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Imaging spectroscopy (hyperspectral remote
sensing) in southern Africa: an overview

o. Mutangaa*, J.van Aardt’ and L. Kumar’

Recent developments in imaging spectroscopy have seen a
dramatic improvement in the characterisation of terrestrial features
due to the high spectral resolution of the sensors used. For example
vegetation species discrimination, stress detection and foliar
chemistry mapping can now be achieved using these high spectral
resolution sensors, a task that was almost impossible with coarse
resolution satellite sensors. In spite of its capabilities, imaging
spectroscopy is still in its early stages of development and applica-
tion in southern Africa. This overview will attempt to briefly describe
the science and analysis techniques, as well as review trends and
challenges in the South African imaging spectroscopy landscape. It
therefore is not intended as a pure research paper, but merely to
illustrate the potential of and developments in imaging spectros-
copy. This is pertinent to the South African scientific community
where the technology is still in its infancy, especially given that the
first-ever spaceborne South African imaging spectrometer, the
Multi-Sensor Micro-Satellite Imager Satellite (MSMISat) is being
developed for launch in the near future.

Key words: hyperspectral sensors, vegetation analysis, sensor
characteristics, trends, spectral resolution

Introduction

Assessment and monitoring of the environment have become
increasingly reliant on remote-sensing technologies, especially
given the availability of historical data as well as the ability to
provide data covering large spatial extents. These remote-
sensing sensors typically are defined in terms of their specifica-
tions related to resolution." Spectral resolution has recently
received immense attention as research has proven the capability
of sensors with narrow channels (bandwidths of less than 2 nm)
to detect subtle variations in surface features that might other-
wise be masked by broader bands of multi-spectral scanner
systems. Research has shown that subtle variations in features
such as vegetation species, foliar chemistry and stress can be
detected and mapped using high spectral resolution sensors.> In
this regard, a review and illustration of the developments of
high spectral resolution technology is critical for a better under-
standing of its application in terrestrial ecosystems.

Spectral resolution refers to the division of the spectral space in
terms of wavelength range, number and contiguous nature of
sampled wavelengths, and spectral breadth of each wavelength
sample. High spectral resolution data therefore imply both a
large number of wavelength bands and contiguous coverage.’
Figure 1 demonstrates the concept through visualisation of a
hyperspectral curve versus Landsat TM bands.

High spectral resolution data make discernment of a target, for
example vegetation, more effective through spectral response
discrimination than is possible with the broadband multispectral
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sensors.! The limited number of channels and wider bandwidths
of sensors such as Landsat TM and NOAA AVHRR (National
Oceanic and Atmospheric Administration’s Advanced Very
High Resolution Radiometer), imply a loss of information on
vegetation reflectance due to averaging® and design specifica-
tions that do not address measurement of certain portions of
the spectrum. High spectral resolution (spectroscopy) data are
collected using either field spectrometers under laboratory and
field conditions (field spectroscopy) or spectrometers mounted
on aircrafts or satellites (imaging spectroscopy).

Imaging spectroscopy allows for the collection of high spectral
resolution data on a per-pixel basis, typically using whiskbroom
scanning devices. These pixels are then collated to represent an
image for an area of interest, with the spectral dimension
making the image truly unique.® Figure 2 shows a 3D imaging
spectroscopy cube of a HyMap MKI image taken over the
northern plains of the Kruger National Park, South Africa. The
x-y plane forms the spatial domain where each slice represents a
spectral band, made up of several pixels. The z dimension repre-
sents the reflectance characteristics of a feature, at a particular
point (pixel) in different wavelengths.” The strength of imaging
spectroscopy lies in the availability of a large number of narrow
and contiguous spectral bands in the z dimension that can reveal
subtle differences in the reflectance properties of surface features
in each pixel.

