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Computer construction of species richness maps:
Testing a new type of multifractal algorithm

Edith Perrier’® and Henri Laurie”

We show how a new theoretical multifractal model provides means
to generate virtual maps of highly variable spatial distributions of
species richness. It should allow for various computer experiments
in landscape ecology and the study of biodiversity. In this paper, the
explicit distribution of species-representative individuals over a
large range of scale leads to an original algorithm for the estimation
of the Renyi dimensions of a multifractal measure. The method is
successfully tested for simulated (S, A) data sets, where the variable
S is simply the number of species found in a given domain of area A.
This easy tool will help to characterize the spatial variability of
multiscale density distributions in many fields, requiring only
randomly sampled data at different locations and scales.

Introduction

Multifractal theory has been used in many fields to character-
ize heterogeneous distributions of measures in space and across
scales (climatology,' oceanography,® geology and hydrology,’
and the social sciences®). From the theoretical point of view,” a
multifractal measure® can be seen as an abstract concept, gener-
alizing mathematical theories of measure to non-Euclidean
cases involving non-integer dimensions, in a manner similar to
the development of fractals. Multifractals are not fractals,
though the concepts are related. Multifractal studies are
concerned with scaling measures whose numerical values vary
according to location and scale within a given domain. The
sub-domain where the measure is defined and non-zero is called
the ‘support’ of the measure. An example may help to clarify the
term: the range of a species is the support of its density—that is,
all points where the density is not zero. Fractal approaches deal
with scaling properties of geometrical objects. As such, the
support of a measure may be fractal or Euclidean. For example, a
square embedded in two-dimensional space is a Euclidean
object whereas multiscale lacunar objects such as the Sierpinski
gasket are non-Euclidean and are classical examples of non-
Euclidean fractal geometrical sets.” A fractal object may be
characterized by its fractal dimension D, whereas a multifrac-
tal object instead needs to be characterized by a function such
as its spectrum of Renyi dimensions D(g). These dimensions
describe for each moment of order q the scaling law of the
measure densities. The Renyi dimension associated with the
moment of order 0,i.e. D(0), is equal to the dimension of the sup-
port. If the support is Euclidean, then D(0) = 4, the Euclidean
dimension, whereas if the support is fractal of dimension D, then
D@0)=D <d.

In many examples, multifractal theory has usefully character-
ized heterogeneous, multiscale spatial distributions whose
variations increase in a more or less self-similar way as the
resolution increases. We know that many variables are un-
equally distributed in space (rainfall,' river network density,’
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vegetation’, human population,* etc.), and we can surmise that
zoomingin will reveal increasing variability. Using multifractals,
such a phenomenon can be described by a multiplicative
cascade process which reproduces at each scale a self-similar
pattern of the partition into poorer and richer regions. The issue
of strict self-similarity of the variability increasing throughout
scale is an open research question. As with fractals, the
self-similar case may merely be a mathematical convenience.
Deviations from self-similarity should be handled by extending
the reference model in more complicated multiscale analyses or
in exploratory simulations.”

For end-users, a multifractal approach can be seen as a new,
constructive tool in the field of spatial statistics. It adds to the
field in that the usual spatial statistics characterize data but do
not furnish methods for actually realizing the spatial patterns
they model. For example, it is easy to compute the variogram of
a spatial variable but it is more difficult to define a theoretical
variable reproducing the spatial structure of the observed vari-
able. Multifractal models may be an idealized and simplified
approach of multiscale complex spatial systems compared with
more sophisticated statistical theories, but we will show in this
paper that they may provide means to simulate virtual worlds
having the same statistical properties as observed ones as well as
promising qualitative properties.

Our illustrations will be based on the MFp1p2 model, which
has been conceived to describe the spatial distribution of
species.” It is similar to a model in physics for some heteroge-
neous distribution of mass." The MFp1p2 model provides a new
type of application of multifractals that clearly illustrates
multifractal theory and that can be easily interpreted in terms of
a self-similar multiplicative cascade of species distribution in
poorer and richer parts at successive scales. It provides also the
means to build actual computer models which mimic the real
world.

