field of image classification where the 
networks typically learn elementary shapes in the initial layers, and more 
complex details in the deeper layers of the network.27 Typically, a large 
set of training data (images) is required, as it is important to ensure 
that the trained model can perform the classification task to a sufficient 

degree of accuracy on new and unseen data. In certain real-world 
applications, such as the one investigated in this study, there is a dearth 
of useable images for training, making the development of accurate 
classifications a challenge. To address this challenge, Dunderdale 
et al.5 used several data augmentation approaches including rotating, 
flipping, and inverting the training images to increase the sample size. 
This provided a moderate improvement to classification accuracy. 
The drawback to this approach is that the number of meaningful and 
possible augmentations is limited. Additionally, certain augmentations – 
rotation in this case – result in data augmentations that give misleading 
and unlikely scenarios. For example, a block fault indicates a vertical hot 
spot running the length of the panel. Under 90° and 270° rotation this 
would result in the hot spot running horizontally, which is at odds with 
the classification. A possible remedy for the data scarcity problem is to 
generate random synthetic images based on the identified fault classes. 
This can be achieved using deep generative modelling approaches such 
as generative adversarial networks and VAEs.29 VAEs are used in this 
study as generative adversarial networks, while known to provide higher-
quality images, are difficult to train. VAEs are more stable when training 
and generate satisfactory images for the current application.

Variational autoencoders
VAEs are generative models that have the ability to synthesise numerous 
complex data points in a potentially high-dimensional space30 (e.g. digital 
images) using a given set of training data. Using a generative approach, 
VAEs can create non-identical images which are similar to the images 
on which they are trained. As a result, small data sets can be artificially 
inflated to include any number of synthetic or simulated observations (or 
images). As a large data set is a common requirement for CNN training in 
computer vision tasks, VAEs can be used to synthesise training images 
when inadequate training observations are available. 

VAEs are a special case of a traditional autoencoder which is made up of 
two connected (and trained) neural networks: an encoder and a decoder. 
The encoder reduces or constricts the representation of the input data to 
a given set of dimensions or units, and the decoder attempts to re-create 
the original input from this reduced representation in the latent space. This 
is illustrated in Figure 2 where an image I is passed through the encoder 
and represented as a reduced vector in the latent space. The decoder then 
takes this encoded vector in the latent space and attempts to reconstruct 
the image (denoted I’) from the reduced representation. The encoder and 
decoder are trained to minimise a loss function L(I,I’), which measures the 
differences between the original data (image) and the reconstructed data 
(image) – known as the reconstruction loss – ensuring that the input and 
output images are as similar as possible.

VAEs expand on this basic functioning by imposing a probabilistic 
structure on the latent variables and introducing a random sampling 
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Figure 2: Representation of the traditional autoencoder and variational autoencoder.
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step in the latent space. For each input object I the VAE determines a 
k x 1 vector of means (μI) and of standard deviations (σI) creating a
single mean–standard deviation pair for each of the k variables in the 
latent space. Instead of sending the encoded latent values directly to the 
decoder, as in the traditional autoencoder, VAEs sample individual values 
from  for each latent variable j, j=1,…,k. While this approach 
renders the network intractable to learning through backpropagation, this 
is overcome by constructing the latent variable realisations as μI+σI⊙ε
where ε(k×1) is a random observation vector from a multivariate
standard normal distribution and ⊙ represents the elementwise vector
product.27 This is known as the ‘reparameterisation trick’.31

The loss function used for training the VAE consists of two competing 
terms, one which represents the reconstruction loss (L(I,I')) and another 
which represents the regularisation loss (R(I,I')). The regularisation loss 
uses the Kullback–Leibler divergence to measure the degree to which the 
distribution of the latent variables diverges from that of the multivariate 
standard normal distribution.27 The loss function is thus represented as 

where λ>0 is the regularisation parameter. By using this loss function,
the decoder is able to generate images (or outputs) that are similar 
(but not identical) to the data on which it is trained within a reasonable 
range.27 This allows for the creation of distinct yet similar images which 
can be used as training data for a computer vision model.

Data and methodology
Original data
The thermal image data for this study were collected from three different 
PV plants in South Africa. Due to the privacy agreement with the data’s 
supplier, the locations of these PV plants cannot be disclosed. All three 
sites under study make use of crystalline silicon PV modules. A total of 
398 thermal images of singular defective PV modules were collected. 
The thermal images were captured using a UAV equipped with a FLIR 
Tau 2 640 thermal imaging camera. Once these thermal images were 
captured and stored, the images were then cropped to show individual 
PV modules.5 This resulted in a final data set of 376 thermal images 
indicating modules with hot spots or faults and an additional 400 images 
of non-faulty modules. The data supporting this study’s results can be 
obtained on request from the authors.