This makes it possible to discriminate and map features of
relatively similar characteristics, such as vegetation species.
Subtle features such as the red-edge position (point of maximum
slope between the red and near infrared portions of the electro-
magnetic spectrum) amplitudes and shape of spectral reflec-
tance curves are usually masked by broadband satellite data.
There is therefore a need to obtain contiguous spectral informa-
tion from imaging spectrometers that can resolve these subtle
but important variations in surface features. Sensors such as the
Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)
have prepared the way for a new set of applications to be
explored by providing data in high enough quantity and high
spectral resolution to resolve the natural variability in features
such as minerals, vegetation and atmospheric gases.*

A comprehensive approach that involves the use of imaging
spectroscopy data and its analysis has been taken of late®** rather
than the traditional ‘broader wave range and fewer classes’
approach™ that was utilised in natural resources research for
so long. Several examples serve to illustrate the use of imaging
spectroscopy for two broad approaches, namely (i) for basic
research to study processes and energy-target interactions and
(ii) to move from an ‘oversampled’ spectral space to define the
exact wavelengths and/or spectral characteristics needed to
address specific problems or applications.

The first relates to research and applications that require the
full width of spectral response to derive indicators, e.g. curve
derivatives, slopes and integrals. These types of spectral curve
characteristics have been used by many researchers to describe
natural system properties.® Application-specific research, on the
other hand, requires that only those spectral indicators that
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apply to a specific question be identified from 0.5
the hyperspectral curve. The goal in this case
is to identify, from this oversampled imaging
spectroscopy data source, exactly which 0.4
spectral features are required to address an
application of interest. The research question
thus becomes an issue of moving from a situa-
tion of ‘more data than we need’, to ‘exactly
the data we need’. This effectively allows the
development of operational sensors that are
multi-spectral in design, cheaper and tailor-
made for a specific set of applications.
Research by Curran” and Yoder and Petti-
grew-Crosby," for instance, serve as examples 0.1
where specific features were identified to
describe chlorophyll and other leaf compo-
nents. Such research allows design and de-
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velopment of operational multi-spectral
sensors that incorporate application-specific
wavelengths.

The main objective of this paper is to de-
scribe the science, analysis techniques and
broad South African imaging spectroscopy
landscape. The paper briefly reviews the
imaging spectrometers available, the utility
of imaging spectroscopy in vegetation analy-
sis and its potential in southern Africa, with
reference to the scheduled MSMISat imaging
spectrometer in South Africa.

Selected imaging spectrometers

This section provides an overview of a se-
lection of available high-profile imaging
spectrometers and their characteristics. The
utility of the various sensors in remote sens-
ing vegetation characteristics within the
South African context are discussed. Table 1
highlights the main sensors available and
their potential applications.

Airborne imaging spectrometers include
HyMap and AVIRIS, both of which measure
electromagnetic radiation from 400-2 500 nm.
The AVIRIS, developed by the Jet Propulsion
Laboratory in 1983, arguably is the bench-
mark for airborne imaging spectroscopy.
AVIRIS first started operating in 1987 and has
the distinction of being the firstimaging spec-
trometer to measure the electromagnetic
spectrum from 400-2 500 nm. This range of
the electromagnetic spectrum has seen a
wide application of AVIRIS in surface features characterisation
(Table 1). The HyMap sensor includes two thermal bands
(3-5 um and 8-10 um) in addition to the 400-2 500 nm spectral
range. These types of spectral characteristics have expanded the
utility of HyMap to applications such as pollution monitoring
and soil mapping.”

Spaceborne sensors with a synoptic view, such as Hyperion,
allow coverage, and therefore monitoring, of large areas. How-
ever, the use of Hyperion is limited to large spatial objects due to
its relatively coarse spatial resolution.

The proposed launch of the MSMlIsat, developed by Sunspace
in Stellenbosch, South Africa, has substantial advantages over
the existing sensors since it has both multi-spectral and
hyperspectral sensors that could be used to capture variations in

indicated in Fig. 1.
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Fig. 1. Comparison between a hyperspectral (ASD FieldSpec 3 spectroradiometer; 2 150 bands,
350-2 500 nm) and the multi-spectral (Landsat ETM+) sensor. Landsat ETM+ bands are included as
approximated from the ASD spectral input and do not represent the actual sensor response functions. The
response in both cases represents a leaf-level sample from Eucalyptus grandis.

