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Modelling the dynamics of
animal groups in motion

Christophe Lett™ and Vincent Mirabet”

Animal groups in motion, examples being fish schools, bird flocks,
insect swarms and mammal herds, can exhibit spectacular collective
behaviour. Attempts at formalizing the basic individual behaviour
that accounts for the complex dynamics of an animal group began
over 50 years ago. Numerous models of these dynamics have since
been published. We review this information, starting with an overview
of various approaches that have arisen from mathematical, physical,
and computer-modelling methods. Our focus is on individual-based
models of animal groups. Individuals are assumed to exert three
types of local interactions with their neighbours in these models,
namely attraction, alignment, and repulsion. We review these
models according to their main objectives: to compare modelled
results with observational data; to analyse the influence of model
parameters on simulated group properties; and to investigate
group response to any change in environment, or to divergent
behaviour of some of the group members.

Introduction

Animal groups, such as fish schools, bird flocks, insect swarms
and mammal herds, can exhibit spectacular collective behaviour."
Being part of a group induces multiple changes in individual
links with the environment and to siblings.? Some of these changes
are associated with the ‘many eyes-many mouths’ trade-off,*®
namely collective benefits (many eyes, and hence a reduced risk
of predation) and collective deficits (many mouths, creating
increased competition for food). Complex group behaviour may
emerge from simple local interactions between individuals. A
fish school is not regarded as having a social leader, and individ-
uals do not perceive the school as an entity of which they are a
part, yet fish schools display complex coordinated collective
behaviour.® Attempts to formalize basic individual behaviour
leading to complex group dynamics began over 50 years ago.”
Numerous models of the dynamics of animal groups have since
been reported in the literature.

Models of animal groups in motion have been published in
ecological®® and fish dynamic modelling reviews," and in
reviews" or theoretical notes'" ™ on collective animal behaviour.
Several examples of these models have also been reported in
books on individual-based models" or self-organization."” To
our knowledge, however, there is no specific review on model-
ling of the dynamics of animal groups. This paper addresses this
shortcoming. We present an overview of various modelling
approaches that arise from mathematical, physical, and compu-
tational methods. We then focus on individual-based models of
animal groups, and report on these studies according to their
main objectives: to compare model results with observational
data; to analyse the effects of model parameters on the simulated
group properties; to investigate group response to a change inits
environment, or to divergent behaviour of some of its members.
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Different modelling approaches

Mathematics
A simple mathematical model used to describe aggregative

movements is the ‘aggregation—diffusion equation’:

P 9>
=T pw), (1)
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in which u is the density of individuals at time t and space location
x along a line. Different shapes of the ¢(u) function correspond
to different types of interactions between individuals: a linear
function ¢(u) = Du corresponds to the absence of interaction,
resulting in diffusion dynamics, the continuous-time equivalent
of a discrete-time random walk; a convex (conversely concave)
function results in over-dispersion (conversely under-dispersion),
and corresponds to a repulsive (conversely aggregative) interac-
tion. But these dynamics are all ‘diffusion-like’, in the sense that
a steady state of the system has a uniform density u = u, along
the line, where u, is specified by the boundary conditions
u(0,t) = u(L,t) = uy, L being the length of the line. But when ¢ (1)
functions are such that the equation ¢(u) = ¢(uo) has three roots
(Fig. 1, left panel), then the aggregation—diffusion equation gives
rise to ‘clumping-like” dynamics, where the steady state of the
system consists of a succession of both low density and high
density zones along the line (Fig. 1, right panel).

Other terms can be added to the aggregation—diffusion equation,
in particular, advection and ‘reaction’ terms, to take into account
any environmental (such as sea currents) and demographic
(such as growth and mortality) factors, respectively.”" For
example, see the advection—diffusion-reaction models that have
been developed as representing the dynamics of tuna.**

Physics

Vicsek et al.” developed a model of ‘self-propelled particles’ in
which “at each time-step a given particle driven with a constant
absolute velocity assumes the average direction of motion of the
particles in its neighbourhood of radius 7, with some random
perturbation’. The position of each particle i is given by

X+ AE) = x.(t)+v, (DAL . )

Its velocity is given a constant value and a direction determined
by the angle

0,(t+At)=arg(u(t)) +&. 3)

In Equation (3), <1/(l‘)>r denotes the average direction of the
velocities of particles located in radius r around particle 7, and & is
a random number chosen from a uniform distribution.

