The age of fossil StW573 (‘Little Foot’): An alternative interpretation of 26Al/10Be burial data

Following the publication (Granger DE et al., Nature 2015;522:85–88) of an 26Al/10Be burial isochron age of 3.67 ± 0.16 Ma for the sediments encasing hominin fossil StW573 (‘Little Foot’), we consider data on chert samples presented in that publication to explore alternative age interpretations. 10Be and 26Al concentrations determined on individual chert fragments within the sediments were calculated back in time, and data from one of these fragments point to a maximum age of 2.8 Ma for the sediment package and therefore also for the fossil. An alternative hypothesis is explored, which involves re-deposition and mixing of sediment that had previously collected over time in an upper chamber, which has since been eroded. We show that it is possible for such a scenario to yield ultimately an isochron indicating an apparent age much older than the depositional age of the sediments around the fossil. A possible scenario for deposition of StW573 in Member 2 would involve the formation of an opening between the Silberberg Grotto and an upper chamber. Not only could such an opening have acted as a death trap, but it could also have disturbed the sedimentological balance in the cave, allowing unconsolidated sediment to be washed into the Silberberg Grotto. This two-staged burial model would thus allow a younger age for the fossil, consistent with the sedimentology of the deposit. This alternative age is also not in contradiction to available faunal and palaeomagnetic data.

Significance:
- Data on chert samples taken close to StW573 impose a maximum age for the fossil of 2.8 Ma – younger than the 3.67 Ma originally reported. We propose and explore a two-stage burial scenario to resolve the inconsistency and to reopen the discussion on the age of fossil StW573.

Introduction

In a recent contribution, Granger et al. present 10Be and 26Al data on quartz from Member 2 sediments in the Silberberg Grotto in Sterkfontein Cave, South Africa, encasing StW573 (‘Little Foot’), a complete skeleton referred to as *Australopithecus prometheus*. The apparent burial isochron date of 3.67 ± 0.16 Ma is interpreted as the age of StW573.

Almost since the discovery of StW573, its age has been a subject of controversy. Based on the concept of a laterally continuous stratigraphy for the Sterkfontein Formation and a palaeomagnetic fit, an age of about 3.3 Ma was first proposed. A subsequent review of mainly faunal data suggested a much younger age range of between 1.5 Ma and 2.5 Ma for Member 4 at Sterkfontein as well as for the sediments encasing StW573. In a response, the lower age limit for Member 4 was firmly placed at ca 2 Ma (a limit since confirmed by an U-Pb age on its capping flowstone) but the concerns regarding an age older than 3.0 Ma for StW573 were not fully dispelled. Cosmogenic 26Al/10Be burial dating then indicated that quartz in the sediments around the fossil had been underground for 4.17 ± 0.35 Ma (later recalculated to 3.94 ± 0.20 Ma). Because of the possibility that the quartz was reworked from previous higher levels in the cave system, this date can be regarded as a maximum age. In contrast, U-Pb dates of ca 2.2 Ma on CaCO$_3$ speleothem units from below and above StW573 are minimum ages, as the dated units are not stratigraphic flowstones, but fracture fillings. The new burial isochron date fits within these age brackets.

The cave deposits encasing StW573 form the northwest flank of a sediment cone that occupies most of the Silberberg Grotto area and has its apex in the eastern part of the Grotto where the ceiling is highest. The deposits consist mainly of matrix-supported breccia units composed of coarse-grained chert clasts and dolomite blocks, set in a muddy sand matrix that is mostly well calcified. Stratification of the breccia units is illustrated by the presence of a finer-grained, weakly consolidated (possibly decalcified), clay-rich sand layer (Unit B2b in Bruxelles et al.) near the base of the dated sedimentary pile, and variations in size (Unit B3) and frequency (Unit B2b) of chert and dolomite clasts, indicative of several fining upward cycles. Fossil StW573 is embedded within Unit B2b and positioned along the stratigraphic top of this unit. The layering, matrix-supported nature of the breccia deposits and clast size variations suggest that a succession of sheet-like, sand-rich debris flows deposited the composite package over a (geologically speaking) short period of time in a process similar to the deposition of the *A. sediba* skeletons at the Malapa site. The age of the fossil must be similar to the depositional age of the breccia units as it is complete, articulated, and fully incorporated within the breccia.