In the first section we show how we can build computer mod-
els of species richness using an object-orientated and individ-
ual-based modelling approach to build virtual maps of the
presence/absence of species at different scales. In the second
section we will use the virtual maps to test a new algorithm
adapted to a common case: data resulting from random
sampling strategies on irregular domains.

Generating multifractal virtual species maps

The theoretical model

The MFp1p2 model conceived by Laurie and Perrier is a novel
application of multifractal theory devoted to the quantification
of the spatial variability of species richness. It is based on iterated
bisections of the whole studied domain €2 (with a given area A,
and containing a number S, of species) into two subdomains,
where p, represents a proportion of species present in the first
subdomain, and p, a proportion of species present in the second
one (see Fig. 1). Analytical calculations have shown that this
modelis a perfect multifractal when the two parameters p, and p,
(0 < p, = p, <1) are constant throughout successive bisections
over an infinite range of scales. It has been shown that this model
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Fig. 1. (a) Graphical illustration of the orientated-object code developed to generate cells and species. (b) Virtual maps generated according to the MFp1p2 model.

explains the classical power-law SAR widely used by ecologists
to characterize different types of species, because it reduces to
Harte’s model" when p, = p, (i.e. when no spatial variability is
addressed), and that it can explain the observed spatial variabil-
ity at all scales around the power-law trend as soon as p, # p,.

We show in the following section that this conceptual model
can be implemented in computer simulations, which provides
thereby a self-contained description of the MFp1p2 model, and
more generally a straightforward illustration of multifractal the-
ory through an illustrative example.

Individual-based modelling

To generate a computer realization of the MFp1p2 model,” we
first take advantage of an object-orientated programming style®
to deal with a hierarchical graph of embedded spatial sub-
domains.

We define specific types of computer objects called Classes (see
boxes on this page for a simplified description of two examples of
classes called Cells and Species). Each class instance is defined by
its own encapsulated attributes and has access to the methods of
its class. One can store further categories of information through
the addition of new attributes. Each cell can store many attrib-
utes, such as links to neighbours, parent or children, which will
be useful in further studies involving the simulation of dynami-
cal processes occurring on the cell network, but in the present

Class Cell
Attributes:

Space: the geographical definition. In the present version, an instance of the
class Space is just a list of vertices: four vertices are used to define a
rectangular domain; polygonal or more complex shapes could be used as
well.

Level: the level k where the cell was created in the iterative construction.
nbSpecies: the number of species present in the cell.
Methods:

Area(): Calculation of the cell area, which can be trivial for simple types of
Space.

Centre(): Another geometrical calculation depending on the type of Space.
Divide(): Creation of two daughter cells.

paper we restrict ourselves to the representation of static proper-
ties, as described later on.

The creation of a realization of a MFp1p2 model proceeds as
follows: At the first level k = 0 in a simulation, a (root) cell is

Class Species

Attributes:

Id: an identifying number within the whole set of considered species
Display: a symbol or icon to plot a given species

Methods:

Occurrence(k): Calculation of the proportion of cells occupied by a given
instance of species at level k.
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created to represent the total studied domain (2, with a Space of
area A, Q1.Level = 0, Q.nbSpecies = S,,,.. Then, in a recursive
way, a cell of level k uses its method Divide() to give birth to two
daughter cells with Level = k + 1, and so on until the level k,,, is
reached (the maximum possible value for k,, depends on
computer memory). Each daughter cell Space is calculated
geometrically from the mother’s Space characteristics. The
method Divide() also calculates the number of species of each
child using the two model global parameters p, and p,, with
nbSpecies = p, X Parent.nbSpecies for the richer child and
nbSpecies = p, X Parent.nbSpecies for the poorer one [see Fig. 1(a)].
Let us note that easy extensions of the model could be intro-
duced in the simulations by allowing the parameters p, and p, to
vary as a function of level k, but at this stage, we will stay as close
as possible to the pure multifractal approach, considering
self-similarity over a finite but large range of scales. After k.
levels of bisection, the value nbSpecies of the multifractal measure
hasbeen defined in 2%« Cell instances. We will see later on how it
can be calculated in any other subset of the spatial support (2.