Dunderdale et al.5 used a four-class classification, namely: block faults, 
patchwork faults, string faults and single-cell faults. In the current study, 
it was decided to group string and patchwork fault data into a single 
class of ‘patchwork’ faults. The motivation behind this was that the string 
fault class can be considered a special case of the patchwork fault class, 
where all affected cells occur in a straight vertical line rather than in a 
random or scattered pattern.32 This is illustrated in Figure 3. 

Figure 3: Thermal image showing (a) patchwork and (b) string faults.32

Using this new classification, the 376 fault images are categorised into 
three distinct classes. The composition of the data set by fault class is 
given in Table 1, where the three classes are easily identifiable upon 
examination of a thermal image.

Table 1: Composition of the data set by fault type32

Fault class Image example Proportion

Block 34%

Patchwork 
and string

43%

Single-cell 23%

Synthetic images
The VAE approach outlined under the ‘Variational autoencoders’ section 
above was used to expand the data set. Prior to VAE training, 75 random 
images were sampled from the original data set and set aside for later 
use in CNN testing. Thereafter, the VAEs were trained separately for the 
block, single-cell, and patchwork PV fault classes. Each VAE generated 
an additional 900 images for each class. An example of the image 
generation for the single-cell fault class is provided in Figure 4.

For each class of VAE-generated images, manual data cleaning was also 
performed to remove any potentially ‘noisy’ synthesised images. Noisy 
images were considered to be any images in which random variations 
in colour or brightness were observed which may influence the results 
of analysis. When combined with the original data, the final data set 
consisted of 2881 images, as shown in Table 2. Included in this data set 
were the 75 randomly sampled images for testing once the three CNN 
architectures had been trained.

Data summary and validation
Testing and validation is an imperative step in statistical or machine 
learning implementation. For this study, approximately 20% of the 
original images were randomly removed to create the testing data sets. 

https://doi.org/10.17159/sajs.2023/13117
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The testing data sets were sampled from the original data both prior 
to model training and prior to the generation of synthetic images using 
VAEs. This ensured that the testing data sets were completely unseen in 
both assessments. The accuracy of the trained classifiers (one using the 
original data and one using the VAE-generated images) was determined 
on their respective testing data sets. The composition of the data sets 
used for the classification analysis is provided in Table 2.

Figure 4: An example of 400 synthetic images generated by the variational 
autoencoders trained on the single-cell fault images.

Classification methods: Convolutional neural networks
In this study, the deep learning approach constitutes what CNNs use to 
make decisions regarding fault detection and classification of PV modules. 
CNNs eliminate the need for manual feature extraction and are able to 
extract features directly from the raw image data.33 The CNNs are first 
trained using the training data with the corresponding classification labels, 
which then allows the system to find and extract features automatically. 

Python 3.6.5 64-bit software was used for implementing the three CNN 
models/architectures: InceptionV3, ResNet and Xception. Python was 
used due to the vast number of packages available, as well as the easy-
to-access online support community. In this study, we also made use 
of the tensorflow package34 and Keras35 interface for analysis, as they 
allow for pre-trained CNN architectures to be downloaded, implemented, 
and adjusted in Python.

The Inception CNN architecture was initially introduced by Szegedy et 
al.36 in 2014. The InceptionV3 architecture (the third version of Inception) 
was later released by Google and introduced to the Keras core in 2015. 
The new InceptionV3 architecture allowed for higher computational 
efficiency with fewer parameters being required. The ResNet (or 
ResNet50) CNN architecture was introduced by Microsoft in 2015. This 
architecture was designed to enable a high number of convolutional 
layers with strong performance, as previous CNN architectures had a 
drop off in effectiveness owing to additional layers. The Xception CNN 
architecture was proposed by the creator and chief maintainer of the 
Keras library, François Chollet, in 2014. This architecture is an extension 
of the Inception architecture, which replaces the standard Inception 

modules with depth-wise separable convolutional layers.37 These three 
architectures were chosen because the ResNet50 and InceptionV3 
architectures placed first and second in the 2015 ImageNet Large Scale 
Visual Recognition Challenge, respectively, with the Xception architecture 
being an extension of one of these high-performing architectures. 

