

Postharvest disinfection treatments for deciduous and citrus fruits of the Western Cape, South Africa: a database analysis

J.S. Pryke*† and K.L. Pringle*

EFFECTIVE POSTHARVEST DISINFESTATION of export fruits from the Western Cape province of South Africa would help to reduce rejections due to the presence of insects. However, there is normally only a limited opportunity between controlling the insects and damaging the produce. A widely used agent in disinfection procedures, methyl bromide, was scheduled to be withdrawn in many countries in 2005 due to its ozone-depleting properties. The main alternatives are irradiation, extreme temperatures, forced air, vapour-heat methods and the use of controlled atmospheres. A literature survey was used to identify postharvest treatments with the highest likelihood of success in killing insect contaminants without damaging the fruit. Data from 284 scientific articles relating to these kinds of disinfection were entered into a database (PQUAD). Queries were run to determine the most intensively studied fruits and pests. The tolerances of the commodities were compared with those of the pests at family level. Where pest tolerances were lower than those of the fruit, the treatment was regarded as a possible candidate for use. Methyl bromide, controlled atmospheres and irradiation were identified as the most widely used against pests. Irradiation appeared to control insects at doses that did not damage deciduous produce. Citrus appeared to be more susceptible to damage, however, than deciduous fruits. Low temperature also seemed to be less detrimental to deciduous fruit than to citrus. Deciduous fruit is already preserved in cold storage, making this an inexpensive option to combat insects. Cold treatment appeared to control members of the Pseudococcidae, Tephritidae and Tortricidae; more work is required on the other pest families. Controlled atmospheres also had a high chance of success for both citrus and deciduous fruits.

Introduction

The Western Cape province of South Africa is the main deciduous fruit producing area of the country. Citrus, particularly oranges and soft citrus, are also grown there, but to a lesser extent. Markets in the European Union and the United States are of particular importance to these fruit industries. A major threat to fruit exports is the risk of consignments being rejected

due to the presence of insect contaminants. Postharvest disinfection treatments can be used to control the presence of insects,^{1,2} so that the risk of rejection as a result of insect contamination can thereby be reduced.² These treatments need to control the pest species without damaging the crop. However, there is normally only limited opportunity between combating the insects and damaging the fruit.³

Methyl bromide is a widely used and relatively inexpensive postharvest pesticide. Owing to its ozone-depleting properties⁴ and risks to human health,⁵ however, it was to be deregistered in developed countries in 2005 and in poor countries in 2015,⁶ meaning that alternative ways of removing insects must be found. The main alternatives are irradiation, temperature (high or low), forced air (hot air blown over the commodity), vapour heat treatments (hot air saturated with water blown over the fruit), and controlled atmospheres (the levels of O₂, CO₂ and temperature are manipulated).

The most important insect contaminants of deciduous fruits in the Western Cape belong to the families Curculionidae, Pseudococcidae, Tephritidae, Tortricidae, Lygaeidae and Pyrrhocoridae. Lygaeidae and Pyrrhocoridae are not primary pests in the Western Cape, but enter consignments of fruits coincidentally and are thus regarded as phytosanitary pests (G. Hendrikse, Special Export Programmes Manager, Deciduous Fruit Producers Trust and Citrus Growers Association, pers. comm.).

The aim of the study reported here was to determine which postharvest disinfection methods would be most effective in the Western Cape. To achieve this, a database of published information was compiled to allow comparisons of the tolerances of insects and fruits.

Methods

CAB Abstracts in the ISI Web of Knowledge (isiknowledge.com) were searched for the literature in English relating to postharvest disinfection treatments, for both pests and fruits, from 1990 to 2004.

Relevant articles were obtained and their reference lists were searched for further studies, which were in turn added to the literature list. This published information formed the basis for a postharvest disinfection treatment database (PQUAD) for the Western Cape. The relevant data were entered into PQUAD in Microsoft® Access 2002. Information from 284 papers was used (see Appendix 1 in supplementary material online at www.sajs.co.za).

PQUAD is a relational database and consists of 17 tables. The fields of these tables can be linked to access information from multiple tables when queries are run.⁷ Table structure and a brief explanation of the field contents are given in Table 1.

Queries were run to determine what the most studied commodities, insect families and insect species were for each treatment. The range between the most susceptible and the most tolerant cultivars was regarded as the range of cultivar tolerance for a particular commodity. The range between the most susceptible and the most tolerant species was regarded as the range of species tolerance for a particular insect family. These results were recorded as those treatments that would achieve 100% mortality or reproductive sterilization of each pest for its most tolerant life stage. The results for each commodity and its cultivars were then compared with those for each insect species in its family. Where the most tolerant species was controlled using a less intensive treatment than that which damaged the most susceptible fruit cultivar, that treatment was regarded as a possible postharvest disinfection method for that particular fruit against that family of insects. Confidence levels could not be calculated due to the lack of replicated studies.

Results and discussion

PQUAD summary

The effect of disinfection of fruits using controlled atmosphere and methyl bromide was the subject of most of the studies (Table 2). Methyl bromide was used in the most treatments, and vapour heat in the smallest number (Table 3). Controlled atmospheres and irradiation were also included in many studies involving pests (Table 3). From the small number of authors who published on controlled atmosphere and irradiation, it was assumed that this work was conducted by specialist groups. Few studies on high and low temperature treatments were reported, (as was the case with forced air and vapour heat), and were usually

*Department of Conservation Ecology and Entomology, Faculty of AgriSciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.

†Author for correspondence. E-mail: jpryke@sun.ac.za

restricted to tropical fruits. Low temperature studies were limited to deciduous produce.

Investigations involving high temperature, irradiation, and methyl bromide have been conducted in similar proportions on both fruits and pests, suggesting an equal interest in their respective effects. There have been more studies on the effects of controlled atmospheres on commodities than on pests, probably because this form of treatment is also used to improve the quality and shelf-life these products. The few studies at low temperatures was probably because fruits are stored in the cold to preserve them before contamination becomes a concern, so that the effect of cold storage on fruit is well known. The effect of cold storage on insect contaminants was not initially researched. The reason for the disproportionately high number of studies on the effect of vapour heat and forced air on insects relative to fruit products is probably that these treatments are predominantly used on tropical fruits; their insect pests are not found in temperate regions like the Western Cape.

Apples and nectarines were the most studied fruits, followed by oranges, grapes, grapefruits, pears and mandarins. These are the most important fruits exported globally, especially from wealthy countries that can afford research on postharvest disinfestation.⁸ Persimmons, tangerines and lemons were included in only a few studies.

In total, 45 pest species were recorded, Tephritidae and Tortricidae were the two most frequently studied families (featuring in 48% and 39% of the publications, respectively) (Tables 3 and 4). They also represent the two most important families in terms of insect pest risk globally.^{9,10} The nine most studied species were members of either the Tortricidae or Tephritidae; among the 16 most studied pests, five and seven belonged to these families, respectively (Table 4). Pseudococcidae and Curculionidae, including Brentidae,¹¹ were also comparatively well studied (6.6% and 5.1%, respectively), whereas Tenebrionidae, Diaspididae and Bostrichidae were referred to in only one publication each.¹²⁻¹⁴

Methyl bromide

Methyl bromide did not appear to be successful against two Coleoptera families (Curculionidae and Bostrichidae) as these insects were able to survive doses that would damage all fruits included in PQUAD (Fig. 1). Members of the Pseudococcidae can be controlled only on certain

Table 1. PQUAD field names and descriptions.

Fields	Description
<i>Fields shared by all tables</i>	
Reference number	Unique number for article
Reference	Reference for article
<i>Fields shared by all pest tables</i>	
Genus	Taxonomic genus of insect pest
Species	Taxonomic species of insect pest
Commodity	Fruit on which study was conducted
Cultivar	Cultivar on which study was conducted
<i>Fields in the overall pest table only</i>	
Family	Taxonomic family of insect pest
Treatment	Treatment tested
<i>Fields in the pest treatment tables</i>	
Life stage	Life stage of insect tested
Effect on pest	Effect of treatment on the insect pest
Temperature (°C)	Temperature at which treatment was conducted
Duration (h)	Duration of treatment
<i>Fields shared by all commodity tables</i>	
Commodity	Fruit studied
Cultivar	Cultivar studied
<i>Field in the overall commodity table</i>	
Treatment	Treatment tested
<i>Fields in the overall commodity table</i>	
Effect on the commodity	Effect of treatment on fruit
Temperature (°C)	Temperature of treatment
Duration (h)	Duration of treatment
<i>Fields specific to the treatment tables</i>	
Controlled atmosphere—O ₂ and CO ₂ composition (kPa)	O ₂ and CO ₂ levels of treatment
Forced air—flow rate (m ³ /s)	Flow rate of treatment
High temperature – medium	Treatment medium
Irradiation – dose (Gy)	Irradiation dose
Methyl bromide – dose (g/m ³)	Dose of methyl bromide used
<i>Fields in the reference table only</i>	
Authors	Author(s) of article
Year	Year of publication
Title	Title of article
Source	Source of article

Table 2. Number of studies per fruit type for the various postharvest treatments.

Commodity	Con. atmos*	Forced air	High temp.	Irrad.	Low temp.	Methyl bromide	Vapour heat	Total
Apple	25	0	9	7	1	13	0	55
Nectarine	15	1	9	0	4	14	0	43
Orange	1	2	6	8	0	5	1	23
Grape	6	0	0	8	0	4	1	19
Grapefruit	1	1	2	4	2	6	2	18
Pear	6	0	2	2	0	4	0	14
Mandarin	0	0	0	7	0	5	0	12
Persimmon	0	0	1	1	0	2	0	4
Tangerine	0	0	0	2	0	1	1	4
Lemon	0	0	0	1	2	0	0	3
Total	54	4	29	40	9	54	5	195

*Con. atmos. = controlled atmosphere, temp. = temperature, Irrad. = irradiation.

Table 3. Number of studies per insect family for the various postharvest treatments.

Family	Con. atmos*	Forced air	High temp.	Irrad.	Low temp.	Methyl bromide	Vapour heat	Total
Bostrichidae	0	0	0	0	0	1	0	1
Curculionidae	1	0	0	6	0	4	0	11
Diaspididae	0	0	0	1	0	0	0	1
Pseudococcidae	2	0	4	2	4	2	0	14
Tenebrionidae	0	0	1	0	0	0	0	1
Tephritidae	6	11	17	24	14	21	9	102
Tortricidae	24	0	13	6	7	31	1	82
Total	33	11	35	39	25	59	10	212

*Con. atmos. = controlled atmosphere, temp. = temperature, Irrad. = irradiation.

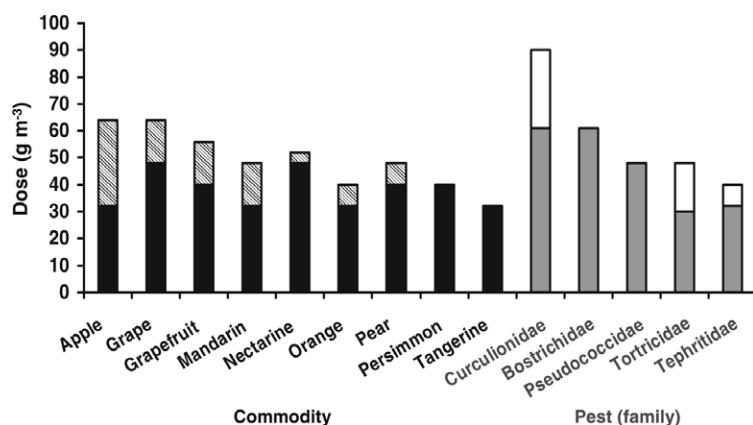
apple, grape and nectarine cultivars without the product being damaged. The tolerances of these fruits were similar to the dose that is required, so further research is needed to verify the use of this form of quarantine on Pseudococcidae. Some Tortricidae and Tephritidae could be controlled on all the fruits (Fig. 1), although the tolerances of the commodities and the pests were similar. These results indicate that the phasing out of methyl bromide need not be of concern as it is not particularly effective against the insect pests of the Western Cape.

