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Extreme changes in climate, especially in temperature, could have implications for herbal plants in various 
world regions. Medicinal plants often produce a wide variety of natural phytochemicals to enhance their 
defence and survival mechanisms against harsh environmental conditions, and when these mechanisms 
fail, plants consequently die. We investigated the impact of high temperatures coupled with the specific 
duration of exposure on the yield and composition of essential oils and trichomes in leaves of Lippia javanica. 
Plants were exposed to increasing temperatures (25 °C to 47 °C) for different durations (48 h to 144 h). 
Response surface methodology was applied to assess the interaction between temperature and length of 
exposure on the essential oil yield, trichome length, and trichome diameter. Essential oils were recovered 
from the control and treated leaf samples using hydrodistillation and volatile compounds were identified 
through gas chromatography–mass spectrometry (GC-MS). Multivariate analysis modelling allowed different 
clustering patterns to be detected. That is, increasing temperatures raised the oil yield, trichome length, and 
diameter from 1.007 mg/100 g to 3.58 mg/100 g, 50 µm to 160 µm, and 25 µm to 60 µm, respectively. 
Significant chemical differences between the essential oils were confirmed by the principal component and 
orthogonal projections to latent structures, which identified separate clusters for the control and treated 
samples. The current findings indicate that L. javanica has coping mechanisms against high temperatures.

Significance:
• High temperatures significantly alter the trichome morphology and secretion of essential oils in L. javanica, 

which adversely affects the shrub’s medicinal properties. Regardless of climate change, this finding could 
have major implications for indigenous people who continue to use the shrub for therapeutic purposes.

• L. javanica showed coping mechanisms against high temperatures for a maximum of six days; however, 
a prolonged exposure would be more detrimental. As a result, climate change will negatively influence 
the plant’s developmental and defence mechanisms.

Introduction
The fundamental cause of climate change has been identified as the worldwide rise of greenhouse gases.1,2 
The increase in greenhouse gases results in increased temperatures which significantly impact the secretion of 
secondary metabolites in medicinal plants.3 Hence, plants exposed to abiotic stresses show crucial variations in 
their secondary metabolites.4 Moreover, plant responses to high temperatures are complex, and include deleterious 
effects and adaptive traits.5 The most basic morphological traits and biological processes key to plant growth are 
sensitive to temperature.3,4 As temperatures increase, the net photosynthetic rate is negatively affected, which 
leads to a decline in plant performance.4 Phenology is also driven by temperature6,7; thus, any moderate increase in 
temperature leads to the escalation in developmental processes resulting in the early blooming of plants8. 

South Africa is one of the countries in the world that has experienced a drastic increase in temperatures over the 
last 40 years.9 This means that medicinal plants are now exposed to higher temperatures than previously. Lippia 
javanica (Burm. F.) Spreng, commonly known as the fever tree, is a southern African indigenous medicinal plant in the 
Verbenaceae family and is widely distributed in the warmer eastern and northern provinces of South Africa. The shrub 
is used by indigenous people and herbal/traditional healers as an inexpensive, safer, and more desirable alternative 
for treating numerous ailments.10-12 The shrub is used to treat chronic respiratory diseases11,13,14, skin disorders12,15,16, 
and a wide range of immune-suppressant ailments such as malaria and HIV/Aids13,14,17. The commonly used parts of 
the shrub are the leaves and stems, but sometimes roots may also be utilised.18 Leaves and stems of L. javanica are 
together used as inhalants, teas, food additives or leafy vegetables, and for topical formulations12,19, whereas roots 
are used as an antidote against eye infections and food poisoning12. These different plant parts are commonly used 
because they contain high concentrations of secondary metabolites or phytochemicals, which are secreted in response 
to physiological and ecological pressures such as pathogens, insects, temperature extremes, and UV radiation.20-22 

Plant leaves have been identified as the most flexible and adaptive part of a plant in response to changing environmental 
conditions23; thus the histology of the leaf reveals more dynamics than that of the root and stem24,25. Leaves of 
L. javanica contain trichomes which are specialised hairs on the adaxial and abaxial leaf surfaces.25-27 Glandular 
trichomes are an essential organ in the Verbenaceae family.26 These trichomes secrete and store phytochemicals that 
contain medicinal properties.25-27 The density of trichomes on leaves is dependent on the environmental conditions to 
which the plant is exposed.25 The harsher the environmental conditions, the greater the density of trichomes, because 
trichomes increase the production of essential oils, flavonoids and phenolics which increase the plasticity of the plant.