All architectures were trained and optimised on the training data and their 
performance, or classification accuracy, was determined on the testing 
data which were removed prior to training.

Results
Photovoltaic fault detection
Before PV faults can be classified, they first need to be detected. Each of 
the three CNN models were trained and tested on the training data which 
consisted of using greyscale images. 

Each of the proposed CNN models obtained 100% testing accuracy, 
indicating perfect out of sample performance. These results agree with 
those of Dunderdale et al.5, which also produced maximum testing 
accuracies of 100% for fault detection using two CNN architectures, 
namely MobileNet and VGG-16. Table 3 provides the confusion matrix 
for PV fault detection using each of the architectures.

Table 3: Confusion matrix for fault detection task (all models)

PREDICTED CLASS

Faulty Non-faulty

AC
TU

AL
 

CL
AS

S Faulty 100.0% 0.0%

Non-faulty 0.0% 100.0%

In classification models, this outcome may raise a concern that the 
models are overfitting the data. However, in this case it is noted both 
that the accuracy was determined using unseen test data and that the 
classification task was a straightforward one as the images under study 
(i.e. fault/no fault) were typically simple to differentiate. 

Photovoltaic fault classification
The results of the classification analysis described in ‘Data and 
methodology’ for the VAE-augmented data set are given in Table 4 
for each of the architectures. The values indicated in Table 4 are the 
row percentages for the confusion matrix; that is, the value of 3.8% in 
the first row and second column indicates that the InceptionV3 model 
incorrectly classified 3.8% of the block faults as patchwork faults. Table 
cells highlighted in grey indicate correctly classified images. 

The overall classification accuracy for the InceptionV3 and Xception models 
was 92%, while for the ResNet50 an accuracy of 89.3% was achieved. This 
indicates that all the models performed well in this application. To identify 
the preferred model, both overall accuracy and fault-wise accuracy were 
considered. This ensured that the highest accuracies were achieved for 
all three fault types. For the best performing models (i.e. InceptionV3 and 
Xception), Table 4 indicates that the Xception model performed best for the 
classification of block and patchwork faults while the InceptionV3 model 
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Table 2: Composition of the data sets used for the classification task

Original data set Testing data set Training data set VAE-generated images VAE-generated images after cleaning VAE-augmented data set†

Block 128 27 101 900 847 975

Patchwork 162 32 130 900 837 999

Single-cell 86 16 70 900 821 907

Total 376 75 301 2700 2505 2881

†including testing data

https://doi.org/10.17159/sajs.2023/13117
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achieved a 100% classification accuracy for the single-cell fault class. 
This indicates that the Xception model may perform better for multiple-cell 
faults, which make up a sizeable proportion of faults in practice and are 
also of interest to operators as this type of fault can significantly reduce 
module power.38 These results suggest that the Xception model may be 
preferred in practical applications. 

Table 4: Confusion matrix for the classification task using the VAE-
augmented data set. Table cells highlighted in grey indicate 
correctly classified images.

PREDICTED CLASS

Block Patchwork Single-cell

AC
TU

AL
 C

LA
SS

Block

InceptionV3 92.5% 3.8% 3.8%

ResNet50 96.2% 0.0% 3.8%

Xception 96.2% 0.0% 3.8%

Patchwork

InceptionV3 0.0% 87.6% 12.4%

ResNet50 0.0% 84.3% 15.7%

Xception 0.0% 90.6% 9.4%

Single-cell

InceptionV3 0.0% 0.0% 100.0%

ResNet50 5.8% 5.8% 88.5%

Xception 0.0% 11.9% 88.1%

For comparative purposes, and to determine whether the use of VAE-
generated synthetic images in the training of the models improved the 
classification accuracy, the results of the same models trained on the 
original data set are provided in Table 5. 

Table 5: Confusion matrix for the classification task using the original 
data set. Table cells highlighted in grey indicate correctly 
classified images.