We aim also at building computer models of the distribution of
species richness as close as possible to real data. In this context,
first we have to deal with integer numbers of species rather than
with possible non-integer proportions of the total number of
species. Second, it would be very convenient to be able to track
the distribution of each species, to compare individual species
distribution and global richness as do naturalists. Thatis why we
introduce a second type of computer objects, called Species.

Then the creation of an ‘individual-based’ version of the
MFp1p2 model proceeds as follows. Taking advantage of the
ease with which class attributes and methods can be extended,
we add a new attribute to the Cell class, called ListIds, to repre-
sent an actual list of individual species Ids which are explicitly
allocated by Cell.Divide() in the computer construction. As
described in Fig. 1(a), knowing ListIds of the mother cell (all the
ids for the root domain (2), the species are divided into three
subsets in the proportions 1 - p,, 1 - p,, p, + p, — 1 (suitably
rounded to integers), then distributed to reach the required
proportions p, and p, in the daughter cells, which update their
own Listlds with the species they receive.

Such an ‘individual-based’ recursive allocation of species-
representative ids from mother cells to daughter cells at each
iteration k results in the generation of a set of spatial domains
(the cells) of area A, containing an integer S, number of species.
If S, = 1, proportions can be replaced by probabilities for a single
species to be present in one of the two daughter cells, but the
simulations presented in this paper avoided this extension of the
model by imposing a limited number of iterations k,,, , depend-
ing on the total number of species S, present in the initial
domain .

We focus on the creation of richness virtual maps to be
compared with real maps. A virtual map of the domain 2 is first
of all a partition of {2 into elementary cells. But a map can also
be defined at each level k as the set of all cells at that level:
Map(Q, k) = {Cell, i €[1,n = 2] | Cell.Level = k}. Some examples
are shown in Fig. 1(b). Asregards species richness, and ata given
resolution or scale defined by the value of k, we can store in the
map two types of information. In Map(Q2, richness) = {Cell,.Space,
Cell.nbSpecies, i € [1, n]}, we store only the number of species. In
Map($, species) = {Cell..Space,Cell..Listlds, i € [1, n]}, we store the
list of species ids present in each cell, as well as the other informa-
tion.

These types of format are similar to formats which can be used
in Geographical Information Systems to store real maps. Figure 2
depicts examples of maps obtained using the same parameters

South African Journal of Science 104, May/June 2008

211

Fig. 2. Different types of plots for the same computer realization of a MFp1p2
model: p, =1, p,=0.7, k=14, S, = 500. (a) The richness map where the cells are
coloured according to the number of species they hold (1 = S < S, ), using the
darkest grey for the highest richness values. (b) A map plotting the distribution of
two arbitrary individual species using two different colours. (c) Mapping the pres-
ence of all the individual species using only three colours according to three
classes of occurrence value: in each cell, for any one of the 500 species, if the
species is present in the cell, a star is plotted in the cell. The star is coloured green if
the species’ occurrence is high (present in more than 10% of the cells), red for a
‘rare’ species (present in less than 5% of the cells), and yellow for species of inter-
mediate occurrence.
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on a square domain €2 for various properties and different types
of display. In Fig. 2(a) we plot the richness map with different
intensities of the grey levels according to the number of species
in each cell. This map is almost equivalent to the one which
would have been obtained using only theoretical proportions
and without explicit allocation of individual species. Equiva-
lence will be tested in the following section using the numerical
estimation of multifractal dimensions. In Fig. 2(b) the presence/
absence of two arbitrary individual species is plotted to display
the actual information stored in the simulator information.
In Fig. 2(c) the presence/absence of all the individual species is
plotted altogether. Because it is impossible in most cases to read
a map using as many symbols as species, we used the method
Occurrence(k) defined for each species to display only three types
of symbols, depending on three classes of rarity/abundance over
the whole simulated domain. Incidentally, this opens further
possibilities of explorations by simulation to match the patterns
observed in real maps.

Testing a new algorithm to calculate multifractal
Renyi dimensions

The virtual maps which have been constructed have the same
format as real maps. In this section, we report how we used them
to generate simulated data and to investigate how multifractal
dimensions can be estimated from real maps.