In order to date StW573, Granger et al. applied the burial isochron method to the host breccia deposits. At the surface, quartz accumulates 10Be and 26Al by spallation reactions caused by neutrons, in turn produced in the atmosphere by cosmic rays. As the quartz is buried (whether in an alluvial or glaciogenic sediment, or a cave) it is shielded from neutrons and 10Be and 26Al production all but ceases (there is a much lower production rate at depth, caused by muons, discussed below). Because 26Al decays faster than 10Be, the 26Al/10Be abundance ratio decreases with time, allowing a burial age to be determined if their pre-burial ratio is known (this ratio can be calculated from models, or directly measured).
The data presented by Granger et al. are of high quality and the interpretation appears flawless. However, the discussion on faunal data is not closed and in view of the great importance of the age of STW573 in the timeline of hominin evolution, we have re-examined the data on which the 3.67 ± 0.16 Ma burial isochron date is based, and we present an alternative interpretation that is consistent with the data, but indicative of a younger age.

Chert samples, in-situ steady-state concentrations and a maximum age

In order for a burial isochron to be useful, two conditions have to be met. First, the samples must have had, at the time of burial, a primary spread in 10Be and 26Al concentrations that show a correlation with each other. Second, all samples must have been buried at the same time and share the same post-burial history. The cosmogenic isotopes then decay in proportion to their abundance, so that the correlation in 26Al versus 10Be space persists along an isochron for which the slope decreases with time.

A primary spread of 10Be and 26Al concentrations with a correlation can result if (1) samples are mixtures of surface derived and previously buried quartz grains, or (2) material with varying residence times at the surface is sampled. In the former case, a linear correlation is expected, whereas the latter situation results in a gentle convex-up curve as a result of 26Al decaying faster than 10Be. In Granger et al., which is the first application of burial isochron dating to cave chronology, both factors contribute to the spread of data. Six quartz separates from mainly surface-derived bulk sediment samples (ST1, ST2, ST3, ST8, ST9 and composite STM2 dark) have relatively high 10Be and 26Al concentrations. Further, three chert fragments (M2CA, M2CB and M2CC) taken from the breccia immediately adjacent to the fossil and a composite (STM2 light, consisting of chert grains from bulk sediment samples ST1 and ST2) have low 10Be and 26Al concentrations. These are considered by Granger et al. to have been derived from higher levels in the cave, at a few metres below the surface. Together, these two sample populations define the slope of the isochron and thus the age. The chert samples yielded data with exquisite precision, and can provide more information than just the definition of an isochron by regression. To examine this aspect it is first necessary to discuss the concentration of cosmogenic nuclides produced at depth.

Cosmogenic nuclide production rates decrease rapidly with depth under the surface, as neutron penetration in soil and rock is limited to ca 2.5 m. However, even after deeper burial, quartz still accumulates cosmogenic nuclides as a consequence of the action of muons and cosmic rays. As seen in Figure 1a, none of the chert samples have in-situ equilibrium 10Be and 26Al concentrations in the past (with λ = 0 denotes the present). Equation 2 can be used to calculate the present-day in-situ abundances of 10Be and 26Al result (grey diamond calculated in Figure 1a). If an erosion rate of 5 m/Ma (the minimum rate determined by Granger et al.) is assumed, present-day in-situ abundances of 0.0120 × 10$^{-21}$ atoms/g 10Be and 0.0577 × 10$^{-21}$ atoms/g 26Al result (grey diamond calculated in Figure 1a). If the erosion rate was 5 m/Ma and a cave chamber had existed above the Silberberg Grotto in the past (as discussed above), calculated values would be intermediate between calc1 and calc2. The higher the erosion rate, the lower the in-situ concentrations. The calculated results are, respectively, within and close to the 2σ (95% confidence) uncertainty limits of point PI derived from the isochron regression, which are underestimated, as discussed above. While there is thus no real contradiction between the calculated values and PI, the difference is nevertheless significant when reconstructing the isotope abundances of chert samples through time, as shown below. For quartz derived from the surface or from higher levels in a cave, convergence towards the in-situ produced 10Be and 26Al concentrations in quartz at any depth is given by the decay law:

