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The commercialisation and everyday use of nanomaterials and nanomaterial-enabled products (NEPs) is 
rising year-on-year. Responsible development of nanotechnology includes understanding their potential 
implications on health, safety, and the environment (HSE). The health risk assessment of nanomaterials 
has therefore become one of the major activities of international agencies including the Organisation for 
Economic Co-operation and Development and the Environmental Protection Agency for protection of human 
health and the environment. Nationally, with the foresight and the leadership of the Department of Science and 
Innovation, a HSE programme was initiated to establish the necessary infrastructure to conduct the tests in 
the hazard identification and exposure assessment that are needed in the risk assessment of nanomaterials 
synthesised as well as NEPs available in South Africa. Here we present the advances that have been made 
in elucidating the different facets that are required when undertaking risk assessments of nanomaterials, 
i.e. physicochemical characterisation, hazard identification, exposure assessment and effects assessment. 
These facets are increasingly being considered throughout the nanomaterials present in the life cycles of 
NEPs. South Africa's research contribution to an international understanding of HSE risks of nanomaterials 
is highlighted and the future direction to generate the necessary information for effective risk communication 
and management is provided. This will assist in ensuring safer innovation of nanotechnology in South 
Africa and support the export of locally manufactured nanomaterials as per international requirements.

Significance:
• Significant contributions of South Africa to the nanomaterial HSE knowledge base are highlighted.

• Development of standardised testing methodologies in nanomaterial HSE and protection of human and
ecological health through risk assessment of nanomaterials are discussed.

• This paper contributes to ensuring safer innovation of nanotechnology in South Africa.

Background
Nanomaterials are defined as “material with any external dimension in the nanoscale or having an internal structure 
or surface structure in the nanoscale”1. For new commercial nanomaterials (and respective applications) and 
nanomaterial-enabled products (NEPs), risk assessments are required to provide science-based information to 
predict or estimate risk associated with exposure. We anticipate that the health risk assessment of nanomaterials 
and NEPs will follow the traditional risk assessment paradigm for chemicals involving hazard identification, dose-
response assessment, exposure assessment and risk characterisation.2 A similar approach was proposed for 
the health risk assessment of nanomaterials to include the identification of their physicochemical properties, the 
assessment of their hazard and dose-response relationship, and the determination of exposure (occupational, 
consumer, environment), to facilitate robust and efficient evaluation of their associated risks during their entire 
life cycle. The health risk assessment of nanomaterials has therefore become one of the major activities globally 
to develop standardised testing procedures led by the Organisation for Economic Cooperation and Development 
(OECD).3 Moreover, international initiatives such as the US National Nanotechnology Initiative Research Strategy4 
and the European Commission5 were established to ensure nanosafety in the United States of America and Europe.

The need for the development of a focused research strategy for health, safety and environment (HSE) aspects 
in support of the South African National Nanotechnology Strategy was realised and initial research areas were 
proposed.6 Gulumian and others7 pointed out that these research activities should not be undertaken in isolation 
and that internationally derived best practice guidelines should be adopted so that research could be focused 
specific to South Africa’s requirements. To this end, the South African Department of Science and Innovation 
(DSI) established the Nanotechnology HSE Research Platform in 2015. It is within this platform that the bulk 
of the scientific information pertaining to Nano HSE, nationally, has been produced. This platform has enabled 
South Africa to establish and grow the necessary infrastructure required for the hazard identification and exposure 
assessment necessary in the risk assessment of nanomaterials or NEPs. The aim of this paper is therefore to 
describe the major contributions thus far by South Africa in the field of nanomaterial HSE, within the context of 
current international developments. We further evaluate the research needs in relation to national and international 
development needs in the field. It is anticipated that the achievements reached thus far and new directions identified 
will aid in the risk assessment, communication and management of nanomaterials and NEPs in South Africa.