Fig. 2. An imaging spectroscopy data cube. The vertical slices in the x—y axes represent individual spectral
bands. The z-axis contains spectra of individual pixels, which ultimately results in a spectral profile as

surface features at different scales. The pointing ability of the
platform allows sensors to acquire imagery of the same target
area at different viewing angles which, in turn, allow for the
assessment of bidirectional reflectance distribution (BRDF)
effects.”” The BRDF describes the hemispherical angular distri-
bution of outgoing radiation relative to incoming radiation
(irradiance).” This measurement is important especially in
mountainous areas such as the Drakensberg of South Africa
where variations in the anisotropic reflectance signature of
vegetation are controlled by topographic elements such as slope
and aspect, thus rendering nadir sensing less efficient in captur-
ing vegetation structure. The multi-angular viewing capabilities
of the MSMIsat enable capturing of such off-nadir variations. In
addition, the high temporal resolution of the microsatellites as
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Sensor Spatial resolution Spectral resolution Altitude/platform Application

MSMI76 14.5 m hyperspectral 200 bands (400-2 350 nm) Spaceborne (660 km) Plant production modelling, leaf biomass, fruit pro-
4.6 m multi-spectral 4 bands (visible region) Spaceborne (660 km) duction, fruit quality, species discrimination

HyMap 2-10m 128 bands (440 nm—-2 500 nm) Airborne (2 000-5 000 m) Pollution monitoring, agriculture and forestry pro-

Hyperion 30m 220 bands (356-2 577 nm)

AVIRIS 20 m 224 bands (400-2 500 nm)

Spaceborne (705 km)

Airborne (20 km)

duction systems, soil mapping, invasive species
assessment, vegetation quality'”

Foliar canopy nitrogen, biomass, LAI™* species
mapping, agriculture land classifications, surface
mineralogy”’

Vegetation leaf water,”®” canopy chemistry stud-
ies,” mineral mapping,” coastal/water monitor-
ing, atmospheric modelling, snow/ice studies,
biomass assessment, environmental hazard de-
tection

compared to the current spaceborne sensors provides high
multi-temporal data that can facilitate constant monitoring of
dynamic variables, such as crop growth and climate change
effects on vegetation.

However, the traditional trade-offs of the proposed MSMIsat
in terms of spectral, spatial and temporal resolutions' will apply,
given the 14.9-km swath width at an altitude of 660 km. While a
revisit time of less than four days is foreseen when using
off-nadir data acquisition, this mode of data collection has impli-
cations for data use in terms of BRDF effects and atmospheric
correction. The nominal revisit time of more than 100 days at
nadir, in turn, has implications for applications that require
monitoring capabilities, e.g. crop yield estimation and stress
detection. These types of applications demand higher temporal
resolution, often greater than two days. However, MSMISat
should reasonably be regarded as an experimental platform that
can address most of these issues when used in conjunction with
three similar satellites, as is envisaged with the African Resource
Management constellation. Other opportunities for MSMISat
research and use include food security applications, invasive
species mapping, and mineral mapping, while geometric and
atmospheric corrections, tasking, and sensor calibration are
challenges that face operators and users of MSMISat data.

In summary the sensors described in this section are capable of
imaging atleast 100 bands ranging from 350 nm to 2 500 nm. This
region of the electromagnetic spectrum is critical for vegetation
assessment and monitoring, with certain wavelengths sensitive
tobiochemical absorption while others, such as the near infrared
region, reflect radiation. Data users should be guided by image
resolution (spectral, spatial, temporal) and availability, as well as
the cost involved. Although the spectral resolution is generally
similar in the sensors highlighted above, cost and revisit time
play a crucial role. Airborne sensors, such as HyMap, can be
made available at any time; however, they are quite expensive
compared to satellite-borne sensors such as Hyperion. Never-
theless, the spatial resolution of Hyperion is coarser (30 m) than
that of HyMap (between 1-4 m). If one is therefore assessing
objects with a relatively coarse spatial resolution of about 30 m
(e.g. agricultural land classifications), then Hyperion should
suffice. Landcover studies in mountainous regions would
require multi-angular image sensors, such as the Compact
High Resolution Imaging Spectrometer (CHRIS) Proba or the
proposed MSMI sensor for South Africa that can cater for the
effects of aspect and slope.