$$[\text{nuclide}] = P/\lambda + ([\text{nuclide}]_0 - P/\lambda) \times e^{-\lambda t}$$

Equation 2

where t denotes the present. Equation 2 can be used to calculate 10Be and 26Al concentrations in the past (with t being negative) and future (with t being positive) based on the measured concentrations at present. If erosion is non-zero, the process can be modelled by dividing it into time steps, each with its own depth-specific production rates.
Sample M2CA plots significantly below the isochron, and was not included in the regression of Granger et al.1 as it was considered reworked, i.e. to come from a previous burial location in the cave system. The back-correction for sample M2CA using production rate values for PI abundances (black arrows and symbols in Figure 1b), yields a curve that lies significantly (well outside 2\(\sigma\), i.e. 95% confidence) below the surface production curve even at 5 Ma. This value is considered a likely maximum age for cave systems to have opened in the Cradle of Humankind UNESCO heritage site21,23, as suggested by the absence of older fossils in the area17,24. A derivation – even from a few metres below the surface (which would allow a 26Al/10Be ratio range down to \(\sim 4.5\)) – is impossible for sample M2CA, because the absolute 10Be abundance several million years ago would then be much lower. This mismatch suggests that the centre values for PI as derived from the isochron regression are inaccurate.

If M2CA is back-corrected using the parameters for calc2 (i.e. a surface erosion rate of 5 m/Ma), the problem of its previous burial history is solved. A marginal match with near-surface abundances is achieved upward of 4.6 Ma (grey symbols and line in Figure 1b) and there is a good fit with an initial burial age of ca 5 Ma. The 10Be and 26Al concentrations of the chert samples are seen converging on in-situ points along different paths, indicating that they come from different (higher) levels in the cave system. Solid arrows depict past decay paths towards chert data as analysed, and dash–dot arrows show convergence towards the in-situ points in the future. Black arrows converge on PI and grey arrows on calc2. (b,c,d) 10Be and 26Al concentrations for (b) chert sample M2CA ‘reworked’, (c) composite chert sample M2CB and (d) chert sample STM2-light of Granger et al.1 calculated back in time for paths corresponding to production values for PI (black line and symbols) and calc 2 (grey line and symbols). In the latter, the increase in in-situ production rates (Figure 1a) is taken into account. Error bars, shown for some ages, correspond to 2 or 95% confidence limit. Solid line marked ‘SURFACE & LIMIT’ shows the steady-state abundances at the surface for erosion rates from 5 to 20 m/Ma following the surface production rates calculated by Granger et al.1 The line also defines the upper limit for 26Al/10Be ratios in quartz at or below the surface.

