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Increasing atmospheric [CO2] is stimulating photosynthesis and plant production, increasing the demand 
for nitrogen relative to soil supply with declining global foliar nitrogen concentrations as a consequence. 
The effects of such oligotrophication on the forage quality of sweetveld, mixed veld, and sourveld 
grasslands in South Africa, which support livestock production and native ungulates, are unknown. Soil 
characteristics and the herbage quality of an abundant grass are described from baseline historical (mid-
1980s) data collected across a sweet-mixed-sour grassland gradient in KwaZulu-Natal. Sourveld occurred 
on the most acidic, dystrophic soils and exhibited a pronounced decline in leaf nitrogen, digestibility, and 
other macronutrients during winter, in sharp contrast to sweetveld, on nutrient-rich soils, where forage 
quality varied little seasonally. In a carbon-enriched, warmer, and most likely drier future climate, we 
predict that forage quality will not be substantially altered in sweetveld where soil nutrients and temperature 
are not limiting but that sourveld could become ‘sourer’ because soil nutrients will be inadequate to 
match higher plant production promoted by elevated [CO2] and warmer and longer growing seasons. 
Reassessing historical data and seasonal and spatial monitoring of forage quality will enable assessment 
of past and future impacts of climate change on grassland forage quality.

Significance:
• Grassland forage quality will likely decline with elevated [CO2] and warming, particularly in sourveld. 

• Climate change could deepen and widen the sourveld winter forage bottleneck, necessitating greater 
supplementary feeding of livestock. 

Introduction
Grasslands, including the C4-dominated grasslands of South Africa, face an uncertain future in a rapidly changing 
climate. The ongoing rise in the atmospheric concentration of anthropogenically derived carbon dioxide (CO2) could 
increase carbon sequestration, biomass production, and the water use efficiency of grasses1,2, while also favouring 
woody species and alien invasive plants3. Reduced rainfall coupled with more frequent and severe droughts will 
further limit the production of herbage for livestock and the indigenous herbivores that grasslands support.4,5 
Another – largely unrecognised – threat to grazing animals posed by elevated CO2 concentrations [CO2] is an 
insidious decline in forage quality globally because of an increasing limitation of soil nitrogen (N) supply to grasses 
growing faster over an extended growing season in a warmer, carbon-enriched atmosphere: foliar [N] has declined 
by 9% globally over the last four decades.6 Diminishing foliar [N] could cascade through ecosystems, slowing 
protein flow from plants to insect and mammalian herbivores.7 Even small decreases in the protein content and 
digestibility of forage would adversely affect animal health, reproduction, and weight gains.7,8

The potential impacts of elevated [CO2] (eCO2) and other climate change drivers on forage quality will occur across 
a well-recognised and agronomically important spatiotemporal gradient in South Africa, from sweetveld through 
mixed veld to sourveld. Livestock on sourveld require supplementary feeds and licks for up to 6 months9 because 
of the marked reduction in forage quality in autumn. This drop in quality of sourveld is caused by the translocation 
of foliar nutrients to roots at the end of the growing season.10 In contrast, foliar nutrients remain sufficiently high 
to maintain livestock production throughout the year in sweetveld areas whereas mixed veld displays intermediary 
seasonal quality changes.11 Generally, with notable exceptions11, ‘sour’ grassland occurs on dystrophic soils in 
cool areas where high rainfall favours high primary production, but nutrient supply is limited, whereas sweetveld 
predominates on base-rich soils in hotter, usually lower-lying, areas, where low and erratic rainfall rather than 
nutrient availability restricts grass productivity11,12. Anthropogenic climate change could substantially alter the 
sweet-sour forage quality gradient because temperature, soil moisture and [CO2] interact to determine the balance 
between carbon assimilation and soil nutrient availability (particularly size of the mineralisable soil N pool) that 
determines spatial and seasonal differences in forage productivity and quality.12,13