Transitions from disordered motion in this model to discrete
groups moving coherently in random directions (Fig. 2, left
panel), and thereafter, completely ordered motion (Fig. 2, right
panel), occur as particle density increases.” A model similar to
this one has been applied to examine the transition from disorder
to order occurring in populations of desert locust nymphs at
critical densities.* Evidence of a similar transition has also been
reported for schools of young fish.”

Originally developed in two dimensions, the model® has been
extended to three dimensions,” and a synthesis of the results
obtained from experiments conducted in one to three dimen-
sions has also been published.” The density of particles in these
models has been kept constant by using closed simulation do-
mains, and collective motion does not occur in an open domain
because the systems are in a disordered state at low particle den-
sity. This argument hasled to the addition of an attraction-repul-
sion ‘force’ to the alignment component in Equation (3).%*
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Fig. 1. A ¢(u) function like the one shown in the left panel results in a clumping-like steady state like the one shown in the right panel, in the aggregation-diffusion equation
[Equation (1)]. Reproduced from Turchin'® with permission from Blackwell Publishing.
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Fig. 2. Different groups of particles moving coherently in random directions (left panel) and completely ordered motion (right panel). Reproduced from Vicsek et al®

permission from the American Physical Society.

Computer science

Reynolds® is often cited as the first exponent of a computer
model applied to the simulation of the dynamics of animal
groups. His model is individual-based, where he considers a
collection of individuals, whose behaviour is explicitly executed
at the individual level. Focusing on bird flock simulation,
Reynolds introduced the concept of a bird-oid, or ‘boid’, as a
virtual equivalent to a real bird. The three fundamental individ-
ual behaviours used in Reynolds' model, namely cohesion,
alignment and separation,” are related closely to those used
afterwards in most individual-based models (IBMs) of animal
groups: attraction, alignment, and repulsion. These behaviours
reflect the different types of interaction that an individual j
may exert on an individual i. This is illustrated in Fig. 3 by the
directions of the vector [;. This vector is orientated towards
(conversely away from) j in the case of an attraction (conversely

ViV Fy ViV
i J i I

(a) Attraction (b) Alignment

1 4“% 1!‘ ’f
f : #
rw,, M f ;; »;’rTr"r

’7" f P 1H‘ Pr rf
KR y

y
f/ﬁ’;ﬁ“‘?

A 1

o] #’3 ”’ w’

with

repulsion) behaviour, and is aligned on the velocity vector, 17] ,of
j, for the alignment behaviour. Generally, each individual i has
several influential individuals j in its neighbourhood (termed
influential neighbours). In most IBMs the (potentially conflict-
ing) influences of these are weighted by functions of the distance
between i and j, and are summed. The resulting vector is used to
determine the displacement direction of the individual i at
the next time-step (Fig. 3d), and its position is updated using
Equation (2). Different types of weighting functions have been
used with different IBMs. These functions share some common
properties, particularly reflecting the tendency for attraction,
alignment and repulsion behaviour to be predominant at large,
medium and small distances, respectively. But they also differin
a number of aspects, and the consequences on simulated group
characteristics of favouring one type of function over another
have been reported in a number of papers.***

. o
v, v 4
F, |{ ‘\‘I
i J

(c) Repulsion

(d) Direction update

Fig. 3. (a-c): Attraction, alignment, and repulsion are the three fundamental individual behaviours used in most individual-based models of animal groups. The influence
that an individual j exerts on an individual /is materialized by the direction of the vector £ .7 and 7, are the velocity vectors of /and j. (d): The influences of the different

influential neighbours jare weighted (the weights w;
the displacement direction of i.

. are often functions of the distance between jand j), and summed. The direction of the resulting vector is used to update
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Fig. 4. Evolution of alignment over time obtained (a) in a model for three densities of particles (b) in field observation for three densities of marching locusts. Reproduced
from Buhl et al.?* with permission from the American Association for the Advancement of Science. (c) Evolution of polarity over time obtained in an 8-fish real group (left
panel) and in an 8-fish virtual group using a model with weak (central panel) or strong (right panel) alignment. Reproduced from Viscido et al.® with permission from

Inter-Research.