As the three chert samples (M2CA, M2CB and M2CC) were taken close to each other1 (and to StW573), the same in-situ 10Be and 26Al production rates must have applied to all three after the sediments encasing the fossil were deposited. Using the parameters for calc2 to
examine the past of the other chert samples is, therefore, a realistic approach. Sample M2CB yields an upper age limit for the deposit that has implications for the maximum age of StW573. In Figure 1c, the back-corrected 10Be and 26Al concentrations for this sample are shown together with the surface production curve. 26Al/10Be ratios cannot plot above this curve (the ‘forbidden zone’). The back-corrected values for M2CB using calc2 production rates cross this limiting curve at 2.5 Ma, and lie within the forbidden zone outside 2σ (95% confidence) limits for ages over 2.8 Ma (grey symbols in Figure 1c). Values for 3.6 Ma clearly lie in the forbidden zone. Sample M2CC is uninformative: it plots so close to the in-situ values that, in back-correcting, its error limits expand to include all possibilities. Values for the composite chert sample STM2-light cross the surface production curve at 3.2 Ma and move beyond 2σ uncertainty limits at 3.6 Ma (grey symbols in Figure 1d). While these values for STM2-light seem less restrictive, it must be noted that this sample is a composite and probably heterogeneous, so components of it would likely yield lower maximum ages than its bulk. Because StW573 was deposited in the Silberberg Grotto as an articulated skeleton, the individual either died in situ or not long before deposition. This places a maximum age constraint of ca 2.8 Ma on the fossil. The use of 95% confidence limits boosts confidence in this result.

With the recent advances in precision and accuracy of measurements of low concentrations of 10Be and 26Al in quartz as well as a firmer basis for calculating their production rates at depth, the approach taken here holds promise to be useful for reconstructing the geological history of cave systems.

Exploring a two-stage burial scenario

The maximum age for the breccia deposit encasing StW573, as determined above, appears to contradict the burial isochron date of Granger et al., even if the uncertainty of the latter was underestimated through the use of composite samples. This problem may be resolved by proposing that this breccia deposit contains material that was earlier buried in a chamber at a higher level in the cave system, i.e. it is a secondary deposit. An example of such a secondary deposit in Sterkfontein Cave occurs in the Name Chamber, which contains material from Member 5 (mainly) and Member 4, derived from former higher cave levels now exposed in the open excavation. As discussed above, the breccia surrounding StW573 contains chert fragments that are derived from various levels in the cave, going back as far as about 5 Ma, indicating that these sediments were reworked. A present-day example in the Cradle of Humankind of such a two-level cave (with a potential death trap) is Gladysvale.27

The deposits of Member 4 and 5, now exposed in the surface excavation pit, accumulated in a cave chamber between ca 2.5 and 1.4 Ma.17 This chamber was de-roofed as a result of erosion, estimated at a rate of ca 5 m/Ma,1 (rendering the land surface about 14 m higher at 2.8 Ma than today), and roof collapse. Figure 2a shows the position of this chamber (approximately delineated by the extent of the current excavation pit) relative to the Silberberg Grotto. Immediately south of the open excavation a large dolomite block occurs that shows a dip of ca 30° S (Figure 2b), while the strata at Sterkfontein generally dip 25–30° NNW. This block lies above the east end of the Silberberg Grotto (Figure 2a) where the apex of its sediment cone is located.17 It was noted by Robinson28 as ‘collapsed dolomite’ but received no attention after that. This block is most likely part of a cave roof that collapsed into a void, thus documenting that a cave chamber once existed above the present Silberberg Grotto. The evidence does not allow determination of whether this chamber formed part of the large cave holding Members 4, 5 and 6, or was separate from it; but the second possibility cannot be excluded.

However, whilst a two-staged burial scenario is thus not inconsistent with the geological evidence, it must be assessed whether such a scenario could possibly result in a cosmesogenic isotope array resembling an isochron. Before we calculated the 10Be and 26Al concentrations and dating of individual samples back in time, as done for the chert samples. In Figure 3, the black symbols (here with 2σ, i.e. 95% confidence, error ellipses) and solid curves show the back-correction to 2.8 Ma for sediment samples and STM2-light, calculated using Equation 2 and applying present day in-situ abundances corresponding to calc2 of Figure 1a. Sample ST7 of Granger et al., taken at the surface and indicating an erosion rate of 5–6 m/Ma, is shown for comparison.