Irradiation

Doses of 250–600 Gy appeared able to control (either by sterilization or by killing) Tortricidae, Curculionidae, Tephritidae and Pseudococcidae without adversely affecting the three kinds of deciduous fruit kinds included in Fig. 2. The two fruits featured in the figure tolerated irradiation doses of 150 Gy, which only just controlled Curculionidae, Tephritidae and Pseudococcidae. Irradiation as a means of postharvest disinfestation has great potential for deciduous fruits, as it appeared to contain insect contaminants without damaging the fruits.

Low temperature

The low temperatures currently used to store deciduous fruit prior to and during export appeared to control both Pseudococcidae and Tephritidae (Fig. 3). Cold regimes also appeared to be effective against pests of grapefruit (Fig. 3). However, it was uncertain whether this treatment can combat all members of the Tortricidae. Some tortricids (e.g. *Cydia pomonella* (Linnaeus), codling moth) diapause in their larval stage and thus are able to tolerate low temperatures.¹⁵ Others, however, like *Thaumatotibia leucotreta* (Meyrick) (= *Cryptophlebia leucotreta* (Meyrick), false codling moth), did not survive low temperatures.^{16,17} This major pest of Western Cape fruit is controlled in 17 days at -0.6°C ,^{16,17} which is a shorter time than apples, pears and grapes currently undergo at -0.5°C . Cold storage is already used for a disinfestation treatment against Tephritidae in the Western Cape, for both grapes and apples.¹⁸ Because this is a relatively simple and inexpensive procedure, research into the use of low temperatures to control other insect families, such as Curculionidae, is recommended.


Heat, vapour heat and forced-air treatments

Fruits exposed to hot air were damaged long before the pests were killed or inca-

Table 4. Sixteen species of insects, most commonly tested in postharvest disinfestation treatments, recorded in PQUAD. An additional 29 species recorded are not included.

Species	Family*	Common name	No. of studies
<i>Cydia pomonella</i> (Linnaeus)	Tort.	Codling moth	33
<i>Anastrepha suspensa</i> (Loew)	Teph.	Caribbean fruit fly	30
<i>Ceratitis capitata</i> (Wiedemann)	Teph.	Mediterranean fruit fly	23
<i>Epiphyas postvittana</i> (Walker)	Tort.	Light brown apple moth	17
<i>Anastrepha ludens</i> (Loew)	Teph.	Mexican fruit fly	14
<i>Ctenopseustis obliquana</i> (Walker)	Tort.	Brownheaded leafroller	11
<i>Cydia molesta</i> (Busck)	Tort.	Oriental fruit moth	7
<i>Planotortrix octo</i> Duggdale	Tort.	Greenheaded leafroller	7
<i>Bactrocera tryoni</i> (Froggatt)	Teph.	Queensland fruit fly	6
<i>Pseudococcus longispinus</i> (Targioni-Tozzetti)	Pseudo.	Long-tailed mealybug	6
<i>Anastrepha obliqua</i> (Macquart)	Teph.	West Indian fruit fly	5
<i>Cylas formicarius</i> (Fabricius)	Brentidae	Sweet potato weevil	4
<i>Bactrocera dorsalis</i> (Hendel)	Teph.	Oriental fruit fly	3
<i>Pseudococcus viburni</i> (Signoret)	Pseudo.	Obscure mealybug	3
<i>Rhagoletis pomonella</i> (Walsh)	Teph.	Apple maggot fly	3
<i>Sitophilus granarius</i> (Linnaeus)	Curc.	Granary weevil	3

*Tort. = Tortricidae, Teph. = Tephritidae, Pseudo. = Pseudococcidae, Curc. = Curculionidae.

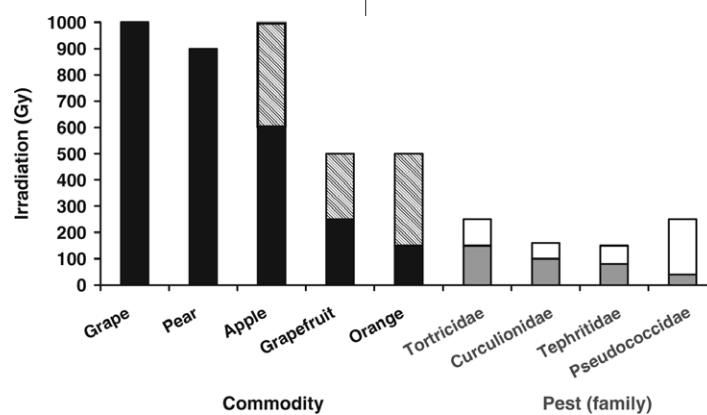
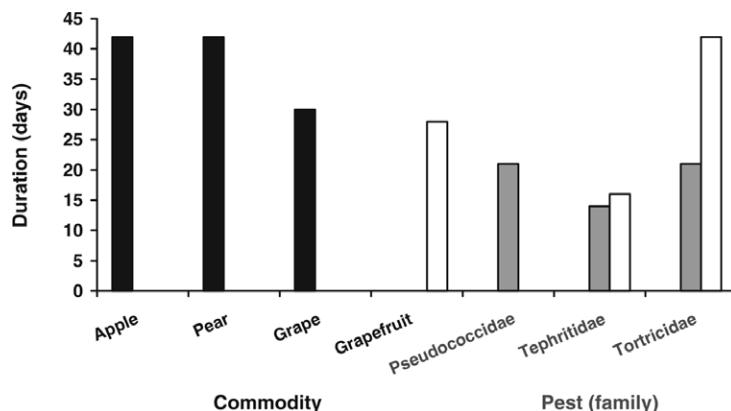


Fig. 1. Highest doses of methyl bromide that did not cause damage to fruits (solid black represents doses that all cultivars tolerated; diagonal lines signify the range of cultivar tolerance) and the doses required to control all pests (solid grey represents doses all species tolerated; clear is the range of species tolerance) during a two-hour fumigation period.


pacitated. Hot water was more successful, with grapefruit and persimmons being tolerant of treatments that achieved 100% mortality of Pseudococcidae, Tenebrionidae, Tephritidae and Tortricidae. Apples and oranges suffered too much damage for this treatment to be viable. Research on the effects of hot water on

other fruits and pests is required to determine whether or not this is a viable means of disinfecting fruits in the Western Cape.

Vapour heat treatment was unsuccessful against Tephritidae in grapes. However, vapour heat applied at 44°C or 46°C for 3.5 hours controlled Tortricidae without

Fig. 2. Highest irradiation doses that did not cause damage to fruits (solid black represents doses all cultivars tolerated; diagonal lines indicate the range of cultivar tolerance) and the doses that were required to control pests (solid grey represents doses all species tolerated; clear is the range of species tolerance).

Fig. 3. Cold storage temperatures used for preserving export fruit and the maximum duration at these temperatures before fruit quality deteriorates. Apples, pears and grapes are currently stored at -0.5°C , whereas grapefruit is chilled optimally at 1°C before quality starts to decline. Also shown is the shortest exposure to low temperatures that would cause 100% mortality in all pest species per family. Key to bars: Solid black = -0.5°C , solid grey = 0°C , clear = 1°C .

damaging grapefruit, oranges or tangerines. These procedures could be successful for citrus contaminated with Tortricidae, but we do not know how other fruits or pest families would be affected.

The only forced-air methods reported were against Tephritidae in citrus fruits. Treatments of 43°C with a flow rate of $0.4 \text{ m}^3/\text{s}$ for 2 hours effectively controlled all Tephritidae in grapefruit without damaging the produce,¹⁹ oranges tolerated treatments of 48°C with flow rates of $0.75 \text{ m}^3/\text{s}$ for 2 hours.²⁰ This method appeared promising for citrus, however, but so few studies have been conducted to know whether this form of disinfection would be successful for other fruits or pests.

Controlled atmospheres

Controlled atmospheres are widely used for extending the storage life of deciduous fruits.

However, we found no studies that directly compared the effects of various atmospheres on fruits and insects. A trend suggested that enhanced temperature and CO_2 levels and reduced O_2 concentration accelerated damage to fruit and killed insects more quickly, but at different rates. It appeared that controlled atmospheres at high temperature were more successful in controlling pests than at low temperature, probably because the increased metabolic rates of insects when heated resulted in higher demands for oxygen.³

Controlled atmospheres are the most complex of the treatments to analyse. They seem to control pests without damaging the commercial product. However, much more data and research on these practices are still required to learn how effective they will be against the pests of the Western Cape.

Other postharvest disinfection treatments

Other postharvest disinfection treatments were reported in the literature, although none was sufficiently well represented to be included in the PQUAD analysis. These methods, although not considered as an important means of disinfection should not be ignored as they may yet prove effective after further research. *Frankliniella occidentalis* (Pergande) (Thysanoptera: Thripidae) and *Platynota stultana* Walsingham (Lepidoptera: Tortricidae) were successfully controlled using a combination of slow-releasing sulphur dioxide pads and cold storage.²¹ High-pressure washing reduced the number of *Pseudococcus viburni* (Signoret) (Hemiptera: Pseudococcidae) and *Epiphyas postvittana* (Walker) (Lepidoptera: Tortricidae) found on apples.²² Ultrasound has recently been shown to be lethal to *F. occidentalis* and the mite *Tetranychus urticae* Koch,²³ but its effectiveness on fresh produce still needs to be established.

Conclusions

PQUAD is not yet sufficiently developed to provide more than broad research directions thereby reducing research time and costs. The gaps in the data may represent areas which have been researched but not published due to negative results. Thus, PQUAD ought to be extended to include as many preliminary and unpublished results as possible to indicate which treatments could be successful and warrant further investigation. Furthermore, in this study the insects were considered only at the family level, but the pest species themselves should be individually tested to verify the results from PQUAD. As quarantine data are analysed in South Africa, they should be included in data-

base, as should other fruits grown outside the Western Cape.

Lygaeidae and Pyrrhocoridae, although important phytosanitary pest families in the Western Cape, are not represented in PQUAD. Insects from all families studied were controlled at radiation doses that deciduous fruit tolerates. It appears that Pseudococcidae and Tephritidae are controlled by current cold storage regimes as well as the tortricid *T. leucotreta*. Low temperatures are already used to preserve deciduous fruit for export. These disinfection treatments will not result in extra costs. Further research into controlled atmospheres may also prove to be successful for combatting insect contaminants while not damaging valuable produce. The control of Tortricidae, however, is complicated because some species diapause, hence are able to tolerate low temperatures. The thermal limits of contaminants in the families Curculionidae, Lygaeidae and Pyrrhocoridae still need to be determined.

Heat treatments against insect pests of citrus seem promising, especially the use of hot water.

In addition, controlled atmospheres and low temperature appear to be potential means of disinfection for these fruits. Another possibility is combine treatments that showed a high degree of efficacy, but this also needs to be more fully researched.