Most IBMs rely on the fundamental principles discussed
above, and are therefore conceptually similar to the reported
model of self-propelled particles.”® But most IBMs also use
additional parameters or processes to improve their biological
realism. These are detailed below.

Individual-based models of animal groups

Overview

Of 31 papers on individual-based models of animal groups
examined in this review, 20 deal with the dynamics of fish
schools.**** The tendency to select fish in these models has
already received attention.* Individuals in most fish-school IBM
studies have been given some specific characteristics of fish, such
as dead angle limitation of their field of perception,*###464-%3
varying fields of perception related to different sensory systems
(vision and lateral line)** or a fairly sophisticated spring-mass
sub-model for locomotion.*” Seven papers have dealt with animal
groups in general,”***** Jeaving one paper on animal herds,”
one on human crowds,” and two previously-mentioned publi-
cations on bird flocks” and insect swarms.*

The objective of early work was to demonstrate that use of
IBMs, with simple individual behaviour, allows for simulation of

various types of group behaviour*”** and can create realistic

animations.”" The publications that we examine can be assigned
to four categories in terms of their main objectives: a comparison
of model results with experimental data, an analysis of the effects
of model parameters on the simulated group properties, and an
investigation of the simulated group response to a change in its
environment, or to divergent behaviour of some of its members.

Comparison of model results with data

The evolution with time of variables that characterize the
alignment of particles in a model, and the alignment of locusts
in field observation, have been compared for three different
densities.* Impressively similar patterns of low alignment atlow
density, high alignment at high density, and shifting low-—high
alignment at intermediate density (Fig. 4a and b), are obtained.
Moreover, the transitions between the different states occur at
approximately the same critical densities. Similarly, the evolution
of polarity, another variable characterizing the coherence of the
displacement of individuals, has been measured over time, in
8-fish real groups and virtual groups.® A strong alignment
behaviour in the model results in a fast increase of polarity over
time, which is not evident from the data. Weak alignment
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Fig. 5. A virtual group (a) moving along the region offering the best environmental conditions, (b) splitting because of an obstacle, (c) escaping a predator. Reproduced
from (a—b) Huth and Wissel** with permission from Taylor & Francis; (c) Lee et al.>” with permission from Elsevier.

behaviour produces patterns more in accordance with data
(Fig. 4c). Several characteristics of simulated fish schools (the
distances to nearest neighbours, the degree of polarity, the
frequency of the time spent by a fish at the front of a school) are
in general good agreement with observed data.* A good fit is
also obtained for the number of fish per group, and for the num-
ber of groups, as observed in laboratory experiments and in a
model.” But the fit is poor in the field where there are much
fewer and much larger schools than predicted by the model.
Video analyses of fish schooling in a tank have been used to
estimate the parameters of an IBM that included attraction and
repulsion behaviour towards the tank wall and central structure.”
Use of video recording provides information on the long-
distance attraction and short-distance repulsion behaviours that
are the core of IBMs."

Effects of model parameters on group properties

Analyses of the effects of different types of attraction—align-
ment-repulsion weighting functions on the simulated group
properties™™ reveal that functions resulting in a smooth transi-
tion from one type of behaviour to another (for example, from
attraction to repulsion) lead to more cohesive® and more homo-
geneous” groups. A shift from slow moving groups (swarms) to
highly polarized, faster-moving ones (schools) has been reported
as increasing the strength of the alignment behaviour,” or
decreasing strength of randomness in movement of individuals.*”
Only a tiny alignment force can create highly polarized groups,
whereas a large degree of randomness is required for a group to
disintegrate.”® Groups with higher polarity are also obtained
when the alignment zone used in a model is enlarged.” Increasing
the number of influential neighbours (i.e. the number of j
individuals that influence the behaviour of individual i, Fig. 3)
results in smaller and more-polarized groups.®® A larger vari-

ability in individual spacing within the group is obtained® for
large numbers of influential neighbours, and may arise from the
structures (concentrations of individuals in subgroups or lines)
observed under such conditions.” An asymptotic relationship
between simulated group size and the number of individuals
hasbeen established,” which suggests that increasing the number
of individuals will result in several groups of similar size, rather
than a single large group.