Although STM2-light is a composite sample, its average 26Al and 10Be concentrations at 2.8 Ma provide the best estimate of what in-situ accumulated cosmogenic nuclide abundances in such a previous higher level cave system could have been; at 2.8 Ma they plot just below the surface production curve (Figure 3). Long-term accumulation of 26Al and 10Be under shielding and with a low erosion rate (as indicated by ST7) must lead to a lower 26Al/10Be ratio in the sample than at the surface, as a result of the more rapid decay of 26Al compared to 10Be. Shielding could have many physical forms, such as overburden, or a position in a cave with a small opening. Notwithstanding the lack of constraints on actual cave configurations, cosmogenic nuclide accumulation under shielding conditions can be estimated. Various scenarios based on surface production data of Granger et al., with material residing in a covered position experiencing a shielding factor that decreases from ca 99% to ca 95% over a period of ca 2 Ma, can yield 26Al and 10Be concentrations similar to those of STM2-light at 2.8 Ma in Figure 3. This in accord with the assessment of Granger et al.1 that STM2-light contains chert debris from a higher level in the cave system. As it occurs thoroughly intermingled with material originally derived from the surface (samples ST1 and ST2), it is reasonable to conclude that the latter could also have resided at this higher level in the cave system.

Before first burial, all surface-derived samples must have had 10Be and 26Al concentrations plotting on the surface production curve. Given the rather large 2σ uncertainties of the back-corrected concentrations at 2.8 Ma for most samples, most of the additional correction times calculated to bring each sample back to the surface production curve also have large uncertainties. This can be illustrated by considering the varying distances from individual error ellipses to the surface production curve. For each surface-derived sample, the minimum correction time needed to intersect the surface production curve is estimated by back-correcting the point on its error ellipse closest to the surface production curve beyond 2.8 Ma, using Equation 2 (grey dot–dash curves and symbols in Figure 3). The production values corresponding to in-situ 10Be and 26Al steady-state concentrations of STM2-light at 2.8 Ma were used for this as a best estimate. The correction times are listed for each sample in Figure 3. In a two-stage burial model, these represent the minimum residence times in the upper chamber before the samples were redeposited into their current position. It can be seen that the minimum residence times vary from 0.7 to 0.5 Ma (in a similar manner the maximum potential times can be calculated, which for all samples are >1 Ma). Note that the heterogeneity of the samples is highlighted by the surface curve intersection for composite sample STM2-dark, which reflects a higher apparent erosion rate (shorter surface residence time) than any of the bulk samples from which it was derived, indicating that the individual samples are mixtures of grain populations with different surface residence times. Interestingly, all apparent minimum pre-burial erosion rates are much lower than the erosion rate measured for today using sample ST7. This difference may reflect either lower true erosion rates16,29 or higher chemical erosion factors29 in the past, with more of the dolomite being removed by dissolution at the surface as a consequence of a more humid climate29.

This analysis demonstrates that an apparent isochron age of 3.67±0.16 Ma can be obtained for a secondary deposit which was laid down at a much younger age (2.8 Ma in our example), but which reworked surface-derived material that had accumulated in an upper chamber over a period as long as 1 Ma (2.8–3.8 Ma) or possibly even longer. At the same time, this observation points to a way of testing the two-staged burial hypothesis. The data array of Granger et al.1 is technically an isochron (meaning that any scatter of the data can be the result of analytical uncertainty) because of the rather large error limits of the data on the surface-derived samples. As shown by the chert data, it should now be possible to calculate greater precision for surface-derived samples as well. If an array with greater precision on the data from surface-derived samples (and no composites) still qualifies as an isochron, then the two-staged burial hypothesis is incorrect. If there is significant scatter, it is correct.
Figure 2: Prominent surface feature at Sterkfontein and its relation to the Silberberg Grotto. (a) Cave map showing the position of surface workings, entry chambers and (b) relative to the Silberberg Grotto. (b) View from the east of a large tilted dolomite block on the south side of the open excavation, adjoining breccia of Member 4.