Assessment of physicochemical properties
The physicochemical properties of nanomaterials determine their environmental fate and interaction with biological 
systems.7,8 Their significance became apparent with the recognition that small changes in these properties 
may influence environmental behaviour and subsequent biological uptake of nanomaterials. Nationally, the 
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infrastructure to determine dissolution properties has been established9, 
and, internationally, contributions have been made to determine the 
biodurability and dissolution of nanomaterials10,11. For example, the 
dissolution of gold nanoparticles (AuNPs) has been determined in 
different biological and environmental media.12

Hazard identification
For hazard identification, it became crucial for international agencies to 
develop in vitro and in vivo assays that characterise acute and chronic 
toxicity.13 The OECD Working Party on Manufactured Nanomaterials 
therefore launched the Sponsorship Programme in November 2007 to 
standardise testing, with South Africa being the Lead Sponsor for the 
safety testing of AuNPs.13 

For in vitro tests, South African research has demonstrated the interference 
of nanomaterials in optical read-out tests14 and has contributed to 
international development of an interference-free in vitro colony-forming 
ability test15. Moreover, researchers have recommended the use of label-
free techniques to assess toxicity of nanomaterials16 and investigated 
their interference in genotoxicity and mutagenicity assays17 and with the 
RNA analyses18. More recently, research demonstrated the interference of 
AuNPs with in vitro endotoxin detection assays19 and provided guidance 
in the sterilisation of nanomaterials20 and proposed alternative testing 
strategies21. South Africa also contributed to elucidating the mechanism 
involved in the cellular uptake of AuNPs22,23 and in the mechanisms 
involved in the possible use of nanomaterials in nanomedicine24,25.

As for in vivo tests, the derivation of no observed adverse effect levels 
(NOAELs) requires sub-chronic (90 d) or long-term chronic (>2 years) 
studies. Due to ethical concerns, sub-acute (28 d)26 studies were 
suggested as an alternative to ensure sufficient recovery time following 
exposure. This revised 90-day OECD Test Guideline 41327 further 
requires that retained lung burdens should be determined. 

South Africa, in collaboration with leading international research groups, 
has conducted in vivo inhalation studies to assess the lung burden of 
high dissolution rate silver nanoparticles (AgNPs) and relatively lower 
dissolution rate AuNPs.28-31 Such collaborations also illustrated that the 
even lobar deposition of poorly soluble AuNPs and soluble AgNPs are 
similar28-30 and thus could propose the reduction of experimental animals 
to be used in the said 28-day inhalation toxicity and 90-day inhalation 
toxicity OECD guidelines. These inhalation studies also showed the size-
dependent clearance from lungs after short-term inhalation exposure.32 
South Africa further contributed to inhalation studies related to nano 
aerosol generation as part of the development of an international 
standard (ISO TR19601). Collaborative work was also conducted to 
investigate the tissue distribution of AuNPs and AgNPs after sub-acute 
intravenous co-administration of similarly sized counterparts33 as well as 
their effect on the blood biochemical and haematological parameters34.

With regard to ecological hazard assessment of nanomaterials, 
standardised toxicity testing methodologies and test organisms were 
initially utilised to understand the effects of exposure. Tests were carried 
out using traditional standardised aquatic test species (i.e. algae, macro-
invertebrates and fish) to determine the hazards of, for example, double-
walled carbon nanotubes35, induction of oxidative stress in the floating 
macrophyte Spirodela punctuta following exposure to AgNPs and zinc 
oxide (ZnO) nanoparticles36, and the mortality and behaviour effects of 
aluminium oxide and titanium dioxide (TiO2) to the early life stages of a 
freshwater snail (Physa acuta)37. 

Subsequently, South African and other international researchers have 
been evaluating the applicability of standardised toxicity tests for inter alia 
nematodes38, enchytraeid potworms39, aquatic invertebrates and fish40,41. 
Using these standardised OECD protocols, local studies conducted as 
part of the safety testing of AuNPs revealed that nanomaterials had lower 
toxicity than their chemical equivalents.39-41 These and other South African 
studies on the three most commonly used toxicity bioassays – i.e. the 
72-h algal growth inhibition test, 48-h Daphnia immobilisation test, and 
96-h fish mortality test – contributed towards adaptations needed for 
nanomaterial toxicity testing. For example, CytoViva Dark field imaging 
was used41 to demonstrate that the disposal of surface-bound AuNPs 

by Daphnia occurs through increased moulting. Moreover, South Africa 
developed a standardised screening procedure to assess the hazard of 
nanomaterials in saline environments using brine shrimp (Artemia sp.)42 
and proposed a new method to assess cell toxicity in real time using the 
xCELLigence real-time cell analyser to evaluate the effects of AuNPs and 
AgNPs to three different mammalian cells lines43. 