It is desirable that the database be updated regularly, so researchers have the most recent data available before deciding which disinfection treatments to explore. PQUAD could also be expanded for the benefit of those working on other export produce or phytosanitary pests (such as mites or fungi).

This research was funded by the Deciduous Fruit Producers Trust.

1. Fields P.G. and White N.D.G. (2002). Alternatives to methyl bromide treatments for stored-product and quarantine insects. *Annu. Rev. Entomol.* **47**, 331–359.
2. Paull R.E. and Armstrong J.W. (1994). Introduction. In *Insect Pests and fresh Horticultural Products: Treatments and responses*, eds R.E. Paull and J.W. Armstrong, pp. 1–33. CAB International, Wallingford, Oxon.
3. Neven L.G. (2003). Physiological effects of physical postharvest treatments on insects. *Hort-Technology* **13**, 272–275.
4. United Nations Environmental Programs, Montreal Protocol Assessment Supplement (1992). Methyl bromide: its atmospheric science, technology and economics. Synthesis report of the methyl bromide interim scientific assessment and methyl bromide interim technology and economic assessment. U.S. Government Printing Office, Washington, D.C.
5. U.S. Environmental Protection Agency (1984). Rules and regulations. Revocation of tolerance ethylene dibromide. *Federal Register* **49**: 22082–22085.

6. Hough P. (1998). *The Global Politics of Pesticides: Forging Consensus from Conflicting Interests*. Earthscan Publications, London.

7. Dowling N. (1998). *Database Design and Management: Using Access*. Continuum, London.

8. Goletti F. (2003). Current status and future challenges for the postharvest sector in developing countries. *Acta Hort.* **628**, 41–47.

9. Hallman G.J. (1999). Ionizing radiation quarantine treatment against tephritid fruit flies. *Post-harvest Biol. Technol.* **16**, 93–106.

10. van der Geest L.P.S. and Evenhuis H.H. (1991). *World Crop Pests: Tortricid Pests, Their Biology, Natural Enemies and Control*. Elsevier, Amsterdam.

11. Alonso-Zarazaga, M.A. (2004). Cyladinae Schoenherr, 1823 (Coleoptera, Curculionoidea). In *Brentidae of the World (Coleoptera, Curculionoidea)*, eds A. Sforza and L. Bartolozzi, pp. 855–871. *Monografie del Museo regionale di Scienze naturali* **39**, Turin.

12. Mahroof R., Subramanyam B., Throne J. and Menon A. (2003). Time-mortality relationships for *Tribolium castaneum* (Coleoptera: Tenebrionidae) life stages exposed to elevated temperatures. *J. econ. Ent.* **96**, 1345–1351.

13. Angerilli N.P.D. and Fitzgibbon F. (1990). Effects of cobalt gamma radiation on San Jose scale (Homoptera: Diaspididae) survival on apples in cold and controlled-atmosphere storage. *J. econ. Ent.* **83**, 892–895.

14. Hole B.D. (1981). Variation in tolerance of seven species of stored product Coleoptera to methyl bromide and phosphine in strains from twenty-nine countries. *Bull. ent. Res.* **71**, 299–306.

15. Brown J.J. (1991). Diapause. In *World Crop Pests: Tortricid Pests, Their Biology, Natural Enemies and Control*, eds L.P.S. van der Geest and H.H. Evenhuis, pp. 175–186. Elsevier, Amsterdam.

16. Myburgh A.C. (1965). Low temperature sterilization of false codling moth *Argyroloce leucotreta* Meyr, in export citrus. *J. ent. Soc. Afr.* **28**, 277–285.

17. Myburgh A.C. and Bass M.W. (1969). Effect of low temperature storage on pupae of false codling moth, *Cryptophlebia (Argyroloce) leucotreta* Meyr. *Phytophylactica* **1**, 115–116.

18. USDA-APHIS and SAAFQIS (2004). *Preclearance inspection and cold treatment of South African deciduous fruit designated for export to the United States of America*. Department of Agriculture, Directorate Plant Health, Pretoria.

19. Mangan R.L., Shellie K.C., Ingle S.J. and Firko M.J. (1998). High temperature forced-air treatments with fixed time and temperature for 'Dancy' tangerines, 'Valencia' oranges, and 'Rio Star' grapefruit. *J. Econ. Entomol.* **91**, 933–939.

20. Shellie K.C. and Mangan R.L. (1994). Postharvest quality of 'Valencia' oranges after exposure to hot, moist, forced air for fruit fly disinfestation. *HortScience* **29**, 1524–1527.

21. Yokoyama V.Y., Miller G.T. and Crisosto C.H. (2001). Pest response in packed table grapes to low temperature storage combined with slow-release sulfur dioxide pads in basic and large-scale tests. *J. Econ. Entomol.* **94**, 984–988.

22. Whiting D.C., Hoy L.E., Maindonald J.H., Connolly P.G. and McDonald R.E. (1998). High-pressure washing treatments to remove obscure mealybug (Homoptera: Pseudococcidae) and lightbrown apple moth (Lepidoptera: Tortricidae) from harvested apples. *J. Econ. Entomol.* **91**, 1458–1463.

23. Hansen J.D. (2001). Ultrasound treatments to control surface pests of fruit. *HortTechnology* **11**, 186–188.

The entries currently in the PQUAD database are available as on online supplement at www.sajs.co.za

Supplementary material to:

Pryke J.S. and Pringle K.L. (2008). Postharvest disinfection treatments for deciduous and citrus fruits of the Western Cape, South Africa: a database analysis. *S. Afr. J. Sci.* **104**, 85–89.

References used in PQUAD

1. Adamo M., D'Ilio V., Gionfriddo F., Nobili P., Pasquali A., Postorino E., Rossi G. and Zarbo F. (1996). The technique of ionization of orange fruits infested by *Ceratitis capitata*. *Infortre agric.* **52**, 73–75.
2. Ahumada M.H., Mitcham E.J. and Moore D.G. (1996). Postharvest quality of 'Thompson Seedless' grapes after insecticidal controlled-atmosphere treatments. *HortScience* **31**, 833–836.
3. Akagawa T., Kishino H., Goto M., Soma Y., Kato T. and Kawakami F. (1995). Chemical injuries of Satsuma mandarin, *Citrus reticulata* Blanco fumigated with methyl bromide. *Res. Bull. Pl. Prot. Serv., Japan* **31**, 9–16.
4. Al Bachir M. (1998). Use of gamma-irradiation and sulphur dioxide to improve storability of two Syrian grape cultivars (*Vitis vinifera*). *Int. J. Fd. Sci. Technol.* **33**, 521–526.
5. Al Bachir M. (1999). Effect of gamma irradiation on storability of apples (*Malus domestica* L.). *Pl. Fd. Hum. Nutrition* **54**, 1–11.
6. Aldryhim Y.N. and Adam E.E. (1999). Efficacy of gamma irradiation against *Sitophilus granarius* (L.) (Coleoptera: Curculionidae). *J. Stored Products Res.* **35**, 225–232.
7. Ali-Niaze N.T., Richardson D.G., Kositrakun M. and Mohammed A.B. (1989). Non-insecticidal quarantine treatment for apple maggot in harvested fruit. In *Proceedings of the 5th International Controlled Atmosphere Research Conference, Wenatchee, Washington, 14–16 June, 1989*. Vol. 1, ed. J.K. Fellman, pp. 193–205. Washington State University, Wenatchee, WA.
8. Alonso M., Rio M. and Jacas J. (2002). Response of the mandarin hybrid 'Ellendale' infested with *Ceratitis capitata* (Wiedemann) (Diptera: Tephritidae) to insecticide and cold treatments. *Boln Dep. Sanid. veg., Palgas* **28**, 427–433.
9. Alonso M., Rio M. and Jacas J. (2002). High energy electrons as a quarantine treatment against *Ceratitis capitata* (Wiedemann) (Diptera: Tephritidae) in citrus. *Boln Dep. Sanid. veg., Palgas* **28**, 419–426.
10. Angerilli N.P.D. and Fitzgibbon F. (1990). Effects of cobalt gamma radiation on San Jose scale (Homoptera: Diaspididae) survival on apples in cold and controlled-atmosphere storage. *J. econ. Ent.* **83**, 892–895.
11. Anthon E.W., Moffit H.R., Couey H.M. and Smith L.O. (1975). Control of codling moth in harvested sweet cherries with methyl bromide and effects upon quality and taste of treated fruit. *J. econ. Ent.* **68**, 524–526.
12. Anthon E.W., Moffit H.R. and Smith L.O. (1977). Codling moth: dosage response of larvae in cherries to methyl bromide fumigation. *J. econ. Ent.* **70**, 381–382.
13. Armstrong J.W. and Couey H. (1984). Methyl bromide fumigation treatments at 30°C for Californian stonefruits infested with Mediterranean fruit fly (Diptera: Tephritidae). *J. econ. Ent.* **77**, 1229–1232.
14. Armstrong J.W., Hansen J.D., Hu B.K.S. and Brown S.A. (1989). High-temperature, forced-air quarantine treatment for papayas infested with tephritid fruit flies (Diptera: Tephritidae). *J. econ. Ent.* **82**, 1667–1674.
15. Armstrong J.W. (1990). High-temperature forced-air quarantine treatments for fresh fruits infested by tephritid fruit flies. *Acta Hort.* **269**, 449–451.
16. Armstrong J.W., Hu B.K.S. and Brown S.A. (1995). Single-temperature forced hot-air quarantine treatments to control fruit flies (Diptera: Tephritidae) in papaya. *J. econ. Ent.* **88**, 678–682.
17. Artes-Hernandez F., Artes F. and Tomas-Barberan F.A. (2003). Quality and enhancement of bioactive phenolics in Cv. Napoleon table grapes exposed to different postharvest gaseous treatments. *J. agric. Fd Chem.* **51**, 5290–5295.
18. Arthur V. and Wiendl F. (1996). Irradiation of *Planococcus citri* (Risso) (Homoptera: Pseudococcidae) with gamma radiation from cobalt-60 to determine the disinfection dose. *Anais Soc. Ent. Bras.* **25**, 345–346.
19. Auger S., Esterio G., Vega B., Ulloa V. and Davanzo C. (1991). Control of three growth stages of *Botrytis cinerea* Pers. in six table grape cultivars by means of a sulfur dioxide controlled atmosphere. *Fitopatologia* **26**, 86–91.
20. Aung L.H., Leesch J.G., Jenner J.F. and Grafton-Cardwell E.E. (2001). Effects of carbonyl sulfide, methyl iodide, and sulfuryl fluoride on fruit phytotoxicity and insect mortality. *Ann. appl. Biol.* **139**, 93–100.
21. Beckett S.J. and Evans D.E. (1997). The effects of thermal acclimation on immature mortality in the Queensland fruit fly *Bactrocera tryoni* and the light brown apple moth *Epiphyas postvittana* at a lethal temperature. *Entomologia exp. appl.* **82**, 45–51.
22. Benschoter C.A. (1979). Fumigation of grapefruit with methyl bromide for control of *Anastrepha suspensa*. *J. econ. Ent.* **72**, 401–402.
23. Benschoter C.A. (1979). Seasonal variation in tolerance of Florida 'Marsh' grapefruit to a combination of methyl bromide fumigation and cold storage. *Proc. Fla. St. hort. Soc.* **92**, 166–167.
24. Benschoter C.A., Spalding D.H. and Reeser P.W. (1981). Toxicity of atmospheric gases to immature stages of *Anastrepha suspensa*. *Fla Ent.* **64**, 543–544.
25. Benschoter C.A. (1982). Methyl bromide fumigation followed by cold storage as a treatment for *Anastrepha suspensa* (Diptera: Tephritidae) in grapefruit. *J. econ. Ent.* **75**, 860–862.
26. Benschoter C.A. (1984). Low-temperature storage as a quarantine treatment for the Caribbean fruit fly (Diptera: Tephritidae) in Florida citrus. *J. econ. Ent.* **77**, 1233–1235.
27. Benschoter C.A. (1987). Effects of modified atmospheres and refrigeration temperatures on survival of eggs and larvae of the Caribbean fruit fly (Diptera: Tephritidae) on laboratory diet. *J. econ. Ent.* **80**, 1223–1225.
28. Benschoter C.A. (1988). Methyl bromide fumigation and cold storage as treatments for Californian stone fruits and pears infested with the Caribbean fruit fly (Diptera: Tephritidae). *J. econ. Ent.* **81**, 1665–1667.
29. Berry G. and Aked J. (1997). Controlled atmosphere alternatives to the post-harvest use of sulphur dioxide to inhibit the development of *Botrytis cinerea* in table grapes. *Postharvest Horticulture Series – Department of Pomology, University of California*, 160–164.
30. Bhushan B. and Thomas P. (1998). Quality of apples following gamma irradiation and cold storage. *Int. J. Fd. Sci. Nutr.* **49**, 485–492.
31. Bloem S., Bloem K.A., Carpenter J.E. and Calkins C.O. (1999). Inherited sterility in codling moth (Lepidoptera: Tortricidae): Effect of substerilizing doses of radiation on insect fecundity, fertility, and control. *Ann. ent. Soc. Am.* **92**, 222–229.
32. Bohling H. (1989). Studies on the use of CA conditions at reduced cost. In *Proceedings of the 5th International Controlled Atmosphere Research Conference, Wenatchee, Washington, 14–16 June, 1989*. Vol. 1, ed. J.K. Fellman, pp. 385–394. Washington State University, Wenatchee, WA.
33. Brackmann A., Mazaro S. and Cecchini R. (1996). Precooling and postharvest chemical treatment of Golden Delicious and Fuji apples. *Cienc. Rur.* **26**, 185–189.
34. Brackmann A., Goncalves E. and Saquet A. (1996). Effect of treatments with high concentrations of CO₂ on the quality of 'Golden Delicious' apples stored in controlled atmospheres. *Cienc. Rur.* **26**, 181–184.
35. Brackmann A., Bortoluzzi G. and Bortoluz L. (1999). Control of flesh breakdown in Fuji apple with dynamic O₂ and CO₂ concentrations and low relative humidity during controlled atmosphere storage. *Cienc. Rur.* **29**, 459–463.
36. Brackmann A. and Waclawovsky A. (2001). Responses of 'Gala' apples to preharvest treatment with AVG and low-ethylene CA storage. *Acta Hort.* **553**, 155–158.
37. Brown G., Brower J.H. and Tilton E.W. (1972). Gamma radiation effects on *Sitophilus zeamais* and *S. granarius*. *J. econ. Ent.* **65**, 203–205.
38. Burditt A.K. and Hungate F.P. (1989). Gamma irradiation as a quarantine treatment for apples infested by codling moth (Lepidoptera: Tortricidae). *J. econ. Ent.* **82**, 1386–1390.
39. Bustos M.E., Enkerlin W., Reyes J. and Toledo J. (2004). Irradiation of mangoes as a postharvest quarantine treatment for fruit flies (Diptera: Tephritidae). *J. econ. Ent.* **97**, 286–292.
40. Cathalin J. and McNulty P. (1996). Textural gain and subsequent loss in irradiated apples, carrots and potatoes with increase in dose from 0.03 to 1.0 kGy. *J. Fd Process. Preserv.* **20**, 403–415.
41. Chen P.M. and Mellenthin W.M. (1982). Storage behavior of d'Anjou pears in low oxygen and air. In *Controlled Atmospheres for Storage and Transport of Perishable Agricultural Commodities*, eds. D.G. Richardson and M. Meheriuk, pp. 139–148. Timber Press, Beaverton, Oregon.
42. Chen P.M., Olsen K.L. and Meheriuk M. (1985). Effect of low-oxygen atmospheres on storage scald and quality preservation of 'Delicious' apples. *J. Am. Soc. Hort. Sci.* **110**, 16–20.
43. Cherwin C., Kulkarni S., Kreidl S., Birrell F. and Glenn D. (1997). A high temperature low oxygen pulse improves cold storage disinfection. *Postharvest Biol. Technol.* **10**, 239–245.
44. Cherwin C., Jessup A.J., Hamilton A., Kreidl S., Kulkarni S. and Franz G. (1998). Non-chemical disinfection: combining the combinations additive effects of the three postharvest treatments on insect mortality and pome fruit quality. *Acta Hort.* **464**, 273–278.
45. Cherwin C., Kreidl S.L., Hamilton A.J., Franz P.R., Whitmore S.R., Thomann T., Vitou J., Merriman P.R. and Walker R. (1999). Evaluation of a non-chemical disinfection treatment on quality of pome fruit and mortality of lepidopterous pests. *Aust. J. exp. Agric. Anim. Husb.* **39**, 335–344.
46. Chu C.L. (1992). Postharvest control of San Jose Scale on apples by controlled atmosphere storage. *Postharvest Biol. Technol.* **1**, 361–369.
47. Conlong D.E. (1998). *Mediterranean Fruit Fly (Ceratitis capitata) rearing and Cold Sterilization procedures in Grape Varieties: Barlinka Table Grapes*. Report to the SASA Experiment Station, Mount Edgecombe.