Group response to environment

Simple additions to the basic rules used in IBMs allows for the
simulation of fish schools when feeding,®* swimming along
environmental gradients,®* avoiding obstacles,***® and escaping
predators.®?”* A decrease in speed and an increase in the
random movement of individuals located in the vicinity of food
patches allows one to simulate schools shifting from straight
polarized dynamics, while cruising, to loose swarm-like dynamics,
while feeding.* A decrease (conversely increase) in individual
speed within (conversely outside) food patches leads to individ-
uals reacting collectively to the distribution of food, and thus
spending a significantly longer time in favourable areas than in
the case of solitary individuals.” Another additional rule states
that if a fish perceives an improvement in the environmental
conditions, it will maintain its direction and will accelerate
slightly,* resulting in simulated fish schools swimming along
a region that offers the best conditions (Fig. 5a). A similar
approach has been used to simulate the migration of fish schools
between spawning and feeding grounds.® Repulsion from
obstacles has been added to individual behaviour in order to
simulate fish schools swimming around obstacles," and poten-
tially being split by such obstacles (Fig. 5b).

Obstacles can also be represented by unfavourable and avoidable
environmental conditions for fish schools.” Individual attraction
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and repulsion behaviour towards a tank wall is needed to account
for small groups of fish observed swimming along such wall.*
Similar behaviour has been modelled to simulate the dynamics
of a crowd escaping out of a room.” Finally, adding repulsion
behaviour away from a predator enables one to investigate the
dynamics of animal groups in the presence of predators.”¥*%*
Typical patterns of fish school responses to predators described
in the literature have been identified through simulations.”
Movement of the predator will influence the group response:” a
split-type response is obtained when the predator has a direct
movement (Fig. 5¢, right); a herd-type response arises when the
predator has a more erratic movement (Fig. 5c, left). The inter-
play between collective escape and ‘selfish escape’ (when a fish
ceases to interact with its neighbours, due to the proximity of the
predator) has also been examined.” The group dynamics of
predators chasing groups of prey has been investigated by
means of an evolutionary IBM that includes scores for individuals,
based on the number of predator—prey encounters and a selective
process, where only the most successful individuals are able to
reproduce.”

Group response to individual differences

IBMs have also been used largely to study the effects on the
group dynamics of some members with different properties, or
different behaviour from the others. Various speeds, maximum
turning rates, sizes of alignment and repulsion areas, have influ-
ence on the positions of individuals relative to the front and/or
centre of a group.” Some individuals that have different attrac-
tion—repulsion functions exert an impact on the turning rate and
velocity of whole group.” Two categories of individuals have
been introduced in an IBM,* having properties such that indi-
viduals were more attracted towards, less repulsed by, and
aligned more with individuals from their category. This has led
to sub-groups of homogeneous categories becoming randomly
distributed within a group. However, when the two categories
differ in specific properties (the attraction-alignment—repulsion
functions, in this case), sub-groups acquire privileged locations
within the group. Groups that are initially composed of fast and
slow individuals eventually fragment into a fast and a slow
sub-group.” Group fragmentation has not been obtained in an-
other similar experiment; instead, the result has been fast indi-
viduals circling around slow ones.” Several authors have used
IBMs to investigate the effects of a few individuals with biased
movement direction on group dynamics.”¥** In a modelling
experiment where only a small proportion of the fish is attracted
towards the source of a stimulus, a critical transition occurs at
~5% of stimulated individuals.” At a lower percentage, almost
no fish reach the stimulus source, and above this value, almost all
fish succeed. The effects of conflicting preferred movement
directions have also been studied.* N, and N, individuals have a
biased direction towards 0°and x° (x € [0°, 180°]) respectivelyina
group of 100 individuals moving in a two-dimensional area.
With N, = N, = 5, and under a critical value of x, the group as a
whole is most likely to follow an in-between direction x/2°,
whereas above this critical value, it is equally likely to move col-
lectively towards 0° (the preferred direction of the N, individu-
als) or x° (the preferred direction of the N, individuals). In
contrast, with N, = 6 and N, = 5 there is minimal chance for the
group as a whole to move towards x°, and no chance with N, = 6
and N, = 4.