As part of the call for further development of sub-lethal endpoints 
of chronic (long-term) exposure, Botha et al.44 used an integrated 
physiological response (i.e. swimming behaviour) in zebra fish (Danio 
rerio) that showed sub-lethal dose-response effects of AuNPs where 
gene expression and oxidative stress enzymes did not reveal any effects. 
The sensitivity of this endpoint was further demonstrated following 
exposure of D. rerio to sub-lethal concentrations of CdTe quantum dots 
and nanodiamonds45.

These different in vitro cell models and in vivo animal models described 
above, contribute to the techniques that are used in hazard assessment 
and regulation of nanoparticles before they are released into the market. 
This means that, for the safe development and commercialisation 
of nanotechnologies in South Africa, there are existing test systems 
that have successfully been validated and established to achieve the 
objectives for hazard assessment.

Assessment of exposure
Occupational exposure
Exposure to nanomaterials may occur directly through occupational 
and consumer exposure or indirectly through environmental exposure 
(Figure 1). There is thus the need for lifecycle risk assessment. 
The exposure assessment under the different scenarios critically requires 
that the nature and extent of contact with nanomaterials under different 
conditions and identified activities is determined. The identification of the 
routes of exposure such as inhalation, digestion, dermal or intravenous 
injection with dose and duration is also of great importance. The fact 
that nanomaterials come in various sizes, shapes, functionalities, 
concentrations, and chemical compositions must be borne in mind when 
undertaking exposure assessments.

Assessment of occupational exposure 
Studies by the OECD and US National Institute for Occupational Safety 
and Health (NIOSH) provide guidance on strategies, techniques, and 
sampling protocols for determining nanomaterial concentrations in air. 
The three-tiered approach recommended by the OECD for occupational 
exposure assessment is as follows46: 

• Tier 1: On-site inspection and questionnaire to determine if the 
nanomaterials can be released from the processes/tasks. 

• Tier 2: Determine potential exposure in the workplace through 
screening and/or task specific measurements using the correct 
metrics (mass, number, surface area) with specialised online 
instrumentation. The establishment of background concentrations 
and levels in the personal breathing zone of the worker needs to 
be determined.

• Tier 3: Tier 2 with concurrent particle sampling for offline analysis 
of particle morphology, mass or fibre concentration and chemical 
composition. These are related to particle control values in order to 
ascertain whether controls are sufficient or need to be improved.

Recommended exposure limits, another term for occupational exposure 
levels (OELs), for carbon nanotubes and nanofibres were determined to 
be 1 µg/m3 elemental carbon as a respirable mass 8-h time-weighted 
average concentration47 and for nano-TiO2 to be 0.3 mg/m3 as time-
weighted average concentrations for up to 10 h per day during a 40-h work 
week48. These recommended exposure limits have already been accepted 
by the US Occupational Safety and Health Administration (OSHA).49 
The aforementioned examples demonstrate that there is advancement 
in deriving OELs for nanomaterials. However, with the rapid expansion 
of nanotechnology and development of new types of nanomaterials, 
the development of OELs in the workplace is lagging. Subsequently, for 
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nanomaterials where no limit values are available, nano-reference values 
have been developed as provisional substitutes for health-based OELs 
or NOAELs. These nano-reference values are based on a precautionary 
approach and have been developed for four classes of nanomaterials: 
Class 1 – rigid, biopersistent nanofibre (e.g. carbon nanotubes, metal 
oxide fibres), Class 2 – biopersistent granular nanomaterials (e.g. Au, 
Fe, CoO), Class 3 – biopersistent granular and fibre nanomaterials (e.g. 
TiO2, ZnO, C60), Class 4 – non-persistent granular nanomaterials (e.g. 
fats, NaCl.50 