Research studies have reported that leaves of L. javanica are an excellent source of essential oils.11-14 Chagonda 
and Chalchat11 found that L. javanica has antiviral, antioxidant, antidiarrhoeal, antitrypanosomal, anti-inflammatory, 
antibacterial and anticonvulsant essential oil properties. The shrub has aromatic ingredients that have a range of 
commercially valuable properties.12 For example, L. javanica’s essential oils incorporated in candle wax provide 
mosquito repellent properties (repelling no less than 95% of mosquitoes) better than most available commercial 
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products (which repel only 42% of mosquitoes).12 This suggests that 
L. javanica is used as a source of revenue in both the formal and 
informal sectors.

Numerous studies have been conducted on the wide range of chemical 
extracts used in traditional healing.21,28 Most studies have focused 
exclusively on the phytochemistry and trichome density of L. javanica.19,25,26 
However, no studies investigated the impact of high temperatures on the 
essential oil yield and related histological changes in L. javanica. Therefore, 
in the present study, we used a chemometric approach to evaluate the 
effects of temperature variation and time as abiotic agents impacting the 
production of essential oils in the leaves of L. javanica. 

Materials and methods
Plant material and chemicals
Samples of L. javanica (grown for ~2 years) were obtained from 
Mountain Herb Estate in Hartbeespoort (25.7236° S, 27.9653° E) and 
maintained in the greenhouse at the University of the Witwatersrand 
(26.1929° S, 28.0305° E), South Africa. Before moving samples into 
the climate test incubator (Conviron - CMP6010, Canada), they were 
watered twice a day for a month and were kept in the greenhouse at 
25 °C/20 °C (day and night simulation). All the chemicals used in this 
investigation were of analytical grade. Hexane and anhydrous sodium 
sulfate were purchased from Merck (Johannesburg, South Africa).

Design of experiment 
Plants were exposed to high temperatures (25 °C, 36 °C and 47 °C) 
in a climate test incubator (Conviron) for 6 days. Leaves were then 
harvested episodically after 48 h, 96 h and 144 h (n=30). The harvested 
leaves were air dried to investigate the effects of temperature (T) 
(25–47 °C) and time (t) (48–144 h) on the production of essential 
oils (Supplementary figure 1) and related histological modifications of 
L. javanica. A central composite design, MODDE 13.1 (Sartorius Stedim 
Biotech, Malmö, Sweden), was used to generate a full-factorial design 
with 12 experiments and three centre-point replicates (Table 1).

Table 1: Essential oil yield, trichome height, and trichome diameter of 
Lippia javanica at set experimental conditions

Run 
order

Temperature 
(°C)

Time 
(h)

Yield 
(%)

Trichome 
diameter (µm)

Trichome 
height (um)

9 25 48 0.91 25 54

6 25 96 0.95 25 54

10 25 144 0.97 25 54

7 36 48 1.45 30 83

8 36 96 1.78 36 89

2 36 144 1.89 39 98

1 47 48 2.18 44 130

4 47 96 2.45 47 134

12 47 144 3.58 54 139

5 36 96 2.02 39 95

3 36 96 1.97 35 86

11 36 96 2.45 37 90

The temperature range was chosen based on the average temperatures 
obtained in all six South African provinces where L. javanica occurs 
(Mpumalanga, Limpopo, Gauteng, North West, Eastern Cape and 
KwaZulu-Natal). The control was kept at 25 °C, while 36 °C was based 
on current average summer temperatures, and 47 °C was assumed from 
the predicted increase in temperatures in the next 30 years.1,2 Humidity 
(55%), soil type (loam), and light conditions (under 12 hours of light 
with a photon flux density of 100 µmol/m2/s) in the Conviron were kept 
constant, and plants were watered once a day throughout the treatments.