48. Costa N. and Arthur V. (2002). Use of gamma radiation as a quarantine treatment against *Ceratitis capitata* (Diptera: Tephritidae) infesting citrus. In *Proceedings of the 6th International Symposium on fruit flies of economic importance, Stellenbosch, South Africa, 6–10 May 2002*, ed. B.N.Barnes, pp. 233–236. Iste Scientific Publications, Irene.

49. Couey H.M. and Olsen K.L. (1977). *Commercial use of prestorage carbon dioxide treatment to retain quality in Golden Delicious apples, Controlled Atmospheres for Storage and Transport of Perishable Agricultural Commodities Horticultural Report No. 28*. Michigan State University, East Lansing, MI.

50. Dawes M.A., Saini R.S., Mullen M.A., Brower J.H. and Loretan P.A. (1987). Sensitivity of sweetpotato weevil (Coleoptera: Curculionidae) to gamma radiation. *J. econ. Ent.* **80**, 142–146.

51. de Kock P.J. and Holz G. (1991). Use of gamma irradiation for control of postharvest *Botrytis cinerea* bunch rot of table grapes in cold storage. *S. Afr. J. Enol. Vitic.* **12**, 82–86.

52. Delate K.M., Brecht J.K. and Coffelt J.A. (1990). Controlled atmosphere treatments for control of sweetpotato weevil (Coleoptera: Curculionidae) in stored tropical sweet potato. *J. econ. Ent.* **83**, 461–465.

53. Dentener P.R., MacRae E.A. and Jackson P.J. (1992). Modified atmospheres for the postharvest disinfection of New Zealand persimmons (*Diospyros kaki* L.). *N. Z. J. Crop Hort. Sci.* **20**, 203–208.

54. Dentener P.R., Alexander S.M., Lester P.J., Petry R.J., Maindonald J.H. and McDonald R.E. (1996). Hot air treatment for disinfection of lightbrown apple moth and longtailed mealybug on persimmons. *Postharvest Biol. Technol.* **8**, 143–152.

55. Dentener P.R., Bennett K.V., Hoy L.E., Lewthwaite S.E., Lester P.J., Maindonald J.H. and Connolly P.G. (1997). Postharvest disinfection of lightbrown apple moth and longtailed mealybug on persimmons using heat and cold. *Postharvest Biol. Technol.* **12**, 255–264.

56. Dentener P.R., Alexander S.M., Petry R.J., O'Connor G.M., Lester P.J., Bennett K.V. and Maindonald J.H. (1998). Effect of a combined methyl bromide fumigation and cold storage treatment on *Cydia pomonella* (Lepidoptera: Tortricidae) mortality on apples. *J. econ. Ent.* **91**, 528–533.

57. Dentener P.R., Alexander S.M., Bennett K.V. and McDonald R.M. (1998). Postharvest control of lightbrown apple moth using ethanol. *Acta Hort.* **464**, 279–284.

58. Dewey D.H. and Bourne M.L. (1982). Low oxygen CA storage of McIntosh apples. In *Controlled Atmospheres for Storage and Transport of Perishable Agriculture Commodities*, eds D.G.Richardson and M.Meheriuk, pp. 101–107. Timber Press, Beaverton, Oregon.

59. Drake S.R., Moffit H.R., Fellman J.K. and Sell C.R. (1988). Apple quality as influenced by fumigation with methyl bromide. *J. Fd Sci.* **53**, 1710–1712.

60. Drake S.R. and Moffitt H.R. (1992). Winter pear ('Anjou' and 'Bosc') response to methyl bromide fumigation. *HortScience* **27**, 813–816.

61. Drake S.R. and Moffit H.R. (1998). Response of several apple cultivars to methyl bromide fumigation. *HortTechnology* **8**, 64–68.

62. Drake S.R., Sanderson P.G. and Neven L.G. (1999). Response of apple and winter pear fruit quality to irradiation as a quarantine treatment. *J. Fd Process. Preserv.* **23**, 203–216.

63. Drake S.R. and Elfving D.C. (1999). Response of three strains of 'Gala' apples to high carbon dioxide prior to controlled atmosphere storage. *Fruit Var. J.* **53**, 16–21.

64. El Hakim A. and Abdel-Salam K. (1989). Radiosensitivity of different larval stage duration pupae of the Mediterranean fruit-fly, *Ceratitis capitata* Wied. *Inset Sci. Applic.* **10**, 69–74.

65. ElShiekh A.F. (1996). Effect of different postharvest hot water treatments on quality and storability of 'marsh' grapefruit. *Gartenbauwissenschaft* **61**, 91–95.

66. Fan X.T. and Mattheis J.P. (2001). 1-methylcyclopropene and storage temperature influence responses of 'Gala' apple fruit to gamma irradiation. *Postharvest Biol. Technol.* **23**, 143–151.

67. Fan X.T., Argenta L. and Mattheis J. (2001). Impacts of ionizing radiation on volatile production by ripening Gala apple fruit. *J. agric. Fd Chem.* **49**, 254–262.

68. Fernandez-Trujillo J.P., Nock J.F. and Watkins C.B. (2001). Superficial scald, carbon dioxide injury, and changes of fermentation products and organic acids in 'Cortland' and 'Law Rome' apples after high carbon dioxide stress treatment. *J. Am. Soc. Hort. Sci.* **126**, 235–241.

69. Folchi A., Pratella G.C., Bertolini P. and Cazzola P.P. (1994). Effects of oxygen stress on stone fruits. In *COST 94. The post-harvest treatment of fruit and vegetables: controlled atmosphere storage of fruit and vegetables. Proceedings of a workshop, Milan, Italy, 22–23 Apr. 1993*, eds P.Egger Zerbini, M.L.Woolfe, P.Bertolini, K.Haffner, J.Hribar, E.Hohn, and Z.Somogyi, pp. 107–119. Milan.

70. Follett P.A. and Lower R.A. (2000). Irradiation to ensure quarantine security for *Cryptophlebia* spp. (Lepidoptera: Tortricidae) in sapindaceous fruits from Hawaii. *J. econ. Ent.* **93**, 1848–1854.