Using the nano-reference values approach, South African researchers 
assessed exposure to AuNPs in a pilot scale facility where the measured 
nanoparticle emission was below the recommended nano-reference 
values.51 Using the tiered approach, exposure assessment was conducted 
in various research laboratories and in different industrial settings 
in South Africa to assess exposure to several types of nanomaterials 
utilising the established infrastructure. The values calculated from the 
measurements are used to calculate the 8-h time-weighted average 
exposure concentration to compare it to proposed OELs. Thereafter, 
proposed actions need to be taken to ensure the protection of workers, 
including engineering controls and personal protective equipment, to 
further minimise the risk of exposure.

Together with the identification of suitable biomarkers of internal 
exposure and indicators of toxicological responses52, it is also important 
to develop surveillance programmes to protect the workers dealing 
with nanomaterials53. To this end, South Africa contributed towards the 
development of World Health Organization guidelines to protect workers 
from potential risks of nanomaterials.54 

Assessment of environmental exposure 
Most of the information related to the fate and transport of nanomaterials 
in the environment has been obtained from modelling studies. These 
approaches were applied to quantify the levels of AgNPs and TiO2NPs in 
terrestrial and aquatic ecosystems from the cosmetics industry passing 
through wastewater treatment plants.55 Further studies were conducted on 
simulated wastewater treatment plants to determine the fate and effect of 
AgNPs and ZnONPs56,57 and concluded that these materials predominantly 
remain in the sludge. Other studies found that aggregation and dissolution 
kinetics of aluminium oxide (Al2O3) and CuO nanoparticles were strongly 
influenced by source-specific physicochemical characteristics such 
as pH, natural organic matter and solutes.58 The latter physicochemical 
characteristics also influenced the toxicity of ZnO and iron oxide (FeOx) 
nanoparticles to the bacterium Bacillus subtilis.59

South African researchers conducted a comprehensive review of 
the existing approaches used to predict the bioaccumulation of 
nanomaterials. They concluded that the octanol-water partition 
coefficient (log Kow) may not be applicable but that kinetic models such 
as the physiologically based pharmacokinetic model showed the greatest 
promise in predicting bioaccumulation and biological exposure.60 
South African researchers were further involved in a meta-analysis of 
existing nanomaterial bioaccumulation studies in fish to assess the 
bioaccumulation potential of nanomaterials.61 The authors found that a 
tiered approach that makes use of in vitro, in silica, ex vivo and, at the 
final tier, in vivo data shows promise as a new standardised protocol 
for nanomaterial bioaccumulation testing. It is currently being applied to 
assess CuO and quantum dots bioaccumulation in both terrestrial (i.e. 
earthworms) and aquatic (i.e. invertebrates and fish) organisms.

Assessment of exposure from consumer products 
In terms of turnover, the pharmaceutical sector is currently the most 
important of the six considered nanotechnology markets, but all of them 
are expected to grow significantly in the future.62 The potential therefore 
exists for consumer and environmental exposure to nanomaterials 
present in NEPs at different product lifecycle phases, i.e. production, 
use, and end-of-life. Assessment of consumer exposure is therefore 
complex.63 An approach was developed to obtain sufficient quantities of 
materials (e.g. released from products, weathered fragmented products 
and sieved fragmented products) in order to study these nanomaterials 
during different lifecycle stages.64 Environmental exposure assessment 
due to release of nanomaterials has largely been dominated by pristine 
nanomaterial type, compared to those incorporated in NEPs.63 Because the 
functionalisation of nanomaterials into products alters their pristine state65, 
there are limitations in applying data obtained from pristine nanomaterials 
to elucidate exposure arising from the various lifecycle phases. 