Extraction of essential oils 
Essential oils were extracted from the air-dried harvested leaves of the 
control and treated samples using a Clevenger-type apparatus for the 

hydrodistillation process.27 A volume of 1 L of water was added to 300 g 
of leaf samples for 4 h. The recovered essential oil was then isolated and 
dried with anhydrous sodium sulfate, filtered through a small cotton-
wool plug, and shifted to a pre-weighed amber vial.27 The total yield was 
calculated using the formula below:

Percentage (%) yield= 

where:

A = Mass of empty bottle (g)

B = Mass of bottle plus oil extracted (g)

C = Mass of distilled material (g)

Essential oil analysis (GC-MS/FID)
Before injection into the chromatogram, 15% (v/v) of essential oil samples 
in hexane were prepared before the analysis. They were scrutinised 
using a Hewlett-Packard G1800A GCD system gas chromatograph (GC) 
combined with flame-ionisation detection (FID) and a mass spectrometry 
(MS) detector. An Innowax FSC column (60 m × 0.25 mm diameter) 
was utilised, and helium was the carrier gas, with a 0.8 mL/min flow 
rate.27 The GC-MS was maintained at an oven temperature of 60 °C for 
the first 10 min, and then the temperature was programmed to rise to 
220 °C at a rate of 10 °C/min, and it was kept constant at 220 °C for 
10 min. Then again, temperature was programmed to rise to 240 °C at 
a rate of 10 °C/min. Split flow was adjusted to 50 mL/min, whereas the 
injector and detector temperatures were adjusted to 250 °C. The mass 
spectra/ionisation was taken at 70 eV, and the mass range was from 
35 m/z to 425 m/z. Qualitative characterisation of L. javanica essential 
oil samples was performed using a GC-MS.

The US National Institute of Standards and Technology (NIST) Mass 
Spectral Library was used to characterise the shrub’s essential oil 
compounds. Using literature and databases, essential oil components 
were tentatively identified by comparing the retention indices, molecular 
weight, and mass fragmentation patterns. All matches reported in 
our study had match quality >90% with respect to the experimental 
spectrum. The first step was a spectrum comparison in all the matches, 
which offers a range of potential matches. The second step was a post-
search filter which  rejected retention indices inconsistent with indices 
of unknown components. Using these calculated retention indices and 
interactive search filters built into the library decreases the chances of 
incorrect identifications.

Unsupervised and supervised machine learning 
exploratory approach
The complex total ion chromatogram data set (Supplementary figure 2) 
obtained from the essential oil GC-MS analysis was processed using 
commercial Leco Chroma TOF software. Total ion chromatogram data 
were aligned, and the baseline was corrected and smoothed. A MS Excel 
spreadsheet including all the main ion fragments for each peak was made 
and used for further assessment through SIMCA-17 (Umetrics AB, Malmo, 
Sweden). Various scaling approaches were applied before creating the 
unsupervised principal component (PCA) model. The PCA model was then 
used to investigate the relationship between variables and correlation for 
each variable to the principal components. The score plot was employed 
to identify similarity between individual clusters. The graphical output 
of this clustering tool shows the group-inclusive associations between 
classes and the value of the clustering criterion related to each treatment 
of the plant.29 The essential oils variability obtained through the clusters on 
the PCA scores plot was further assessed by the supervised orthogonal 
projections to latent structures discriminant analysis (OPLS-DA) model.

The samples were assigned classes based on the treatment of the plants. 
OPLS-DA loadings plots identified chemical markers driving the observed 
variability within the control and treated samples. The data set was randomly 
subdivided into the testing set (30%) and training set (70%). The OPLS-DA 
model was developed using the training data set, whereas the testing data 
set was used for cross-validation, validation, and prediction ability of the 
model.30 The variability of the essential oil compounds within the control 
and treated groups were identified using OPLS-DA scores and S-plots.
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A multiple linear regression was applied to calculate the fitting model 
and response surface. The R2 and Q2 values indicate the adequacy of the 
models (where R2 shows the model fit and Q2 shows an estimate of the 
future prediction precision), predicted vs. observed plot, and coefficient 
plots. A partial least squares regression was employed to assess the 
response surface and fitting model response surface. The adequacy of 
the models was evaluated using Q2 (an estimate of the future prediction 
precision) and R2 (the model fit values).