PREDICTED CLASS

Block Patchwork Single-cell

AC
TU

AL
 C

LA
SS

Block

InceptionV3 100% 0.0% 0.0%

ResNet50 100% 0.0% 0.0%

Xception 100% 0.0% 0.0%

Patchwork

InceptionV3 3.3% 73.3% 23.3%

ResNet50 0.0% 76.7% 23.3%

Xception 3.3% 83.3% 13.3%

Single-cell

InceptionV3 0.0% 5.6% 94.4%

ResNet50 0.0% 5.6% 94.4%

Xception 0.0% 10.7% 89.3%

The overall accuracy for the Xception model was 90.4%, while ResNet50 
and InceptionV3 achieved accuracies of 89.0% and 87.7%, respectively. 
Similar to the previous results, the Xception model performed best 
for the multiple-cell faults, and all models performed relatively poorly 
for the classification of the patchwork fault class. These findings are 
in agreement with the results found in Dunderdale et al.5 Again, the 
Xception model may be considered to be the best performer as it has the 
highest accuracy and is the most consistent. Furthermore, similar traits 

observed for the models trained on the original data and those trained 
on the VAE-augmented data validate the use of VAEs for data inflation 
purposes. As similar characteristics are observed for both approaches, 
there is evidence that the VAE process generates relevant and useful 
images which are in line with those from the original data set.

Table 6 provides a comparison of the accuracies of the three CNN modules 
based on the testing data for the VAE-augmented and original data sets. 

The results in Table 6 provide evidence that the artificial inflation of the 
data set size using the synthetic images generated using VAEs does 
improve the classification accuracy of the fitted models. This indicates 
that, in applications where only small data sets are available, the use 
of VAEs to generate artificial training data, based on the original data, 
can lead to improved classification accuracies in these models. Because 
small data sets are a common problem in many applications, the results 
suggest that VAEs provide a viable method for data inflation which can 
lead to improved discrimination in classification models.

Table 6: Accuracy comparison of convolutional neural network models 
by training data

VAE-augmented Original

InceptionV3 92.0% 87.7%

ResNet50 89.3% 89.0%

Xception 92.0% 90.4%

The use of the VAE-augmented data set resulted in accuracy increases 
of between 0.3% and 4.3%. This appears to be dependent on the 
architecture on which the model is based, as the structurally similar 
InceptionV3 and Xception models both experienced considerably higher 
improvements than that of the ResNet50 model. For the models trained 
on the original data set, the results were similar to those of Dunderdale 
et al.5 who achieved a maximum accuracy of 89.5% for a four-category 
problem. The improved accuracy observed for the Xception model could 
simply be a result of the present study being reduced to a three-category 
problem. However, the improvement in accuracy as a result of the 
artificial inflation of data through VAEs provides a notable advancement 
to the work of Dunderdale et al.5

Conclusion
CNN models trained on the VAE-augmented data set showed that all three 
architectures were able to detect PV faults with 100% testing accuracy. 
These results are an improvement on those of Dunderdale et al.5 This 
indicates that the proposed method is highly effective in distinguishing 
between faulty and non-faulty PV modules using thermal images. 

For fault classification, the VAE-augmented approach achieved an overall 
testing classification accuracy for the InceptionV3 and Xception models 
of 92%, with the ResNet50 model achieving an accuracy of 89.3%. This 
indicates that all models performed well in the classification task. Further 
investigation of the fault-wise accuracy found that the Xception model 
performed better in identifying multiple-cell faults of PV modules and 
tended to have a consistently higher accuracy for each fault type. As 
such, the Xception model is recommended ahead of the InceptionV3 and 
ResNet50 models. 

The comparative analysis performed in this study showed that the models 
trained using the VAE-augmented data consistently outperformed those 
trained on the original data set. This improvement was more evident for 
the InceptionV3 and Xception models than it was for the ResNet50 model. 
This may indicate that improved accuracies from a VAE-augmentation of 
a training data set may be model dependent. 

In comparing the results obtained in the study to that of Dunderdale et 
al.5 the use of VAE-augmented training data improved model accuracies 
for fault classification. Although Dunderdale et al.5 reports results on 
a four-category problem, the combination of the string and patchwork 

 Deep learning for photovoltaic defect detection
 Page 6 of 8

https://doi.org/10.17159/sajs.2023/13117


7 Volume 119| Number 1/2
January/February 2023

Research Article
https://doi.org/10.17159/sajs.2023/13117

faults is validated both by their similar appearance on thermal images as 
well as by similar groupings being used in related studies.39 

The VAE approach used in this study proved to be successful in 
artificially increasing a data set size and is therefore recommended in 
applications where limited data are available for analysis. This finding 
shows that the entry point to the use of computer vision methods in 
practice is lower than originally thought as smaller data sets can be 
inflated using synthetic VAE-generated images to train effective and 
accurate classification models. 
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