It is imperative to note that the success of hyperspectral data
for characterising vegetation biophysical parameters is also

dependent on the analytical techniques followed. These analyti-
cal techniques can be broadly divided into physically-based
models and empirical methods. While most physically-based
radiative transfer models, such as the PROSPECT and SAIL,
have been developed and widely applied in homogenous
vegetation, their application in southern Africa is not common.
This is partly because of difficulties related to model para-
meterisation and also because of the heterogeneous nature of
vegetation. Owing to the heterogeneous nature of vegetation in
South Africa, which is rather site specific, most studies have
followed the empirical approach using statistical tools, such as
multiple regression,” discriminant analysis,” transforms (e.g.
principal component analysis)" and support vector machines.
Research in the physical modelling approach is moving towards
the 3D radiative transfer models® that can cater for the heteroge-
neous nature of the vegetation in southern Africa.

Analysis of imaging spectroscopy data furthermore presents
various challenges, especially in terms of ensuring statistical
validity of an approach, given on the large number of potential
independent variables in a modelling scenario. This is referred
to as ‘reduction of data dimensionality’* and hints at the types of
applications that imaging spectroscopy data and analysis are
suited for. Many applications, e.g. mineral mapping, require a
contiguous set of wavelengths to define a spectral feature that
differentiates between minerals, while other applications, e.g.
foliar chemistry assessment, require a defined selection or
combination of wavelengths. In the first instance, the hyperspectral
data curve can be subset to include only that spectral range of
interest. However, in the second case, robust methods for
sub-selecting only those wavelengths that are pertinent to the
application need to be developed. A review of hyperspectral
vegetation studies in southern Africa follows.

The South African vegetation and imaging spectroscopy
The nature of heterogeneity that exists in southern Africa
poses many challenges to the remote-sensing techniques that
are applied in characterising vegetation variables, e.g. species
identification, biochemical concentration, stress and biomass, in
this region. The South African vegetation distribution closely
correlates with the level of annual precipitation. Where rainfall
is high and frequent all year round (above 400 mm per year),
moist and tropical rain forests are common. Forests are also
widespread across the tropical dry regions where miombo,
mopane and Acacia woodlands are dominant. Along the eastern
coast down to the Cape of Good Hope, woody vegetation is
characterised by coastal forests with different floristic, struc-



196

tural, and physiognomic properties from the woodland types.”
Dry montane forest occurs in small patches at higher elevations
and mangroves are very common along the coast of the tropical
regions.

Plants and/or animals occurring together with some degree of
permanence have been classified into biomes in South Africa.
These biomes broadly correspond to climatic regions, although
other environmental controls are sometimes important. Each
biome has a characteristic set of plant and animal species, as well
as an overall physiognomy. Rutherford and Westfall* mapped
seven biomes in South Africa: Grassland, Savanna, Succulent
Karoo, Nama Karoo, Forest, Fynbos and Desert, while Low and
Rebelo” included a Thicket biome. Acocks® described vegeta-
tion patterns at a scale that is still smaller than the biome and
provided descriptions of 70 veld types in South Africa, Lesotho,
and Swaziland. Cowling et al.” give an updated description of
vegetation in southern Africa.