Prior to assessment of nanomaterials exposure in NEPs, it is important 
to establish the type of NEPs in the market. The global and local NEP 
markets are dominated by health and fitness products (e.g. sporting 
goods, active wear, personal care, and sunscreen products), being 
42–81% of the identified or examined NEPs.66 Hence the potential for 
environmental exposure to occur consistently and likely to increase with 
future demand for more superior products preferred by consumers. 
In South Africa, it has been illustrated that NEPs extend beyond the 
products that are declared by manufacturers.67 There is increased need 
for regional and ultimately global databases to enhance value to industry, 
consumers, researchers, and government authorities, and at a lower 
cost than the current country-specific registries.68

 Nanomaterial HSE risk assessment in SA
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Figure 1: Diagram depicting the human and ecological exposure to nanomaterials during different product lifecycle stages of the materials in environmental, 
health and safety evaluations (1 = worker exposure, 2 = consumer exposure). 
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It is impractical, and in principle unnecessary, to analyse nanomaterial 
emissions from all NEPs; numerous studies have adopted a model 
that, at a lower tier, guides to priority emission-potential NEPs based 
on nanomaterials loci or fixation in the product.66 In brief, NEPs with 
nanomaterials suspended in liquid (e.g. shower gels, body creams), 
surface bound (e.g. toothbrush, fabrics), airborne (e.g. air conditioner) 
and suspended in solid gel (e.g. eye shadow, make-up sticks), exhibit 
elevated nanomaterials environmental exposure potential relative to 
counterparts where the nanomaterials are fixed in a solid matrix or 
nanostructured surface. 

Overall, information pertaining to nanomaterials environmental 
exposure has greatly improved compared to a decade ago. Locally, 
studies have proposed priority groups of NEPs exhibiting considerable 
pollution potential55,66,69 as well as steps that enrich the information gap 
raised by authorities concerning emerging environmental pollutants70. 
Additionally, through platforms such as the Nanotechnology Industries 
Association, prioritisation of NEPs that raise HSE concerns have been 
highlighted.71 In the USA, the Food and Drug Administration has also set 
regulations pertaining to NEPs falling within food and drug classes.72 
Whilst such examples highlight efforts to identify and minimise NEP 
cases of nanomaterial concern, many exposure dynamics remain poorly 
understood or complex, hence considerable challenges remain in the 
regulation of commercial items. Closer cooperation between authorities, 
industry, research, and public communities on nanomaterial HSE matters 
can enrich and advance the debate in this matter; South Africa still needs 
to enhance such a robust approach. 

Application of models and/or in silico approaches
The aim of computational in silico approaches is to develop predictive 
models that can replace in vitro and in vivo testing for the purposes of 
human and ecological risk assessment of nanomaterials. 

Computational approaches and the prediction of toxicity
This involves the development of computational models of nanomaterial 
structure property/activity relationships (QSAR) to predict toxicity of 
nanomaterials and then to assist in safety by design considerations. These 
studies done in conjunction with EU partners are aimed at identifying 
relevant response descriptors in relation to toxicological, transcriptomic, 
and toxicogenomic endpoints that will assist in developing QSARs for 
predicting the toxicity of nanomaterials.73-77

Computational approaches and the prediction of dose
Dosimetry refers to estimating or measuring the amount (in terms of 
mass, number, surface area, volume, etc.) of a nanomaterial at a specific 
biological target site at a particular point in time.78 The assessment of the 
dose delivered to the cells and the internalised dose (i.e. the dosimetry) 
is essential for interpretation of both in vitro and in vivo toxicity data. 
South Africa therefore uses the sedimentation, diffusion and dosimetry 
(ISDD) and volumetric centrifugation method (VCM) modelling platforms 
to calculate cellular delivered dose79 for the hazard identification 
of nanoparticles. 

Dosimetry is also important for in vivo studies where the delivered 
dose to internal organs needs to be determined. The physiologically 
based pharmacokinetic model is standard procedure that is applied to 
simulate the absorption, distribution, metabolism, and elimination of 
chemical substances in organisms. In collaboration with international 
organisations, South African partners recently outlined future directions in 
the physiologically based pharmacokinetic modelling of nanomaterials.80 
A recent sub-acute inhalation study demonstrated how this approach 
could be applied to assess the lung retention and particokinetics of 
AgNPs and AuNPs co-exposure in rats.81