Results and discussion
Response surface methodology optimisation
The response surface methodology was used to assess the impact 
of temperature and time on the yield of essential oils and related 
histological modification of L. javanica. The model was achieved based 
on the experimental design defined by the central composite design. 
These experiments were carried out at all possible level combinations 
of temperature and time, and the response was given as the essential oil 
yield, trichome diameter, and trichome height (Table 1). Thereafter, the 
regression models were obtained by fitting the second-order polynomial 
equation to the experimental data set. The fitted model showed a total 
explained variance of 84% to 94% (R2 = 0.84–0.94) and cross-validated 
predictability of 65% to 97% (Q2 = 0.65–0.97), where R2 shows the 
model fit and Q2 offers an estimation of the future prediction and 
precision. The linearity of the predicted versus observed values plot 
(Figure 1) underlined the validity of the model and its capability to predict 
the best condition of the extraction within the range of the design. 

a

b

c

Figure 1: The linearity of the predicted versus observed values plots 
for (a) yield, (b) trichome height and (c) trichome diameter of 
Lippia javanica.

The coefficients plot (Figure 2) revealed that high temperatures significantly 
affect the yield of essential oils, trichome height, and trichome diameter 
(p=0.002); in contrast, time does not significantly influence plant stress. 
The increase in temperature from 25 °C to 47 °C increased essential oil 
yield, trichome length, and trichome diameter from 1.007 mg/100 g to 
3.58 mg/100 g, 50 µm to 160 µm, and 25 µm to 60 µm, respectively. This 
finding suggests that an increase in essential oil secretion, trichome height 
and diameter is a defence mechanism for plants exposed to environmental 
stress. Our data show that time did not affect plant stress; nonetheless, 
it is well recognised that the longer a plant is exposed to environmental 
stress, the more harmful the conditions are to the plant.

a

b

c

Figure 2: Contour plots showing the direct and interaction impacts of 
temperature and time on (a) essential oil yield, (b) trichrome 
height, and (c) trichome diameter of Lippia javanica.

Several studies have shown that the increase in glandular trichome length 
and diameter are directly correlated to the yield of essential oils produced 
by the plant (Supplementary figure 1).31,32 Moreover, other studies have 
reported that both essential oil yield and the quality of aromatic compounds 
are primarily affected by environmental factors such as altitude, light 
intensity, and seasonality.11,28,33 Our findings are consistent with these 
studies because exposing L. javanica to high temperatures increased the 
length and diameter of trichomes, which was associated with the increase 
in essential oil yield (2.67% more than the control at 47 °C/144 h). 

Our results clearly show that the production of essential oils in 
L. javanica is temperature sensitive (Supplementary figure 1) and that the 
increase in the secretion of essential oils is an indicator of environmental 
stress. However, it is unclear how these environmental factors affect 
the quality of essential oils. Al-Gabbiesh et al.34 stated that plants 
exposed to environmental stresses reveal a higher concentration and 
yield of essential oils than those cultivated under ambient conditions. In 
this context, however, exposure to environmental stresses significantly 
reduces plant growth because carbon meant to be allocated to growth 
is redirected to the production of secondary metabolites for plant 
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survival.4,34 Therefore, environmental stress could increase the toxicity of 
volatile compounds, which may be harmful to humans. The toxicity level 
may also depend on the duration of exposure to environmental stress. 