Although these vegetation types have been described and
mapped, detailed features such as species distribution and finer
physiognomic and biochemical characteristics are still outstand-
ing. Variations in leaf structure and orientation due to the differ-
ent vegetation types,” plant composition and phenology,”
different soil background effects,” as well as the highly variable
effects of standing litter, which often dominates the total fraction
of aboveground biomass,” complicate the remote sensing of
vegetation variables such as biochemicals and species distribution
in such heterogeneous environments. Imaging spectroscopy of
vegetation is a relatively new field of study in southern Africa,
yet research has revealed that the approach is critical in charac-
terising various properties of southern African vegetation.” A
brief overview of the application of imaging spectroscopy for
vegetation analysis is presented with particular reference to
southern Africa.

Foliar chemistry

Laboratory near-infrared spectroscopy methods™* triggered
the remote sensing of foliar chemistry, mainly predicting
protein, amino acids, lignin and cellulose concentrations
contained in dried, ground forage.* This technique has replaced
wet chemistry as the standard analytical procedure for assessing
plant biochemicals in many laboratories.” The premise behind
the detection and mapping of foliar biochemicals is that plants
absorb electromagnetic radiation through the molecular vibra-
tion (rotation, bending and stretching) of bonds (C-H, N-H,
O-H, C-N and C-C) which form the primary constituents of
organic compounds.® Therefore, the amount and composition
of biochemicals in plants determine the amount of energy
reflected per wavelength.”?” Curran" produced a list of absorp-
tion features that are related to particular plant compounds. The
list was modified by Kumar et al.’> to comprise 45 absorption
features that are related to particular biochemical compounds
between 400 nm and 2 500 nm.

Techniques to estimate foliar biochemicals using imaging
spectroscopy have gradually developed over the years.”**
Attempts were made during the late 1980s to estimate forest
biochemical composition using first difference-at-sensor radi-
ance measured by the Airborne Imaging Spectrometer (AIS).”
Strong correlations were found between AIS data and total
canopy lignin and nitrogen content in deciduous and coniferous
forests. Biochemical concentrations have also been estimated
using AVIRIS spectra in mixed species forest canopies using
first derivative reflectance and stepwise linear regression.***
Attempts to estimate foliar chemistry in sparsely vegetated
canopies have been made using wavelengths related to known

South African Journal of Science 105, May/June 2009

Review Articles

biochemical absorption features,” a data reduction technique
that minimises over-fitting and the effect of spectral variability
that is independent of the biochemical concentration.******!

With reference to southern Africa, research carried out in the
Kruger National Park was aimed at predicting the quality of
grass for herbivores as determined by the concentration of
biochemicals (N, B Na, K, Ca, Mg) using field spectroscopy™ and
airborne imaging spectroscopy data.” Owing to the heteroge-
neous nature of the environment in southern Africa, techniques
that minimise the effect of spectral variability that is independ-
ent of the biochemical concentration were developed and
applied as an alternative to the traditional laboratory near infra-
red spectroscopy methods.”

Continuum-removed band depths of selected absorption
features** were correlated via stepwise regression to the
biochemical concentration of sampled grass, as measured in
a laboratory. Results indicated that the continuum-removed
absorption features could explain up to 80% of the variation of
biochemicals in grass.”® In a related study, researchers estab-
lished a relationship between reflectance and nitrogen content
as well as condensed tannin concentration in mopane (Colopho-
spermum mopane) trees.”® The study confirmed that key wave-
lengths located in the shortwave infrared region as well as the
red edge position, are linked to the concentration of foliar
nitrogen and tannins.” The technique was successfully scaled to
canopy level for the estimation of foliar biochemicals using
airborne HyMap imagery with an artificial neural network."**

Studies such as these have proven the potential of imaging
spectroscopy in mapping detailed vegetation characteristics in
the Savanna biomes of southern Africa at both field and airborne
levels. The challenge is to upscale the techniques to spaceborne
imaging spectrometers, such as Hyperion. To date, only a few
studies have tested the potential of Hyperion data in estimating
vegetation parameters.”*