To assess whether sourveld is becoming more ‘sour’ and sweetveld less ‘sweet’ owing to eCO2 and other 
climate change drivers, we present historical plant quality data (collected in 1985–1986) to (1) describe soil 
physicochemical and plant foliar nutrient gradients across sweet-mixed-sourveld sites, and (2) provide a baseline 
for detecting any oligotrophication that may have already occurred over the last third of a century. Atmospheric 
[CO2] has risen by more than 20% (346 to 418 ppm) since the mid-1980s (https://gml.noaa.gov/ccgg/trends/), 
during which spatially variable temperature increases in mean annual temperature14 of 0.01 °C/year to 0.03 °C/
year and mean annual precipitation changes15 ranging from minus 12 mm to positive 14 mm have been recorded 
over South Africa. These trends are likely to accelerate because the southern African region is a global hotspot 
of climate change.16 We also consider uncertainties in the future likely trajectories of forage quality shifts in 
South African grasslands.

Methods
Plant quality and soil characteristics were assessed at 31 sites across a sweet-sour grassland gradient in KwaZulu-
Natal (Supplementary table 1).17 From 1985 to 1986, each site was visited at about 73-day intervals to harvest 
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foliar material of a consistent age – the top two leaves and a bud of 
vegetative tillers – from 20 plants of Themeda triandra (red grass), an 
abundant grass at all sites. We also refer to a wider study of winter (July) 
grass quality in the grassland biome in other provinces that used the 
same methods.18 Expert knowledge and literature were used to classify 
sites as ‘sweet’, ‘sour’ and ‘mixed’ types.

Plant quality analyses17,18 included analysis for cellulase dry matter 
digestibility (%) and leaf nitrogen concentration (%), as well as chemical 
elemental analysis (N, P, K, Ca, Mg, Na, Zn, and S) (Supplementary table 2).

Topsoil was sampled (to 200 mm depth) from 20 combined auger points 
and assessed for particle size (texture), organic matter, field moisture 
capacity, pH, exchangeable acidity, acid saturation, effective cation 
exchange capacity, and P, K, Ca, Mg, Na (Supplementary table 3).17,18

Forage quality (all seasons) and soil physicochemical gradients in KwaZulu-
Natal were examined using principal component analysis of cross-
correlation matrices. Seasonal differences in N% between grassland types 
were assessed with permutation analyses of variance (9999 permutations). 

Results
There was a strong forage quality gradient along which sourveld 
sites were most distinct for their low leaf digestibility, N%, and cation 
concentrations (Figure 1). Digestibility doubled and N% ranged five-fold 
across this gradient (Figure 1b,c).

Sweetveld soils were less acidic, had lower organic matter and capacity 
to hold water, but had substantially more exchangeable cations available 
than soils from sourveld; mixed veld sites were intermediate (Figure 2).

Figure 1: First two axes of a principal component analysis (PCA) of leaf variables measured at 31 locations in three grassland types in KwaZulu-Natal (a), 
and trend in leaf nitrogen (b) and digestibility (c) across the ordination.

AST, acid saturation; ECEC, effective cation exchange capacity, FMC, field moisture capacity; OM, organic matter; XA, exchangeable acidity 

Data from Zacharias17

Figure 2: First two axes of a correlation-type principal component analysis (PCA) of topsoil variables measured at 31 locations in three grassland types in 
KwaZulu-Natal. 
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Sweetveld had consistently high foliar N%, declining only somewhat 
towards the winter of the second sampling season (Figure 3). In contrast, 
N concentration, similar to digestibility17, declined to markedly low levels 
from late summer through to early spring in sourveld. Quality trends for 
mixed veld were not consistent nor pronounced. Summer and winter 
levels of N above 1.0% and below 0.5%, respectively for sweetveld and 
sourveld in KwaZulu-Natal, matched the winter extremes measured 
elsewhere in the grassland biome.18 Also, in sourveld, and to a lesser 
extent in mixed veld, leaf concentrations of the macronutrients, P, K, Mg, 
and S were seasonally variable.17

The links between forage quality, soil characteristics and environment 
were weak, with increasing altitude the only consistent predictor of 
‘sourness’ in KwaZulu-Natal.17,18

Discussion 
Future reductions in the forage quality of sourveld and sweetveld will 
depend on how other major climate change drivers (temperature and 
precipitation) interact with the carbon fertilisation effect (CFE) to alter 
the balance between plant growth-driven demand for, and soil supply 
of, nutrients, primarily N.6,7,12 The CFE would be most pronounced when 
resources and environmental conditions do not restrict plant growth.19 
However, the effects of multi-way interactions between climate drivers 
on plants and soils, particularly on forage quality, are poorly understood; 
these interactions can be complex, multiplicative20,21, and species-
specific22. Given these uncertainties and the current growth limitations 
prevailing in sour- and sweetveld11,12, we tentatively predict the following 
potential shifts in plant quality (leaf [N], digestibility, and fibre content) 
under climate change.