71. Follett P.A. and Armstrong J.W. (2002). New irradiation doses to control Hawaii's fruit flies: towards a generic doses for tephritids. In *Proceedings of the 6th International Symposium on fruit flies of economic importance, Stellenbosch, South Africa, 6–10 May 2002*, ed. B.N.Barnes, pp. 237–240. Iste Scientific Publications, Irene.

72. Gaunce A.P., Madsen H.F. and McMullen R.D. (1981). Fumigation with methyl bromide to kill larvae and eggs of the codling moth in Lambert chambers. *J. econ. Ent.* **74**, 154–157.

73. Goffings G. and Herregods M. (1994). The influence of the storage conditions on some quality parameters of Jonagold apples. *Acta Hort.* **368**, 37–42.

74. Gould W.P. and Sharp J.L. (1990). Cold-storage quarantine treatment for Carambolas infested with the Caribbean fruit fly (Diptera: Tephritidae). *J. econ. Ent.* **83**, 458–460.

75. Gould W.P. and von Windeguth D.L. (1991). Gamma irradiation as a quarantine treatment for Carambolas infested with Caribbean fruit flies. *Fla Ent.* **74**, 297–305.

76. Gould W.P. and Sharp J.L. (1992). Hot-water immersion quarantine treatment for guavas infested with Caribbean fruit fly (Diptera: Tephritidae). *J. econ. Ent.* **85**, 1235–1239.

77. Gould W.P. and McGuire R.G. (2000). Hot water treatment and insecticidal coatings for disinfecting limes of mealybugs (Homoptera: Pseudococcidae). *J. econ. Ent.* **93**, 1017–1020.

78. Gould W.P. (1988). A hot water/cold storage quarantine treatment for grapefruit infested with the Caribbean fruit fly. *Proc. Fla St. Hort. Soc.* **101**, 190–192.

79. Hallman G.J., Gaffney J.J. and Sharp J.L. (1990). Vapor heat treatment for grapefruit infested with Caribbean fruit fly (Diptera: Tephritidae). *J. econ. Ent.* **83**, 1475–1478.

80. Hallman G.J. and Sharp J.L. (1990). Mortality of Caribbean fruit fly (Diptera: Tephritidae) larvae infesting mangoes subjected to hot-water treatment, then immersion cooling. *J. econ. Ent.* **83**, 2320–2323.

81. Hallman G.J. and Sharp J.L. (1990). Hot-water immersion quarantine treatment for Carambolas infested with Caribbean fruit fly (Diptera: Tephritidae). *J. econ. Ent.* **83**, 1471–1474.

82. Hallman G.J. and King J.R. (1992). Methyl bromide fumigation quarantine treatment for Carambolas infested with Caribbean fruit fly (Diptera: Tephritidae). *J. econ. Ent.* **85**, 1231–1234.

83. Hallman G.J. (1998). Efficacy of methyl bromide and cold storage as disinfection treatments for guavas infested with Caribbean fruit fly. *Trop. Sci.* **38**, 229–232.

84. Hallman G.J. and Thomas D.B. (1999). Gamma irradiation quarantine treatment against blueberry maggot and apple maggot (Diptera: Tephritidae). *J. econ. Ent.* **92**, 1373–1376.

85. Hallman G.J. and Martinez L.R. (2001). Ionizing irradiation quarantine treatment against Mexican fruit fly (Diptera: Tephritidae) in citrus fruits. *Postharvest Biol. Technol.* **23**, 71–77.

86. Hallman G.J. (2001). Ionizing irradiation quarantine treatment against sweetpotato weevil (Coleoptera: Curculionidae). *Fla Ent.* **84**, 415–417.

87. Hansen J.D., Armstrong J.W., Hu B.K.S. and Brown S.A. (1990). Thermal death of oriental fruit fly (Diptera: Tephritidae) third instars in developing quarantine treatments for papayas. *J. econ. Ent.* **83**, 160–167.

88. Hansen J.D., Drake S.R., Moffit H.R., Robertson J.L., Albano D.J. and Heidt M.L. (2000). A two-component quarantine treatment for postharvest control of codling moth on apple cultivars intended for export to Japan and Korea. *HortTechnology* **10**, 186–194.

89. Hansen J.D., Sell C.R., Moffit H.R., Leesch J.G. and Hartsell P.L. (2000). Residues in apples and sweet cherries after methyl bromide fumigation. *Pest Mgmt. Sci.* **56**, 555–559.

90. Hansen J.D., Drake S.R., Moffit H.R., Albano D.J. and Heidt M.L. (2000). Methyl bromide fumigation of five cultivars of sweet cherries as a quarantine treatment against codling moth. *HortTechnology* **10**, 194–198.

91. Hansen J.D., Albano D.J. and Heidt M.L. (2002). Efficacy of using in-carton fumigation with the quarantine treatment against codling moth on apples intended for export to Japan. *HortTechnology* **12**, 441–443.

92. Hansen J.D. (2002). Effect of cold temperature treatments on the mortality of eggs and feeding larvae of the oriental fruit moth. *HortTechnology* **12**, 203–205.

93. Harman J., Lay-Yee M., Billing D., Yearsley C. and Jackson P.J. (1990). Effects of methyl bromide fumigation, delayed cooling, and controlled atmosphere storage on the quality of Redgold and Fantasia nectarine fruit. *N. Z. J. Crop Hort. Sci.* **18**, 197–203.

94. Hartsell P.L., Harris C.M., Vail P.V., Tebbets J.C., Harvey J.M., Yokoyama V.Y. and Hinsch R.T. (1992). Toxic effects and residues in six nectarine cultivars following methyl bromide quarantine treatment. *HortScience* **27**, 1286–1288.

95. Harvey J.M. and Harris C.M. (1982). Phytotoxic responses of cherries, nectarines, peaches, pears, and plums fumigated with methyl bromide for control of Mediterranean fruit fly. *J. Am. Soc. Hort. Sci.* **107**, 993–996.

96. Harvey J.M., Harris C.M. and Hartsell P.L. (1989). Tolerances of California nectarine cultivars to methyl bromide quarantine treatments. *J. Am. Soc. Hort. Sci.* **114**, 626–629.

97. Hatton T. and Cubbedge R.H. (1979). Phytotoxicity of methyl bromide as a fumigant for Florida citrus fruit. *Proc. Fla St. Hort. Soc.* **92**, 167–169.

98. Hatton T. and Cubbedge R.H. (1982). Conditioning Florida grapefruit to reduce chilling injury low-temperature storage. *J. Am. Soc. Hort. Sci.* **107**, 57–60.

99. Hatton T. and Cubbedge R.H. (1983). Preferred temperature for prestorage conditioning of 'Marsh' grapefruit to prevent chilling injury at low temperatures. *HortScience* **18**, 721–722.

100. Hatton T., Cubbedge R.H., Risse L.A., Hale P.W., Spalding D.H., von Windeguth D.L. and Chew V. (1984). Phytotoxic responses of Florida grapefruit to low-dose irradiation. *J. Am. Soc. Hort. Sci.* **109**, 607–610.

101. Heard T.A., Heather N.W. and Corcoran R.J. (1991). Dose-mortality relationships for eggs and larvae of *Bactrocera tryoni* (Diptera: Tephritidae) immersed in hot water. *J. econ. Ent.* **84**, 1768–1770.

102. Heard T.A., Heather N.W. and Peterson P.M. (1992). Relative tolerance to vapor heat treatment of eggs and larvae of *Bactrocera tryoni* (Diptera: Tephritidae) in mangoes. *J. econ. Ent.* **85**, 461–463.

103. Heather N.W., Corcoran R.J. and Kopittke R.A. (1997). Hot air disinfection of Australian 'Kensington' mangoes against two fruit flies (Diptera: Tephritidae). *Postharvest Biol. Technol.* **10**, 99–105.

104. Heather N.W., Corcoran R.J. and Banos C. (1991). Disinfection of mangoes with gamma irradiation against two Australian fruit flies (Diptera: Tephritidae). *J. econ. Ent.* **84**, 1304–1307.

105. Heather N.W., Whitfort L., McLauchlan R.L. and Kopittke R. (1996). Cold disinfection of Australian mandarins against Queensland fruit fly (Diptera: Tephritidae). *Postharvest Biol. Technol.* **8**, 307–315.

106. Hill A.R., Rigney C.J. and Sproul A.N. (1988). Cold storage of oranges as a disinfection treatment against the fruit flies *Dacus tryoni* (Froggatt) and *Ceratitis capitata* (Wiedemann) (Diptera: Tephritidae). *J. econ. Ent.* **81**, 257–260.

107. Hinsch R.T., Harris C.M., Hartsell P.L. and Tebbets J.C. (1992). Fresh nectarine quality and methyl bromide residues after in-package quarantine treatments. *HortScience* **27**, 1288–1291.

108. Hole B.D. (1981). Variation in tolerance of seven species of stored product Coleoptera to methyl bromide and phosphine in strains from twenty-nine countries. *Bull. ent. Res.* **71**, 299–306.

109. Hoy L.E. and Whiting D.C. (1997). Low-temperature storage as a postharvest treatment to control *Pseudococcus affinis* (Homoptera: Pseudococcidae) on Royal Gala apples. *J. econ. Ent.* **90**, 1377–1381.

110. Jacobsen C. and Hara A. (2003). Irradiation of *Maconellicoccus hirsutus* (Homoptera: Pseudococcidae) for phytosanitation of agricultural commodities. *J. econ. Ent.* **96**, 1334–1339.

111. Jamieson L.E., Meier X., Smith K.J., Lewthwaite S.E. and Dentener P.R. (2003). Effect of ethanol vapor treatments on lightbrown apple moth larval mortality and 'Braeburn' apple fruit characterization. *Postharvest Biol. Technol.* **28**, 391–403.

112. Jang E.B. (1986). Kinetics of thermal death in eggs and first instars of three species of fruit flies (Diptera: Tephritidae). *J. econ. Ent.* **79**, 700–705.

113. Jessup A.J. (1990). Gamma irradiation as a quarantine treatment for sweet cherries against Queensland fruit fly. *HortScience* **25**, 456–458.

114. Jessup A.J., de Lima C.P.F., Hood C.W., Sloggett R.F., Harris A.M. and Beckingham M. (1993). Quarantine disinfection of lemons against *Bactrocera tryoni* and *Ceratitis capitata* (Diptera: Tephritidae) using cold storage. *J. econ. Ent.* **86**, 798–802.

115. Jessup A.J. and Sloggett R.F. (1993). Residues in apples and their packaging following fumigation with methyl bromide. *Aust. J. exp. Agric. Anim. Husb.* **33**, 499–502.

116. Jessup A.J., Sloggett R.F. and Quinn N.M. (1994). Residues of methyl bromide and inorganic bromide in fumigated produce. *J. agric. Fd Chem.* **42**, 108–111.

117. Jessup A.J., Carswell I.F. and Dalton S.P. (1998). Disinfection of fresh fruits from *Bactrocera tryoni* (Froggatt) (Diptera: Tephritidae) with combination mild heat and modified atmosphere packaging. *Aust. J. Ent.* **37**, 186–188.

118. Jobin M., Lacroix M., Abdellaoui S., Bergeron G., Boubekri C. and Gagnon M. (1992). Effect of gamma irradiation with or without hot water treatment on the physical, chemical and organoleptic properties of tangerines (mandarins). *Microbiologie, Aliments, Nutrition* **10**, 115–128.