Plant stress and damage

Pests and diseases cause mortality in plantation forests and
natural vegetation. Advances in imaging spectroscopy have
offered opportunities to timely assess and delineate a range of
forest health conditions.” Leaf reflectance and shifts in the red
edge position have been associated with insect infestation
through damage of the waxy cuticle, destruction of cell walls
and reduction in plant moisture.”*" Zhang et al.”* investigated
the utility of imaging spectroscopy for crop disease detection
using tomatoes infected by P. infestans (late blight) as an example.
A minimum noise fraction (MNF) transformation was applied to
AVIRIS imaging spectroscopy data (224 bands; 400-2 500 nm),
which reduced the dimensions to 28 MNF components. The
MNF components were subjected to end-member spectra selec-
tion and spectral angle mapper classification. Results indicated
that the blight-diseased tomatoes could be effectively separated
from the healthy plants.®

A series of spectral indices were computed from airborne CASI
imaging spectroscopy data to detect the severity of plantation
damage caused by Dothistroma needle blight in the New South
Wales region of Australia.”” Results from independent validation
data showed that hyperspectral data could discriminate
between three levels of blight infection with accuracies above
70%. In South Africa, on the other hand, plantation forests are
under threat from the wood-boring pest Sirex noctilio Fabricius
(Hymenoptera: Siricidae; Sirex wood wasp). Sirex noctilio affects
all commercial pine species in South Africa with none of the
species showing a high resistance to attack.” Recent reports have
indicated that mortality might be as high as 30% in some forestry
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compartments in KwaZulu-Natal.* A recent study was aimed at
identifying diagnostic spectral features of Pinus patula needles
under varying degrees of attack by S. noctilio. The authors used
data collected from a field spectrometer in the plantation forests
of KwaZulu-Natal. Results of the Jeffries Matusita distance anal-
ysis indicated that an acceptable separability of 99.2% for all the
classes of different levels of Sirex infestation was reached when
using a four-band combination comprising bands located in the
visible and red edge portions of the electromagnetic spectrum.®

Other applications

Species discrimination, biomass assessment, leaf area index
(LAI) estimation, foliar water content measurement, crop
growth modelling and net primary productivity estimation are
other areas where imaging spectroscopy has been applied effec-
tively.*” Serrano et al.*® used AVIRIS data to estimate water
content in Chaparral vegetation. A substantial review of imag-
ing spectroscopy as applied to water content estimation is
provided by Govender.” In South Africa, Hyperion imagery was
used to estimate LAI of Eucalyptus in the coastal Zululand of
KwaZulu-Natal Province.”* A LI-COR 2000 was used to measure
LAIonseven plots in the study area. Reflectance measurements
and indices from Hyperion Level IR data were regressed against
LAI measurements. Results indicated that all relationships
between LAl and the computed vegetation indices were signifi-
cant (P < 0.05) with relatively high R*values (R* > 0.80). Another
study assessed the utility of hyperspectral remote sensing to
discriminate between site qualities in E. grandis plantation in
KwaZulu-Natal, South Africa. The relationships between physi-
ology-based hyperspectral indicators and site quality, as defined
by total available water (TAW), were assessed for E. grandis using
one-way analysis of variance (ANOVA). These results show that
differences in site quality, based on total available water, could be
detected using imaging spectroscopy of canopy water or chloro-
phyll content.”

Conclusions

This review paper has highlighted the development of imag-
ing spectroscopy (hyperspectral) applications in southern
Africa, with particular reference to vegetation analysis and
monitoring. A number of airborne imaging spectrometers, with
largely similar characteristics are now operational. The paper
has shown that there is a wide range of techniques, ranging from
empirical to physically-based modelling approaches that have
proven useful for analysing imaging spectroscopy data for
vegetation analysis and monitoring. The development of a
South African spaceborne imaging spectrometer presents new
opportunities for detailed environmental assessment and
monitoring. However, since imaging spectroscopy research is
stillin its infancy in South Africa, these new developments come
with their own challenges in terms of human, financial and
physical resources. Preprocessing and analysis of imaging
spectroscopy data from the proposed MSMISat satellite, in
particular, can only be achieved through collaboration between
research institutions and application specialists before devel-
oped applications can be viewed as truly operational in the
context of a constellation of satellites.
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