(a) Source: Adapted from Martini et al. **; (b) Photo: Paul Dirks
Discussion

While we have shown that the isochron of Granger et al. can be compatible with a two-stage burial scenario, the question remains as to how fossil StW573 could be younger than 2.8 million years old and be embedded in sediments that have been underground for (on average) over 3.5 Ma. In assessing possible models that fulfil the constraints imposed by the cosmogenic isotopes, our interpretation must also be consistent with the broader faunal content of sediments in the Silberberg Grotto, and palaeomagnetic results obtained from the flowstones within them (whether intrusive or stratigraphic).

To reconstruct plausible burial scenarios for StW573, it is important to assess the facies associations of the sediments surrounding the fossil, as described by Bruxelles et al. These sediments are composed of surface-derived rubble, sand and mud as well as dolomite and chert fragments of varying sizes that are thoroughly mixed together. The deposits occur as a series of layers that consist of matrix-supported breccia in which angular chert and dolomite blocks are embedded in a muddy, fine- to coarse-grained sandstone matrix with no internal structure. The clasts display a degree of grading, with variable clast sizes and clast densities across layers. The clastic sequence displays no evidence of suspension flow (e.g. cross-bedding, matrix grading, erosional channels) or standing water (e.g. mud drapes), although shelf stones show that the grotto was filled with water at times after its deposition.

The deposits around StW573 have been described as the proximal to medial part of a talus cone. The sedimentary features summarised above are consistent with the deposits being a series of sheet-like debris flows, i.e. mixtures of water, mud, sand and breccia blocks with the internal strength and ability to carry blocks (and bodies) in the matrix, yet producing preferred orientation of clasts. These debris flows would have moved down the slope of a talus cone from an entry point, presumably within the roof to the eastern corner of the Silberberg Grotto. The debris flow deposits display variable composition, reflecting variations in water content, provenance sediment and flow rates, but each layer was probably deposited rapidly, as demonstrated by Unit B2b, which
envelops the fully articulated skeleton of StW573 and preserves complex body configurations of otherwise delicate elements, such as the claspers hand14. The rate of accumulation of the sequence as a whole cannot be determined from the sedimentology, and the isochron, being ‘un-sharp’, cannot constrain this aspect with any degree of confidence.

The fossil assemblage in the Silberberg Grotto preferentially comprises animals with climbing proclivities (i.e. primates and carnivores), and conspicuously lacks evidence of predator damage.15,16 The taphonomic data indicate that many faunal remains are from individuals that entered the Silberberg Grotto on their own and were then unable to escape, i.e. the grotto acted as a death trap. In contrast to Member 4, which contains many hominin remains, the only hominin fossils in Member 2 are the remains of StW573, and thus the occurrence that led to a hominid entering the Silberberg Grotto appears to be rare.17 Fossil StW573 lies embedded in Unit B2b and is thought to have been preserved in the death position,18,19 implying that the individual died while being entombed in the debris flow, or shortly before.

When taken together, evidence suggests that StW573 ventured into an upper cave and wandered, or fell, into the Silberberg Grotto where it died and was buried. The reasons for entering the upper chamber could be many (e.g. to search for water, security, shelter), and it is plausible that the individual (like other animals in the Member 2 deposit) was unaware of the presence of the death trap, because they were unfamiliar with the cave system, or the death trap had recently opened (e.g. because part of the roof of the Silberberg Grotto had opened). Live animals falling into a death trap in such a situation can be accompanied, preceded or followed by unconsolidated sediment material that has been lying in the upper cave for hundreds of thousands of years. Erosion and re-deposition of sediment accumulations in the upper chamber would be even more likely if a passageway between the upper chamber and the Silberberg Grotto below had opened suddenly. Such a transient passageway would have disturbed the depositional environment in the upper chamber, allowing erosion, and could have created the death trap. Thus, the age for StW573 could be much younger than the cosmogenic burial age of the sediments that are now associated with the fossil in the Silberberg Grotto.