Theoretical Renyi dimensions

A classical way to characterize a multifractal measure consists
in calculating its Reyni dimensions using partitions of the domain
in N(r) boxes of linear size . One needs the density p, of the ith

M;(r)

> M)
the ‘mass’ in the ith box.” In the case of species richness, the M,
are given by the count of species in the area represented by the
ith box. The dimensions D(g) are then defined by the following
equation.

box with length 7, defined by p,(r)= , where N, is

1 log M0 pi(r)

li if 1
rli]%q—l log itg#
D(q) = ey
N(r) log 1
i S p oz ()
r—0 logr

It can be shown for MFp1p2 this reduces to

2 {bg(b" +1) —qlog(b+1)
D(qg) = log 2 1—gq

2

} ifqg#1
2
b log(b) ifg=1
b + 1 0g mqg=1
so in our case D(g) depends on the single parameter b = P

Numerical estimations from the construction process

A difficulty arises in the calculation of D(g) from real data, as it
is impossible to handle an infinite range of scales and hence
mathematical limits cannot be taken. The classical method®

consists in plotting (logZZt) pl(r), log(r)) data for a finite set of

available r values (if g # 1), or 21(:) p;(nlogp.(r),log(r) (if g=1),
and estimating D(q) from the slope of a regression line, for
example by least squares. For example, the multifractality of
black and white images can be tested in this way.” There, the
measure M is the black part of the object and its mass distribution
is analysed at different resolutions. The image is partitioned into
boxes of size r over the available range of scales between the
dimension of the image and the size of the elementary pixel at
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the lowest resolution. In the case of the application of the
MFplp2 model to real data, the multifractal measure is the
species richness density, and the data are integer counts of the
number of species S(r) present in a box of size r.

We first checked the reliability of the virtual maps, as regards
the implementation of a multifractal object, by estimating their
D(q) dimensions as follows. The map was partitioned in boxes
selected to cover the whole map as in the theoretical approach,
thatis, using the N () = 2 rectangles of area 2‘A , and linear size

max

r=2"%2A!”2 defined at each iteration k of the hierarchical

construction [Fig. 3(al)]. We know by construction the number
of species S(r) in each rectangular cell. The calculation of local

S
S

=11t

plot of logz;\i(;) p!(r)versuslog(r) is highly linear [see Figs 3(a3)
and 3(a4)] and, for any g #1, the estimation ﬁ(q) of D(g) from the

slope of the regression line divided by (7 - 1) is very close to the
theoretical value given by Equation (2), namely, D(0) = D(0) =2
[Fig. 3(a4)]. Similar results hold for the special case of D(1)
[Fig. 3(a3)]

The whole spectrum of D(q) values is plotted on Fig. 4 (second
column) at different resolution levels. Due to the self-similarity
of the construction process, only a few levels are required to get
numerical estimates D(q) very close to the expected theoretical
ones D(g) and the results are similar for low- or high-resolution
data [Figs 4(a2), 4(b2) and 4(c2)].

We can conclude that the statistical estimation D(q) D(gq)over
a finite range of scales is valid and that our richness virtual maps
are actual realizations of the multifractal model based on succes-
sive bisections.

densities is straightforward: p,(r) = for each g #1, the

Approximate Renyi dimensions for partial and
random data sets

In the real world, we do not have bisections given from a
construction process. Instead, we have geographical maps on
irregular domains. And richness data are often given on
arbitrary sub-domains as a list of (S, A) values, where S is the
number of species counted on a sub-domain of area A. Such
richness data lead to the construction of Species Area Relation-
ships (SARs), which play an important role in theoretical and
applied ecology." The issue we address here is: how to estimate
the D(g) dimensions from real data sets, in order to assess quanti-
tatively the multifractality of species richness distribution. It has
been shown that the MFplp2 model generalizes the classical
power-law trend used to characterize most SARs and introduces
amultifractal tool for the characterization of the variability in the
SAR around the trend. The next step is to provide a practical tool
to estimate approximate D(q) values from a given set of (S, A)
data.