119. Johnson D., Dover C. and Pearson K. (1993). Very low oxygen storage in relation to ethanol production and control of superficial scald in Bramley's Seedling apples. *Acta Hort.* **326**, 175–182.

120. Johnson J.J., Soderstrom E.L., Brandl D.G., Houck L.G. and Wofford P.L. (1990). Gamma radiation as a quarantine treatment for fuller rose beetle eggs (Coleoptera: Curculionidae) on citrus fruit. *J. econ. Ent.* **83**, 905–909.

121. Jones V.M., Waddell B.C. and Maindonald J.H. (1995). Comparative mortality responses of three tortricid (Lepidoptera) species to hot water. *J. econ. Ent.* **88**, 1356–1360.

122. Jones V.M. and Waddell B.C. (1996). Hot water treatment of lightbrown apple moth eggs on apples and nectarines. In *Proceedings of the Forty-Ninth New Zealand Plant Protection Conference, Quality Hotel Rutherford, Nelson, 13–15 August, 1996*, ed. M.O'Callaghan, pp. 71–74. New Zealand Plant Protection Society, Nelson.

123. Kawakami F., Nishikawa S. and Moku M. (1989). Tolerance of Japanese persimmon (kaki) to fumigation with methyl bromide. *Res. Bull. Pl. Prot. Serv., Japan* **25**, 79–85.

124. Kawakami F. and Soma Y. (1990). Phytotoxic responses of Japanese pears fumigated with methyl bromide. *Res. Bull. Pl. Prot. Serv., Japan* **26**, 51–56.

125. Ke D. and Kader A.A. (1989). Tolerance and responses of fresh fruits to oxygen levels at or below 1%. In *Proceedings of the 5th International Controlled Atmosphere Research Conference, Wenatchee, Washington, 14–16 June, 1989*. Vol. 1, ed. J.K. Fellman, pp. 209–216. Washington State University, Wenatchee, Washington.

126. Ke D. and Kader A.A. (1990). Tolerance of 'Valencia' oranges to controlled atmospheres as determined by physiological responses and quality attributes. *J. Am. Soc. Hort. Sci.* **115**, 779–783.

127. Ke D., van Gorsel H. and Kader A.A. (1990). Physiological and quality responses of 'Bartlett' pears to reduced O₂ and enhanced CO₂ levels and storage temperature. *J. Am. Soc. Hort. Sci.* **115**, 435–439.

128. Ke D., Rodriguez-Sinobas L. and Kader A.A. (1991). Physiology and prediction of fruit tolerance to low oxygen atmospheres. *J. Am. Soc. Hort. Sci.* **116**, 253–260.

129. Ke D. and Kader A.A. (1992). Potential of controlled atmospheres for postharvest insect disinfection of fruits and vegetables. *Postharvest News Inf.* **3**, 31N–37N.

130. Ke D., El-wazir F., Cole B., Mateos M. and Kader A.A. (1994). Tolerance of peach and nectarine fruits to insecticidal controlled atmospheres as influenced by cultivar maturity and size. *Postharvest Biol. Technol.* **4**, 135–146.

131. Ke D. and Kader A.A. (1992). External and internal factors influence fruit tolerance to low- oxygen atmospheres. *J. Am. Soc. Hort. Sci.* **117**, 913–918.

132. Keawchoung P., Segsanviriya S., Limphasmanee W., Malakrong A., Prasopon P. and Kongratrarporn T. (2003). Irradiation as a quarantine treatment for fruit fly in tangerine. In *Proceedings of 41st Kasetsart University Annual Conference, 3–7 February, 2003: Plants and Agricultural Extension and Communication*, 241–250. Kasetsart University, Bangkok.

133. Kerbel E. and Kader A.A. (1990). Tolerance of 'Fantasia' nectarine to low O₂ and high CO₂ atmospheres. In *Proceedings of the International Conference on Technology Innovation in Freezing and Refrigeration of Fruits and Vegetables*, 325–331. IIR, Paris.

134. Khitron Y.I. and Lyublinskaya N. (1991). Increasing the effectiveness of storing table grapes. *Sadov. Vinogr.* **7**, 19–21.

135. King J.M. and Benschoter C.A. (1991). Comparative methyl bromide residues in Florida citrus: a basis for proposing quarantine treatments against Caribbean fruit fly. *J. agric. Fd Chem.* **39**, 1307–1309.

136. Klein J. and Lurie S. (1990). Prestorage heat treatment as a means of improving poststorage quality of apples. *J. Am. Soc. Hort. Sci.* **115**, 265–269.

137. Klein J. and Lurie S. (1992). Prestorage heating of apple fruit for enhanced postharvest quality: interaction of time and temperature. *HortScience* **27**, 326–328.

138. Kosittrakun M. (1989). *Effects of near anaerobic storage conditions on physiology and flavor of various fruit types and on apple maggot (Rhagoletis pomonella)*. Ph.D. dissertation. Oregon State University, Corvallis, Oregon.

139. Lau O.L. (1985). Storage procedures, low oxygen and low carbon dioxide atmospheres on storage quality of 'Golden Delicious' and 'Delicious' apples. *J. Am. Soc. Hort. Sci.* **110**, 541–547.

140. Lau O.L. and Yastremski R. (1993). The use of 0.7% storage oxygen to attenuate scald symptoms in 'Delicious' apples: effect of apple strain and harvest maturity. *Acta Hort.* **326**, 183–190.

141. Lau O.L. (1983). Effects of storage procedures and low oxygen and high carbon dioxide on storage quality of 'Spartan' apples. *J. Am. Soc. Hort. Sci.* **108**, 953–957.

142. Lau O.L. (1983). Storage responses of four apple cultivars to a 'rapid CA' procedure in commercial controlled-atmosphere facilities. *J. Am. Soc. Hort. Sci.* **108**, 530–533.

143. Lau O.L. and Yastremski R. (1991). Retention of quality of 'Golden Delicious' apples by controlled- and modified-atmosphere storage. *HortScience* **26**, 564–566.

144. Lay-Yee M. (1993). Japanese market access for New Zealand apples: response of New Zealand apples to methyl bromide fumigation. *Orchard N. Z.* **66**, 35–35.

145. Lay-Yee M. and Rose K. (1994). Quality of 'Fantasia' nectarines following forced-air heat treatments for insect disinfection. *HortScience* **29**, 663–666.

146. Lay-Yee M., Ball S., Forbes S.K. and Woolf A.B. (1997). Hot-water treatment for insect disinfection and reduction of chilling injury of 'Fuyu' persimmon. *Postharvest Biol. Technol.* **10**, 81–87.

147. Lay-Yee M., Whiting D.C. and Rose K.J. (1997). Response of "Royal Gala" and "Granny Smith" apples to high-temperature controlled atmosphere treatments for control of *Epiphyas postvittana* and *Nycti huttoni*. *Postharvest Biol. Technol.* **12**, 127–136.

148. Leesch J.G., Tebbets J.S., Obenland D.M., Vail P.V. and Tebbets J.C. (1999). Dose-mortality and large-scale studies for controlling codling moth (Lepidoptera: Tortricidae) eggs on 'd'Agen' plums by using methyl bromide. *J. econ. Ent.* **92**, 988–993.

149. Lester G.E. and Wolfenbarger D.A. (1990). Comparisons of Cobalt-60 gamma irradiation dose rates on grapefruit flavedo tissue and on Mexican fruit fly mortality. *J. Fd. Prot.* **53**, 329–331.

150. Lester P.J., Dentener P.R., Petry R.J. and Alexander S.M. (1995). Hot-water immersion for disinfection of lightbrown apple moth (*Epiphyas postvittana*) and longtailed mealybug (*Pseudococcus longispinus*) on persimmons. *Postharvest Biol. Technol.* **6**, 349–356.

151. Lester P.J. and Barrington A.M. (1997). Gamma irradiation for postharvest disinfection of *Ctenopseustis obliquana* (Walker) (Lep, Tortricidae). *Z. angew. Ent.* **121**, 107–110.

152. Lewthwaite S.E., Dentener P.R. and Connolly P.G. (1999). Mortality of *Epiphyas postvittana* (Lepidoptera: Tortricidae) after exposure to sodium bicarbonate at elevated temperatures or combined with emulsifiers. *N. Z. J. Crop Hort. Sci.* **27**, 83–90.

153. Lidster P.D., McRae K.B. and Sanford K.A. (1981). Responses of 'McIntosh' apples to low oxygen storage. *J. Am. Soc. Hort. Sci.* **106**, 159–162.

154. Little C.R., Fragher J.D. and Taylor H.J. (1982). Effects of initial oxygen stress treatments in low oxygen modified atmosphere storage of 'Granny Smith' apples. *J. Am. Soc. Hort. Sci.* **107**, 320–323.

155. Liu S., Ma X. and Wang C. (1989). Effects of gamma-ray irradiation on the quality of apple. *Acta Agric. nucl. Sin.* **3**, 28–36.

156. Lurie S., Fallik E., Klein J., Kozar F. and Kovacs K. (1998). Postharvest heat treatment of apples to control San Jose scale (*Quadraspidiotus perniciosus* Comstock) and blue mold (*Penicillium expansum* Link) and maintain fruit firmness. *J. Am. Soc. Hort. Sci.* **123**, 110–114.

157. Lydakis D. and Aked J. (2003). Vapour heat treatment of Sultanina table grapes. I: control of *Botrytis cinerea*. *Postharvest Biol. Technol.* **27**, 109–116.

158. Lydakis D. and Aked J. (2003). Vapour heat treatment of Sultanina table grapes. II: Effects on postharvest quality. *Postharvest Biol. Technol.* **27**, 117–126.

159. Mahroof R., Subramanyam B., Throme J. and Menon A. (2003). Time-mortality relationships for *Tribolium castaneum* (Coleoptera: Tenebrionidae) life stages exposed to elevated temperatures. *J. econ. Ent.* **96**, 1345–1351.

160. Maindonald J.H., Waddell B.C. and Bish E.B. (1992). Response to methyl bromide fumigation of codling moth (Lepidoptera: Tortricidae) eggs on cherries. *J. econ. Ent.* **85**, 1222–1230.

161. Maindonald J.H., Waddell B.C. and Petry R.J. (2001). Apple cultivar effects on codling moth (Lepidoptera: Tortricidae) egg mortality following fumigation with methyl bromide. *Postharvest Biol. Technol.* **22**, 99–110.

162. Mangan R.L. and Ingle S.J. (1992). Forced hot-air quarantine treatment for mangoes infested with West Indian fruit fly (Diptera: Tephritidae). *J. econ. Ent.* **85**, 1895–1864.

163. Mangan R.L., Shellie K.C., Ingle S.J. and Firko M.J. (1998). High temperature forced-air treatments with fixed time and temperature for 'Dancy' tangerines, 'Valencia' oranges, and 'Rio Star' grapefruit. *J. econ. Ent.* **91**, 933–939.

164. Mansour M. and Franz G. (1996). Gamma radiation as a quarantine treatment for the Mediterranean fruit fly (Diptera: Tephritidae). *J. econ. Ent.* **89**, 1175–1180.

165. Mansour M. (2003). Gamma irradiation as a quarantine treatment for apples infested by codling moth (Lep., Tortricidae). *Z. angew. Ent.* **127**, 137–141.

166. Matsuoka T., Taniguchi K., Hiramatsu T. and Dote F. (2001). Methyl bromide quarantine treatment for persimmon fruit moth in Japanese persimmons. *Res. Bull. Pl. Prot. Serv., Japan* **37**, 63–68.