Characterisation and identification of essential oils by 
GC-MS
The GC-MS analysis yielded 50 essential oil components (Supplementary 
table 1). The essential oils extracted from the control and treated samples 
displayed differences in their chemical composition. The primary 
essential oils found in the control samples were linalool, carvone, 
piperitenone and tagetenone, while the treated samples were contained 
eucalyptol, camphor, fenchone eucalyptol, p-cymene, caryophyllene and 
terpinen-4-ol. The largest relative peak area of the major compounds 
revealed significant chemical variations within the control and treated 
samples (Supplementary figure 3). 

All samples fell within the Hotelling’s T2 ellipse on the scores plot (Figure 3), 
suggesting the nonexistence of strong outliers, and therefore all data were 
included. The total variation across the data was 99.7% (R2Xcum = 0.997), 
whereas Q2

cum was 0.987, indicating a good model. The scores scatter plot 
of PC1 against PC2 (Figure 4) shows four clusters corresponding to the 
control and treatments. About 56.8% and 31.1% of the sample variability 
were explained by PC1 and PC2, respectively (Table 2). An OPLS-DA 
model was created from the data for the control and treated samples. 
Centre-scaled models generated the best statistics for the selected data 
set compared to other scaling approaches (Table 2).

Table 2: Centre-scaled principal components analysis (PCA) and 
orthogonal projections to latent structures discriminant analysis 
(OPLS-DA) model statistics output 

Statistical parameter Output

PCA Model

Number of principal components 3

R2Xcum 0.997

Q2cum 0.987

% Variation PC1 56.8

% Variation PC2 31.1

OPLS-DA Model

Predictive components (P) 1

Orthogonal components (O) 1

R2X (P1) 0.502

R2X (O1) 0.416

R2Y 0.919

Q2Y 0.987

Figure 3: Principal component analysis (PCA) scores scatter plot of 
Lippia javanica exposed to 25 °C (control) and 47 °C (for 48, 
96 and 144 hours).

Figure 4: Orthogonal projections to latent structures discriminant analysis 
(OPLS-DA) scores scatter plot of Lippia javanica exposed to 
25 °C (control) and 47 °C (for 48, 96 and 144 hours).

Four groups were distinguished in the corresponding OPLS-DA score 
plots (47 °C/48 h, 47 °C/96 h and 47 °C/144 h) (Figure 4), confirming 
the chemical variation of essential oils found in L. javanica at elevated 
temperatures. Major essential oil constituents (linalool, – (-) carvone, 
tagetenone and piperitenone) in the control disappeared in the high 
temperature treatments (Figure 5). However, eucalyptol, camphor, and 
p-cymene were major essential oils not previously present in the control 
and were produced when plants were exposed to high temperatures. 

Several essential oil constituents are not produced at certain temperature 
ranges; thus, temperature alterations significantly impact the essential 
oil composition of plants. A study by Lee and Ding35 found that the 
specific ratio of essential oil constituents determines the therapeutic 
and wellness-enhancing properties of the oil. However, a study by 
Nakatsu et al.36 suggested that, although there are differences in the 
composition of essential oils of various plants, there is considerable 
overlap in their overall properties. For example, Tetradenia riparia and 
Virola surinamensis have different essential oil profiles, but they are both 
reported to treat malaria symptoms.34 Therefore, the changes observed 
in the oil constituents of L. javanica after exposure to high temperatures 
may not suggest changes in the biological activity of the shrub. More 
research, however, is required to ascertain any changes in the biological 
activity of L. javanica and the implications of the additional compounds 
secreted in response to high temperatures.

Figure 5: S-plots of essential oil components of Lippia javanica.

Conclusion
Temperature was the most critical factor influencing the production of 
essential oils, trichome length and trichome diameter in L. javanica. 
A significant degree of chemical variation was evident between the 
control and treated samples. Four essential oil compounds successfully 
identified within the control were not present in the treated samples and 
three compounds detected in the treated samples were absent in the 
control. This variation suggests resistance against high temperatures and 
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other physiological and ecological pressures. The increase in defence 
essential oil compounds could also indicate an increase in the medicinal 
properties of the shrub in treating various ailments. More studies should 
be conducted to investigate the pharmacological activities and toxicity 
levels of L. javanica exposed to high temperatures in order to elucidate 
any changes in the medicinal properties of the shrub.
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