We propose here an original algorithm, imagined as an exten-
sion of the classical one to the cases where one cannot get
exhaustive space partitions over a large range of scale but only
large surveys of (S, A) values measured at different scales and
locations. Let us consider that A takes integer values between 1
and A, area units, where the measured values have been
rounded to integers if necessary to get a finite number of A
classes with several replicates in each class. Each A value is asso-
ciated with a given scale of investigation r = /A, where one has
an arbitrary number of data collected at arbitrary positions so
that overlaps and/or gaps may well occur. The algorithm is based
on the search for an equivalent pseudopartition of the domain
and proceeds as described in the box below.

Tests of the algorithm were carried out by random sampling in
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Fig. 3. Testing the MF(€) algorithm using regular bisections (left-hand column (a) or random sampling (right-hand column (b). (a1) Sampling from the original bisections on
avirtual map built using p, = 0.8, p, = 0.6 and plotted at resolution k= 6. (a2) Simulated (S, A) values obtained at resolution k=12, thatis with k+ 1 = 13 possible values for A.
(a3) Estimating D(1) from simulated data shown in (a2) using a classical linear regression. (a4) Estimating D(0) on the same data using a classical linear regression.
(b1) Random sampling: spatial domains have an arbitrary location and arbitrary area A according to the number of cells whose centre is included in the selected region.

(b2) Simulated (S, A) values for random sampling on the same virtual map at resolution k= 12; the areas A can take any value between 1 and A

.(b3) Calculating approxi-

'max

mated D(0) from data shown in (b2) and using the new algorithm without correction €. (b4) Calculating approximated D(0) using the new algorithm with correction €.

the virtual maps, generating (S, A) simulated data as follows:
Geometrical Shapes GS are thrown on the virtual map [see
Fig. 3(b1)] to select clusters CL of neighbouring Cells:

CLgs ={uU_ Cell,(Cell,.Centre € GS}, then the geometrical shape
used in the cluster selection is forgotten. The simulated data
(S, A) are respectively equal to the number S of species in the

sampled clusters and the area A of these clusters. The size A of a
cluster CL is simply equal to the sum of the areas of the cells
contained in the cluster. The number of species S in a cluster CL
is not equal to the sum of the number of species of its cells. That
is why the individual-based simulations are useful here, to
eliminate redundancies. The list of species present in the cluster
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Fig. 4. Testing the MF(€) algorithm on virtual maps built using p, = 0.84, p, = 0.60 and increased resolution from k=6 (al) to k=8 (b1) and k=10 (c1) (first column), using
regular bisections (second column) or random sampling (third column). For regular bisections, the estimated 5(q) values (coloured blue) agree almost exactly with the
theoretical ones (coloured red), which are calculated using Equation 2 (b= 1.4). For random sampling, the dispersion of approximated D(q ) decreases when the resolution
(k) increases and the numerical estimates (coloured blue) converge towards the theoretical values (coloured red).

is built by merging the list of species present in each cell then
pruning the lists to eliminate redundancies: CL.Listlds = U]_,
Cell, Listlds = {id | Ji = j, id € Cell,Listlds N Cell,.ListIds}.

The plots of the simulated (S, A) data exhibit a dispersion of the
values which increases when A decreases in a way which is
qualitatively very similar to those of observed data (not shown).
The estimation of D(g) using the new algorithm includes all the
scales where enough data are available (i.e. many dots are
involved in the linear regression exhibited on Fig. 3(b)(3)).

Numerical experiments showed that adding a residual correc-
tion involving €(r) to complete the pseudopartition of the
multifractal object was important to get reliable estimates. This
type of correction should be applied also for the determination
of the fractal dimension of irregular objects. When g = 0, the
method of estimation of D(0) is identical to the box-counting
method used to estimate a fractal dimension D and D(0) = D. In
our example, the support of the richness measure is the entire
planar © domain and one should have D(0) = D = 2 for this
purely Euclidean support. We found that when the correction
€(r) is omitted, the numerical estimates deviate significantly

from the expected 2 value [Fig. 3(b3)] and that the results become
correct when the correction is introduced [Fig. 3(b4)]. Tests were
then carried out for a large range of g values on many virtual
maps. An example is shown in Fig. 4(a3), where several D(q)
values are plotted for a same given map. The variability of the
numerical estimates is due to the random selection of (S, A)
values, which occurs at the stage of random sampling in the
virtual structure as well as at the stage of random selection of the
right amount of data in the D(q) algorithm. The dispersion of
D(gq) around the theoretical values of D(g) is smaller for larger
values of k,, [Figs 4(b3) and 4(c3)].