167. McGuire R.G. (1991). Market quality of grapefruit after heat quarantine treatments. *HortScience* **26**, 1393–1395.

168. Meheriuk M., Gaunce A.P. and Dyck V.A. (1990). Response of apple cultivars to fumigation with methyl bromide. *HortScience* **25**, 538–540.

169. Mellenthin P.M., Chen P.M. and Kelly S.B. (1980). Low oxygen effects on dessert quality, scald prevention and nitrogen metabolism of d'Anjou pear fruit during long-term storage. *J. Am. Soc. Hort. Sci.* **105**, 522–527.

170. Miller W.R., McDonald R.E. and Hatton T. (1988). Phytotoxicity to grapefruit exposed to hot water immersion treatment. *Proc. Fla St. hort. Soc.* **101**, 192–195.

171. Miller W.R., McDonald R.E., Hallman G.J. and Sharp J.L. (1991). Condition of Florida grapefruit after exposure to vapor heat quarantine treatment. *HortScience* **26**, 42–44.

172. Miller W.R. and McDonald R.E. (1991). Quality of stored 'Marsh' and 'Ruby Red' grapefruit after high-temperature, forced-air treatment. *HortScience* **26**, 1188–1191.

173. Miller W.R. and McDonald R.E. (1992). Postharvest quality of early season grapefruit after forced-air vapor heat treatment. *HortScience* **27**, 422–424.

174. Miller W.R. and McDonald R.E. (1992). Condition of preharvest GA-treated grapefruit after cold treatment and storage. *Proc. Fla St. hort. Soc.* **105**, 116–119.

175. Miller W.R. and McDonald R.E. (1996). Postharvest quality of GA-treated Florida grapefruit after gamma irradiation with TBZ and storage. *Postharvest Biol. Technol.* **7**, 253–260.

176. Miller W.R., McDonald R.E. and Chaparro J. (2000). Tolerance of selected orange and mandarin hybrid fruit to low-dose irradiation for quarantine purposes. *HortScience* **35**, 1288–1291.

177. Misumi T., Kawakami F., Mizobuchi M., Tao M., Machida M. and Inoue T. (1994). Methyl bromide fumigation for quarantine control of Japanese mealybug and citrus mealybug of Satsuma mandarin. *Res. Bull. Pl. Prot. Serv., Japan* **30**, 57–68.

178. Mitcham E.J., Neven L.G. and Biasi B. (1999). Effect of high temperature controlled-atmosphere treatments for insect control in 'Barlett' pear fruit. *HortScience* **34**, 527.

179. Mitchell F.G., Kader A.A., Crisosto G. and Mayer G. (1984). *The tolerance of stone fruits to elevated CO₂ and low O₂ levels*, Report to the California Tree Fruits Agreement, Sacramento, CA.

180. Moffitt H.R. and Burditt A.K. (1989). Low temperature storage as a postharvest treatment for codling moth (Lepidoptera: Tortricidae) eggs on apple. *J. econ. Ent.* **82**, 1679–1681.

181. Moffitt H.R., Foutain J.B., Hartsell P. and Albano D.J. (1983). Western cherry fruit fly (Diptera: Tephritidae): fumigation with methyl bromide at selected fruit temperatures. *J. econ. Ent.* **76**, 135–138.

182. Moffitt H.R., Drake S.R., Toba H.H. and Hartsell P.L. (1992). Comparative efficacy of methyl bromide against codling moth (Lepidoptera: Tortricidae) larvae in 'Bing' and 'Rainier' cherries and confirmation of efficacy of a quarantine treatment for 'Rainier' cherries. *J. econ. Ent.* **85**, 1855–1858.

183. Morgan C.V.G., Gaunce A.P. and Jong C. (1974). Control of codling moth larvae in harvested apples by methyl bromide fumigation and cold storage. *Can. Ent.* **106**, 917–920.

184. Morgan C.V.G. and Gaunce A.P. (1975). Carbon dioxide as a fumigant against the San Jose scale (Homoptera: Diaspididae) on harvested apples. *Can. Ent.* **107**, 935–936.

185. Morris J., Oswald O., Main G., Moore J. and Clark J. (1992). Storage of new seedless grape cultivar with sulfur dioxide generators. *Am. J. Enol. Vitic.* **43**, 230–232.

186. Myburgh A.C. (1965). Low temperature sterilization of false codling moth *Argyroloce leucotreta* Meyr., in export citrus. *J. ent. Soc. Afr.* **28**, 277–285.

187. Myburgh A.C. and Bass M.W. (1969). Effect of low temperature storage on pupae of false codling moth *Cryptophlebia (Argyroloce) leucotreta* Mayr. *Phytophylactica* **1**, 115–116.

188. Neven L.G. (1994). Combined heat treatments and cold storage effects on mortality of fifth-instar codling moth (Lepidoptera: Tortricidae). *J. econ. Ent.* **87**, 1262–1265.

189. Neven L.G. and Rehfield L.M. (1995). Comparison of prestorage heat-treatments on 5th-instar codling moth (Lepidoptera, Tortricidae) mortality. *J. econ. Ent.* **88**, 1371–1375.

190. Neven L.G. and Mitcham E.J. (1996). CATTs (Controlled Atmosphere/Temperature Treatment System): a novel tool for the development of quarantine treatments. *Am. Ent.* **42**, 56–69.

191. Neven L.G., Rehfield L.M. and Shellie K. (1996). Moist and vapor forced air treatments of apples and pears effects on the mortality of fifth instar codling moth (Lepidoptera: Tortricidae). *J. econ. Ent.* **89**, 700–704.

192. Neven L.G., Drake S.R. and Ferguson H.J. (2000). Effects of the rate of heating on apple and pear fruit quality. *J. Fd. Qual.* **23**, 317–325.

193. Neven L.G., Drake S.R. and Shellie K.C. (2001). Development of a high temperature controlled atmosphere quarantine treatment for pome and stone fruits. *Acta Hort.* **553**, 457–460.

194. Obenland D.M., Arpaia M.L. and Aung L.H. (1999). Quality of nectarine cultivars subjected to forced-air heat treatment for Mediterranean fruit fly disinfestation. *J. Hort. Sci. Biotech.* **74**, 553–555.

195. Obenland D.M. and Carroll T.R. (2000). Mealiness and pectolytic activity in peaches and nectarines in response to heat treatment and cold storage. *J. Am. Soc. Hort. Sci.* **125**, 723–728.

196. Patterson M.E. and Nichols W.C. (1988). Metabolic response of 'Delicious' apples to carbon dioxide in anoxic and low-oxygen environments. *HortScience* **25**, 866–868.

197. Prinjha J. (1989). The effects of high CO₂ pre-storage treatments and rate of establishment of controlled atmosphere conditions on bitter pit bruise susceptibility of 'Bramley's seedling' apples. *J. Hort. Sci.* **64**, 533–539.

198. Rahman R., Rigney C.J. and Busch-Petersen E. (1990). Irradiation as a quarantine treatment against *Ceratitis capitata* (Diptera: Tephritidae): anatomical and cytogenetic changes in mature larvae after gamma irradiation. *J. econ. Ent.* **83**, 1449–1454.

199. Rasmussen P. (1990). Storage experiments with apples 1984–89. *Tidsskr. Planteravl.* **94**, 39–49.

200. Rippon L.E., Singh G., Sproul A.N. and Gilbert W.S. (1982). Methyl bromide fumigation and cold storage for disinfestation of Granny Smith apples against Queensland and Mediterranean fruit flies. *Aust. J. exp. Agric. Anim. Husb.* **22**, 116–123.

201. Rojas Villegas R., Avena Bustillos R., Silveria M., Carrillo Lopez A. and Yahia E.M. (1995). Effect of insecticidal atmospheres on the mortality of fruit flies in mango. *Acta Hort.* **370**, 89–91.

202. Schirra M., Mulas M., Fadda A. and Cauli E. (2004). Cold quarantine responses of blood oranges to postharvest hot water and hot air treatments. *Postharvest Biol. Technol.* **31**, 191–200.

203. Seo S.T., Hu B.K.S., Komura M., Lee C.Y.L. and Harris E.J. (1974). *Dacus dorsalis* vapor heat treatment in papayas. *J. econ. Ent.* **67**, 240–242.

204. Seo S.T., Kobayashi R.M., Chambers D.L., Steiner L.F., Lee C.Y.L. and Komura M. (1974). Mango weevil: cobalt-60 gamma-irradiation of packaged mangoes. *J. econ. Ent.* **67**, 504–505.

205. Sharp J.L. and Spalding D.H. (1984). Hot water as a quarantine treatment for Florida mangos infested with Caribbean fruit fly. *Proc. Fla St. hort. Soc.* **97**, 355–357.

206. Sharp J.L. (1986). Hot-water treatment for control of *Anastrepha suspensa* (Diptera: Tephritidae) in mangos. *J. econ. Ent.* **79**, 706–708.

207. Sharp J.L. and Chew V. (1987). Time/mortality relationships for *Anastrepha suspensa* (Diptera: Tephritidae) eggs and larvae submerged in hot water. *J. econ. Ent.* **80**, 646–649.

208. Sharp J.L., Ouye M.T., Thalman R., Hart W., Ingle S.J. and Chew V. (1988). Submersion of 'Francis' mango in hot water as a quarantine treatment for the West Indian fruit fly and the Caribbean fruit fly (Diptera: Tephritidae). *J. econ. Ent.* **81**, 1431–1436.

209. Sharp J.L., Ouye M.T., Hart W., Ingle S.J., Hallman G.J., Gould W.P. and Chew V. (1989). Immersion of Florida mangos in hot water as a quarantine treatment for Caribbean fruit fly (Diptera: Tephritidae). *J. econ. Ent.* **82**, 186–188.

210. Sharp J.L., Ouye M.T., Ingle S.J., Hart W., Enkerlin H., Celedonio H., Toledo J., Stevens L., Quintero E., Reyes F. and Schwarz A. (1989). Hot-water quarantine treatment for mangoes from the state of Chiapas, Mexico, infested with Mediterranean fruit fly and *Anastrepha serpentina* (Wiedemann) (Diptera: Tephritidae). *J. econ. Ent.* **82**, 1663–1666.

211. Sharp J.L., Ouye M.T., Ingle S.J. and Hart W. (1989). Hot-water quarantine treatment for mangoes from Mexico infested with Mexican fruit fly and West Indian fruit fly (Diptera: Tephritidae). *J. econ. Ent.* **82**, 1657–1662.

212. Sharp J.L. and Pichio-Martinez H. (1989). Hot-water quarantine treatment to control fruit flies in mangoes imported into the United States from Peru. *J. econ. Ent.* **83**, 1940–1943.

213. Sharp J.L. (1992). Hot-air quarantine treatment for mango infested with Caribbean fruit fly (Diptera: Tephritidae). *J. econ. Ent.* **85**, 2302–2304.

214. Sharp J.L. (1993). Hot-air quarantine treatment for 'Marsh' White grapefruit infested with Caribbean fruit fly (Diptera: Tephritidae). *J. econ. Ent.* **86**, 462–464.

215. Sharp J.L. and Gould W.P. (1994). Control of Caribbean fruit fly (Diptera: Tephritidae) in grapefruit by forced hot air and hydrocooling. *J. econ. Ent.* **87**, 131–133.

216. Sharp J.L. and McGuire R.G. (1996). Control of Caribbean fruit fly (Diptera: Tephritidae) in navel orange by forced hot air. *J. econ. Ent.* **89**, 1181–1185.