The assumption that unconsolidated sediment can be preserved in an upper chamber needs further comment. The sediment record of caves in the Cradle of Humankind site shows a significant bias towards fully cemented deposits due to karstification. In contrast, Member 4, which contains the most faunal remains, is known to have contained volumes of mostly unconsolidated sediment, much of which has been eroded in response to water movement through the cave. Other examples of poorly consolidated sediment accumulations in caves include the upper flowstone-bound units of Gladysvale with ages of up to 0.5 Ma,20 and parts of the Member 2 deposits in the Silberberg Grotto itself (e.g. unit B2a underneath StW57321). Therefore, it should not come as a surprise that unconsolidated sediment may have existed for hundreds of thousands of years in an upper chamber above the Silberberg Grotto, before being washed down.

How does the burial scenario for StW573 fit with other dating constraints? The fauna in the deposits of the Silberberg Grotto is largely a subset of that in Member 4 of Sterkfontein and is not highly diagnostic for age.5,17 The fauna includes two taxa of extinct hunting hyenas, *Chasmaporthetis nitidula* and *Ch. silberbergi*, and in the former, a similarity in primitive dentition to *Ch. australis* from the lower Pliocene fossil deposit of Wonderland is noted — although it is not clear at this stage that the two are conspecific.18,19 However, both taxa also occur in Member 4 of Sterkfontein, as well as in Member 1 of the Swartkans site.26 Member 4 has been reliably dated to between ca 2.6 Ma and 2.0 Ma by U-Pb on flowstones27, and at Swartkans, 34Al/39Be burial ages from Member 1 sediments concur with U-Pb ages of flowstones between ca 2.2 and 1.8 Ma.22,23 On the other hand, the extinct colobine monkey *Cercocebus torquatus*, found in the Silberberg Grotto deposits as well as in Member 4 and Swartkans Member 1,17,24 is noted as not having been reported from reliably dated sites older than 2.5 Ma. In summary, no contradiction arises from these faunal data in the case of an age <2.8 Ma for the deposit encasing StW573.

Conclusion

Cosmogenic 39Be and 26Al data on chert fragments from a cave deposit can impose constraints on the age of that deposit. In the case of the sediments encasing StW573, such data indicate that this deposit was formed no earlier than 2.8 Ma, even if its components had been underground for (varially) longer periods, yielding an isochron age of 3.67±0.16 Ma.1 The younger age is not in conflict with faunal studies1,17,24, palaeomagnetic work26 and U-Pb dating.13 The apparent contradiction can be resolved by invoking a two-stage burial scenario, which is geologically realistic. This scenario can ultimately yield an isochron-like data array even if primary burial ages differ among samples. It requires (1) an upper cave level environment in which sediment accumulated over time, and (2) events in which the accumulated sediment matter, including chert fragments derived from within the cave, dropped to a deeper level in the form of debris flows and was chaotically mingled. Because the fossil was incorporated as an articulated skeleton, it cannot be older than the deposit, and the individual must, therefore, have fallen into the lower cave either on its own, or incorporated in the debris flow. As the two-stage burial scenario can reconcile the indicated 2.8 Ma maximum age for the fossil with the much older isochron date, it deserves serious consideration.

Acknowledgements

We thank Darryl Granger for open discussions, fair comment and constructive criticism on earlier versions of this manuscript. Four anonymous reviewers are thanked for critical comments that led to improving the manuscript. J.D.K. thanks the South African National Research Foundation for incentive funding (rated researchers) and P.H.G.M.D. acknowledges funding received from the Australian Research Council (DP140104282) in support of this research.

Authors’ contributions

J.D.K. contributed the considerations and calculations relating to cosmogenic nuclide systematics. P.H.G.M.D. contributed the sedimentological and taphonomical review and arguments. Both authors wrote their respective parts of the manuscript.

References