We conclude that the estimation of the approximate Renyi
dimensions D(q) using the above algorithm can be used on real
data sets providing with sufficiently representative (S, A) values,
and that the quality of the numerical estimates will be improved
if the data are selected over a rather large range of scale.

Conclusion
We have developed an extension of classical multifractal
algorithms to the case of random sampling of the number of
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ME(€): an algorithm to estimate approximated D (q) on irregular domains
Open the data file // a list of (S,A) values where S is the measure obtained on a

domain of area

For each A from 1 to A

Calculate n(A)// the number of available (S, A) data for a given A in the file
Calculate r(A)// the scale of investigation
Calculate N(r) = |4ms= | and e(r) = 4ms= — N(r)

// where N(r) is the integer part of number of boxes required to cover the

whole domain and SUM(r)is the residual decimal fraction when A, is
not a multiple of A

If n(A) < N(r) drop the scale 1, go to the following A // not enough data

Else

Select at random N(r)values among the 7(A) ones,

th%t is, {S;(r) }i=1,..n () Plus one supplementary value denoted S,,,(7) if €(r)
= 0.

Si(r)

Calculate p;(r) = — S
aleulate Pi(r) = SN G e )rama)

_ Srand(r)
SN 8i(r)+e(r) Srana(r)

For each g calculate B(r, q)
If ¢ =1B(r,q) =log 3> p}(r) + e(r)prana(r)

And pra,nd(r) = fe(r) >0

If g #1B(r,1) = 5 pi(r) 10 pi(r) + €(r)prana(r) 108 Dranalr)
Then proceed as classically to estimate D (q) or each order g from the slope
x of the linear regression of B(r, q) versus log(r):

If g=1,D(q) =21Ifqg#1,D(q)

=@

species S found in arbitrary spatial domains of area A. The new
algorithm uses arbitrary shapes to pave with pseudopartitions
the domain studied instead of classical regular grids. This
method can be useful in many fields of application, especially
when the support of the measure is irregularly shaped and
when exhaustive data are not available on the whole sampled
domain at every scale. One objective of this paper was first to
show how the construction of virtual maps enables useful
numerical analysis as regards the characterization of multifractal
spatial structures. It is impossible to tune a new algorithm on real
data, not only because of noise or poor data quality, but because
of intrinsic reasons: we do not know a priori which theoretical
values are expected and how to check the algorithm. The tests
carried out on simulated data show that despite the simplicity of
the construction process of the virtual maps, scaling properties
appear to hold in any irregular subpart of the domain, even
when arbitrary sampling blurs the hard regularity of the visual
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pattern. As regards the applications to species richness data, we
arein the process of applying the new algorithm to real data, and
the results are promising, but the discussion of their ecological
significance lies beyond the scope of the present methodological
paper.

In this article, we described how a multifractal model can
capture key parameters of real multiscale heterogeneous distri-
butions via the construction of synthetic maps, even if the
construction of these maps by iterative bisections does not
mimic the genesis of the real world. We showed that such virtual
maps can be easily generated on computer by means of a multi-
plicative cascade in repeated bisections. Currently, we are condi-
tioning virtual maps on real data, that is, we generate virtual
richness maps using values of p, and p, estimated from real data
sets, via the estimated Renyi dimensions D(g).

More generally and from a methodological point of view,
multifractal virtual maps can be useful in many fields to enable
the modelling of heterogeneous spatial structures where similar
patterns occur over a large range of scales. Whatever the type of
application, the conceptual framework and associated simula-
tions will be useful for research where paramaterizable models
of spatial structures are required to investigate the implications
of spatial variability for ecosystem dynamics.
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