Chemoinformatics and chemical structures
Chemoinformatics has solved the issue of representing chemical 
structures for small molecules as simple 1D codes, such as SMILES and 
InChI, which are machine-readable chemical identifiers. South Africa has 
contributed to a recent collaborative work, which considered the issues 
involved in developing an InChI for nanomaterials (NInChIi).82 

Risk assessment and risk management methods
To understand the risk of nanomaterials, it is essential to obtain basic 
information on the following aspects of nanomaterials: physicochemical 
properties, in vitro and in vivo toxicity, dose-effect relationships and 
exposure scenarios for workers, consumers and the general environment 
(i.e. determining levels, frequency and duration of exposure). Therefore, 
risk assessment and risk management considerations have formed the 
core research areas for the DSI Nanotechnology HSE Risk Assessment 
programme. The aim of the programme is to integrate the quantitative 
exposure and hazard data obtained from all the HSE programme projects 
into risk assessment and other in silico models to predict nanomaterial 
behaviour and risks across the different life cycles of NEPs. Through 
data generated in the HSE programme, South Africa has been able 
to contribute to the integration of safety testing measures across the 
innovation chain of nanomaterials using new approach methodologies.77

Future prognosis 
Nanomaterials and NEPs are increasingly being synthesised and 
commercialised in South Africa. In the past 5 years, there have been 
significant advances in research related to the components of the risk 
assessment process. By and large, these research activities were not 
undertaken in isolation but formed part of international nanomaterial HSE 
research programmes. 

The achievements of the HSE programme could therefore be 
summarised as:

1. Support of regulation and decision-making through evidence-
based data derived from a broad-base nanotechnology HSE 
research platform.

2. Establishment of the required tests and the necessary 
infrastructure to assess the hazardous nature of and determine 
exposure to nanomaterials that are being synthesised and soon to 
be commercialised in South Africa.

3. Establishment of the necessary human capital development to 
conduct such tests.

4. Continued collaborative research efforts in international research 
initiatives that are aimed at developing nanotechnology HSE testing 
methodologies and regulatory approaches, e.g. the OECD Working 
Party on Manufactured Nanomaterials programme and EU Horizon 
2020 supported research projects.

5. Continued support of the development of international standards 
through ISO 229 Nanotechnologies where South Africa is 
represented by the South African Bureau of Standards (SABS) 
and the appointed experts contribute to the development of such 
nano-safety guidelines and standards for nanomaterials and 
nanotechnologies.

Through the participation and contributions of South African 
scientists in large-scale EU FP7 and Horizon 2020 funded nano-
research programmes (e.g. Nanosolutions, Nanoharmony, caLIBRAte, 
NanoSolveIT), significant amounts of data have been generated. The 
challenge that now faces international and South African researchers is 
how to validate these predictions from cell lines to whole organisms and 
indeed other species (i.e. read-across extrapolation) and determine how 
these in vitro mode of action predictions influence higher level biological 
responses such as growth, reproduction, etc. Therefore, both local and 
international focus is on the use of additional knowledge-based tools 
such as the development of adverse outcome pathways that can be 
implemented in the risk assessment of nanomaterials. The necessity of 
implementing tools such as adverse outcome pathways arises from the 
fact that it may not be possible to conduct separate risk assessments for 
every nanomaterial and NEP. 

Furthermore, a glaring void that needs urgent attention in South Africa 
is nanomaterial HSE discussions between industry and authorities, as 
these have not yet been consistent. This partnership will facilitate in the 
risk management of NEPs produced in the country. Important work that 
still needs to be completed in this regard is:
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1. Facilitate partnerships with industry to provide guidance on 
process-related exposures and worker protection.

2. Develop guidelines for the development of safe handling and 
use (industry).

3. Develop guidelines and standards to train researchers and workers 
for activities involving nanomaterials in the research and workplace 
environments in South Africa.

4. Identify, characterise, and communicate risks to all stakeholders 
through appropriate risk communication and risk management 
strategies. This will require research into risk communication 
strategies and integration into risk management frameworks. Thus, 
in line with international initiatives, risk communication needs to form 
an integral component of all nanotechnology research programmes.

5. Facilitate communication between stakeholders by providing 
support for industry partnerships and informed regulatory 
decision-making.
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