Discussion
We have considered models of the dynamics of animal groups
using mathematical, physical, or computational methods. Because
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we focus on individual-based models, our review is biased
towards the computational approach (most IBMs considered
here have been developed and used in a context of numerical
ecology). Spatially explicit IBMs typically employ continuous
variables for space. For this reason, we have excluded models
that use discrete space, most of them being cellular automata
networks developed from physical®™® or computational®”
methods.

The effects of changing parameter values in most IBMs on
simulated group properties have been assessed. This review
devotes a particular section to research in which this assessment
was the main objective. Sensitivity analysis is crucial, but
time-consuming, as it is based on series of simulations that use
various sets of parameter values. There is a lack of theoretical
background with respect to IBMs, compared with mathematical
and physical modelling. Research that aims to establish links
between mathematical or physical models and IBMs™”'7* is thus
of importance.

Individuals are assumed to move at constant speed with most
IBMs that we have reviewed, or at a speed randomly chosen
from a constant statistical distribution. A Newtonian description
of movement has been used for a few IBMs, where the acceleration
of each individual has been calculated as the sum of forces
applied to it, divided by its mass.***** Forces have included
social forces (attraction, alignment and repulsion), a drag force
that impedes individuals when moving too quickly, and other
potential attraction—repulsion forces forindividuals that interact
with their physical environment® or with predators.” On first
impression, the acceleration approach would seem to be more
satisfactory, as it allows individuals to vary their speed, and this
relates to real life. Including a drag force, however, effectively
sets a constant velocity. Individuals initially change in relative
positions until they are at locations where all forces cancel. This
steady state is likely to correspond to a condition where attraction
and repulsion on one side, with alignment and drag on the other
side, cancel one another, as these forces have opposing influences
on movement.

It is often claimed that parameters and variables used in IBMs
are more biologically meaningful, and easier to estimate than
those used for mathematical models. A reason is that IBMs deal
with individuals, which are entities that are generally easier to
identify than populations, the level at which most mathematical
models operate. This said, some parameters and functions used
in IBMs of animal groups are notably difficult to estimate. Finding
evidence for the existence of attraction-alignment-repulsion
zones has already been a challenge.®" Determining attraction—
alignment-repulsion weighting functions from data is difficult.
Video analysis®*?7*%4! is expected to play a major role in this
regard. The number of influential neighbours has been identified
as a crucial parameter in many projects. Estimating such a
parameter from data remains an open question. The number of
individuals in a group is also an important parameter. Laboratory
research thus far confines its work to small groups of individuals.
Comparison of these results with larger groups in the field is
complex.” It is encouraging, however, to see how well model
and data comparisons can agree.” The fact that simulated
groups avoid predators with dynamical patterns similar to
observed ones®” is also a valuable qualitative validation of
the models.

We have detailed investigations of a group's response to a
change in its environment, and to the different behaviour of
some of its members. Individuals with potentially different
properties or behaviour exert local interactions with one another,
and with their environment. Accounting for local interactions
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and the diversity of individuals have been two main reasons that
have been advanced for the need of IBMs.” Results that show
how a few individuals can influence the behaviour of a whole
group™ reinforce the view that IBMs are an appropriate
method. IBMs of animal groups can also be used to explore other
group phenomena. One is a fish school’s reaction to shipping.
This behaviour has been well documented, and compares the
reported responses: avoidance,””® attraction,” or no reaction.*
Another scenario is individuals that try systematically to avoid
particular positions within a group. Location at the periphery of
a group, for example, will lead to larger exposure to predators,
or to adverse environmental conditions (for instance, colder
temperatures in penguin colonies). This affords methods that
explore not only the manner in which an individual influences a
group, but also how the group has influence on individuals. In
the South African context, one can consider the spectacular
collective marine fish migration phenomenon named ‘the
sardine run’ (a series of papers on the subject are in preparation
for the African Journal of Marine Science). The step from the
current models that simulate groups of hundreds of individuals
to modelling a school of hundreds of millions of sardines is a
massive challenge.
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