Sweetveld mostly occurs in semi-arid regions, where soil moisture, 
not nutrients, limit plant growth.12 Despite lower rainfall and increased 
evaporative demand with warming predicted for semi-arid regions5, 
plant growth could increase because of more efficient water use under 
eCO2 resulting from stomal closure1,22. Elevated temperatures combined 
with the CFE could stimulate grass production, lowering the N content 
and digestibility of herbage.8 However, extreme and prolonged droughts 
and heat waves, both of which will become more frequent with climate 
change5,16, will limit carbon assimilation and nutrient availability by curtailing 
microbial decomposition and nutrient cycling19,20. The consequences of 
climate change in semi-arid regions are still uncertain21 but it is not likely 
that sweetveld will experience a consistent large directional change in 
productivity and forage quality in the future.

In sourveld, predominately in higher lying, cooler, moister climes, nutrient-
poor soils and low temperatures act together to constrain the quality of 
forage during the non-growing season.11,12 Warming, especially in spring 
and autumn, and eCO2 would likely enable a longer period of growth, 
further limiting soil nutrient supply6 and reducing winter forage quality. 
Increased N mineralisation with warming could mitigate this potential 
future decline in forage quality on organic mountain soils23 but not on 
the dystrophic mineral soils of outlier sourveld areas at low elevations11. 

The critical winter forage bottleneck in forage quality in sourveld 
(Figure 3) is likely to be exacerbated in the future because eCO2-driven 
reductions in protein content and digestibility in late summer and autumn 
occur when nutrients in senescing plants are already below critical 
levels for livestock.9,24 Consequently, supplementary feeding costs will 
increase8 while wild ungulates would need to forage differently to match 
their metabolic requirements25. Higher-quality C3 grasses that remain 
greener for longer in autumn could obtain a competitive advantage over 
C4 species in the future26 but only at the higher and far western margins 
of the grassland biome, and perhaps not to any significant extent2.

Research is required across a sweet-mixed-to-sourveld gradient to 
understand patterns and mechanisms of seasonal nutrient flows between 
plant parts – our knowledge of these is still surprisingly rudimentary.10 
Also requiring investigation are species-specific responses to interactions 
between multiple climate change drivers22, the potential effects on plant 
growth and quality of ongoing atmospheric nitrogen deposition20, and 
the extent to which CFE effects on plant quality could be modified by 
downregulation of photosynthesis through acclimation and progressive 
N limitation over time1,7,8. We also recommend resampling sites with 
historical plant data, such as those presented here (Supplementary 
tables 1 and 2), to establish the extent to which CFE-driven shifts in 
forage quality may have already occurred over the last few decades, and 
to regularly, widely, and seasonally monitor shifts in leaf stoichiometry 
(at minimum C:N ratios7,13) to establish the degree and extent of climate-
driven oligotrophication8.

Conclusion
Climate change has the potential to alter, in agronomically important 
ways, the current spatial and seasonal patterns of grass forage quality 
in South African grasslands. We predict the greatest ‘souring’ will occur 
in sourveld, with a minimal response in sweetveld, but there are many 
uncertainties as to the direction and rate of change in forage quality and 
the extent to which such changes will affect livestock production and 
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Data from Zacharias17

Figure 3: Seasonal trends in mean (±s.e.) leaf nitrogen concentration (%) measured in three grassland types in KwaZulu-Natal. Means within sampling 
dates with letters in common were not different (p = 0.05).
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wild ungulates. Further detailed research and regular monitoring are 
required to assess if, where, how, and why forage quality of grasslands 
in South Africa is responding to climate change.
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