217. Sharp J.L. and Polavarapu S. (1999). Gamma radiation doses for preventing pupariation and adult emergence of *Rhagoletis mendax* (Diptera: Tephritidae). *Can. Ent.* **131**, 549–555.

218. Shellie K.C., Firko M.J. and Mangan R.L. (1993). Phytotoxic response of 'Dancy' tangerine to high-temperature, moist, forced-air treatment for fruit fly disinfection. *J. Am. Soc. Hort. Sci.* **118**, 481–485.

219. Shellie K.C. and Mangan R.L. (1994). Postharvest quality of 'Valencia' orange after exposure to hot, moist, forced air for fruit fly disinfection. *HortScience* **29**, 1524–1527.

220. Shellie K.C. and Mangan R.L. (1996). Tolerance of red-fleshed grapefruit to a constant or stepped temperature, forced-air quarantine heat treatment. *Postharvest Biol. Technol.* **7**, 151–159.

221. Shellie K.C., Mangan R.L. and Ingle S.J. (1997). Tolerance of grapefruit and Mexican fruit fly larvae to heated controlled atmospheres. *Postharvest Biol. Technol.* **10**, 179–186.

222. Shellie K.C. and Mangan R.L. (1998). Navel orange tolerance to heat treatments for disinfecting Mexican fruit fly. *J. Am. Soc. Hort. Sci.* **123**, 288–293.

223. Shellie K.C. (2002). Ultra-low oxygen refrigerated storage of 'Rio red' grapefruit: fungistatic activity and fruit quality. *Postharvest Biol. Technol.* **25**, 73–85.

224. Shirzad B.M. and Langerak D.I. (1984). Gamma radiation technological feasibility if increasing shelf-life of table grapes. *Acta Aliment.* **13**, 47–64.

225. Sitton J.W. and Patterson M.E. (1992). Effect of high-carbon dioxide and low-oxygen controlled atmospheres on postharvest decays of apples. *Pl. Dis.* **76**, 992–995.

226. Skrzynski J. (1994). The effect of low oxygen storage on Jonagold and Golden Delicious apples. *Acta Hort.* **368**, 558–565.

227. Smilanick J.L. and Fouse D.C. (1989). Quality of nectarines stored in insecticidal low- O_2 atmospheres at 5 and 15°C. *J. Am. Soc. Hort. Sci.* **114**, 431–436.

228. Smilanick J.L., Mikota F., Hartsell P.L., Muhareb J.S. and Denis-Arrue N. (2000). The quality of three table grape varieties fumigated with methyl bromide at doses recommended for the control of mealybugs. *HortTechnology* **10**, 159–162.

229. Smith K.J. and Lay-Yee M. (2000). Response of 'Royal Gala' apples to hot water treatment for insect control. *Postharvest Biol. Technol.* **19**, 111–122.

230. Soderstrom E.L., Brandl D.G., Hartsell P.L. and Mackey B.E. (1991). Fumigants as treatments for harvested citrus fruits infested with *Asynonychus godmani* (Coleoptera: Curculionidae). *J. econ. Ent.* **84**, 936–941.

231. Soderstrom E.L. and Brandl D.G. (1989). Codling moth response to controlled atmospheres. In *Proceedings of the 5th International Controlled Atmosphere Research Conference, Wenatchee, Washington, 14–16 June, 1989*. Vol. 1, ed. J.K. Fellman, pp. 215–219. Washington State University, Wenatchee, WA.

232. Soma Y., Sunagawa K., Kurokawa K., Nakamura M., Misumi T. and Kawakami F. (1991). Chemical injury of 'Kyoho' grapes fumigated with methyl bromide. *Res. Bull. Pl. Prot. Serv., Japan* **27**, 83–86.

233. Soma Y., Kawakami F., Misumi T., Nakamura M. and Sunagawa K. (1994). Some factors causing chemical injury of Satsuma mandarins fumigated with methyl bromide and injury protection. *Res. Bull. Pl. Prot. Serv., Japan* **30**, 1–9.

234. Spitzer G.H. and Couey H. (1983). Methyl bromide fumigation treatments of fruits infested by the Mediterranean fruit fly (Diptera: Tephritidae). *J. econ. Ent.* **76**, 547–550.

235. Sproul A.N. (1976). Disinfestation of Western Australian Granny Smith apples by cold treatment against the egg and larval stages of the Mediterranean fruit fly (*Ceratitis capitata* (Wied.)). *Aust. J. exp. Agric. Anim. Husb.* **16**, 280–285.

236. Stow J. (1989). The response of apples cv. Cox's Orange Pippin to different concentrations of oxygen in the storage atmosphere. *Ann. appl. Biol.* **114**, 149–156.

237. Streif J., Retamales J., Cooper T. and Kania J. (1992). Storage of nectarines in CA and high CO_2 concentrations to reduce physiological disorders. *Gartenbauwissenschaft* **57**, 166–172.

238. Suplicy Filho N., Calza R., Paiva J., Gloria M., Oliveria D. and Raga A. (1987). Evaluation of the efficiency of treatments with ionizing irradiation for control of the Mediterranean fruit fly *Ceratitis capitata* (Wied., 1824) (Diptera: Tephritidae). *Archos Inst. biol., S. Paulo* **54**, 49–55.

239. Tebbets J.S., Hartsell P.L., Nelson H.D. and Tebbets J.C. (1983). Methyl bromide fumigation of tree fruits for control of the Mediterranean fruit fly: concentrations, sorption, and residues. *J. agric. Fd Chem.* **31**, 247–249.

240. Thomas D.B. and Shellie K.C. (2000). Heating rate and induced thermotolerance in Mexican fruit fly (Diptera: Tephritidae) larvae, a quarantine pest of citrus and mangoes. *J. econ. Ent.* **93**, 1373–1379.

241. Thomas P., Bhushan B. and Joshi M.R. (1995). Comparison of the effect of gamma irradiation, heat-radiation combination, and sulphur dioxide generating pads on decay and quality of grapes. *J. Fd. Sci. Technol. (Mysore)* **32**, 477–481.

242. Tian S.P., Folchi A., Pratella G.C. and Bertolini P. (1996). The correlations of some physiological properties during ultra low oxygen storage in nectarine. *Acta Hort.* **374**, 131–140.

243. Toba H.H. and Moffit H.R. (1990). Controlled atmosphere cold storage as a postharvest quarantine treatment for codling moth on apples. In *Proceedings of the International Conference on Technology Innovation in Freezing and Refrigeration of Fruits and Vegetables*, 345–347. IIR, Paris.

244. Toba H.H. and Moffit H.R. (1991). Controlled-atmosphere cold storage as a quarantine treatment for non-diapausing codling moth (Lepidoptera: Tortricidae) larvae in apples. *J. econ. Ent.* **84**, 1316–1319.

245. Toba H.H. and Burditt A.K. (1992). Gamma irradiation of codling moth (Lepidoptera: Tortricidae) eggs as a quarantine treatment. *J. econ. Ent.* **85**, 464–467.

246. Truter A.B., Eksteen G.J. and Van der Westhuizen J.M. (1982). Controlled-atmosphere storage of apples. *Decid. Fruit Grow.* **32**, 226–237.

247. Truter A.B. and Combrink J.C. (1992). Controlled atmosphere storage of peaches, nectarines and plums. *J. sth. Afr. Soc. Hort. Sci.* **2**, 10–13.

248. Truter A.B., Combrink J.C. and von Mollendorff L.J. (1994). Controlled-atmosphere storage of apricots and nectarines. *Decid. Fruit Grow.* **44**, 421–427.

249. van Merwe J.A., Combrink J.C. and Calitz F.J. (2003). Effect of controlled atmosphere storage after initial low oxygen stress treatment on superficial scald development on South African-grown Granny Smith and Topred apples. *Acta Hort.* **600**, 261–265.

250. van Schaik A.C.R. and Boerigter H.A.M. (1989). The effects of low ethylene storage in 1% and 3% oxygen on the quality of apples cv. Belle de Boskoop. *Acta Hort.* **258**, 69–80.

251. Vanamala J., Cobb B., Pike L. and Patil B. (2003). Ionizing radiation and storage effects on postharvest quality of 'Rio Red' grapefruit. *Acta Hort.* **628**, 635–641.

252. von Windeguth D.L. (1982). Effects of gamma irradiation on the mortality of the Caribbean fruit fly in grapefruit. *Proc. Fla St. hort. Soc.* **95**, 235–237.

253. von Windeguth D.L. (1986). Gamma irradiation as a quarantine treatment for Caribbean fruit fly infested mangoes. *Proc. Fla St. hort. Soc.* **99**, 131–134.

254. von Windeguth D.L. and Ismail M.A. (1987). Gamma irradiation as a quarantine treatment for Florida grapefruit infested with Caribbean fruit fly, *Anastrepha suspensa*, (Loew). *Proc. Fla St. hort. Soc.* **100**, 5–7.

255. von Windeguth D.L. and Gould W.P. (1990). Gamma irradiation followed by cold storage as a quarantine treatment for Florida grapefruit infested with Caribbean fruit fly. *Fla Ent.* **73**, 242–247.

256. Watkins C., McMath K., Bowen J., Brennan C., McMillan S. and Billing D. (1991). Controlled atmosphere storage of 'Granny Smith' apples. *N. Z. J. Crop Hort. Sci.* **19**, 61–68.

257. Wheeler D.A., Packer J.E. and MacRae E.A. (1989). Responses of 'Fuyu' persimmon to gamma-irradiation. *HortScience* **24**, 635–637.

258. Whiting D.C., Foster S.P., van den Heuvel J. and Maindonald J.H. (1992). Comparative mortality responses of four tortricid (Lepidoptera) species to a low oxygen-controlled atmosphere. *J. econ. Ent.* **85**, 2305–2309.

259. Whiting D.C., van den Heuvel J. and Foster S.P. (1992). Potential of low oxygen/moderate carbon dioxide atmospheres for postharvest disinfection of New Zealand apples. *N. Z. J. Crop Hort. Sci.* **20**, 217–222.

260. Whiting D.C., O'Connor G.M., Heuvel J. and Maindonald J.H. (1995). Comparative mortalities of six tortricid (Lepidoptera) species to two high-temperature controlled atmospheres and air. *J. econ. Ent.* **88**, 1365–1370.

261. Whiting D.C. and Hoy L.E. (1997). High-temperature controlled atmosphere and air treatments to control obscure mealybug (Hemiptera: Pseudococcidae) on apples. *J. econ. Ent.* **90**, 546–550.

262. Whiting D.C. and Hoy L.E. (1997). Mortality response of lightbrown apple moth to a controlled atmosphere cold storage treatment for apricots. In *Proceedings of the Fiftieth New Zealand Plant Protection Conference, Lincoln University, Canterbury, 18–21 August, 1997*, ed. M.O'Callaghan, pp. 431–435. New Zealand Plant Protection Society, Canterbury.

263. Whiting D.C. and Hoy L.E. (1998). Effect of temperature establishment time on the mortality of *Epiphyas postvittana* (Lepidoptera: Tortricidae) larvae exposed to a high-temperature controlled atmosphere. *J. econ. Ent.* **91**, 287–292.

264. Whiting D.C. and Heuvel J. (1998). Disinfestation of leafroller and mite pests using a high-temperature controlled atmosphere. *Acta Hort.* **464**, 267–271.

265. Whiting D.C., Jamieson L.E., Spooner K.J. and Lay-Yee M. (1999). Combination high-temperature controlled atmosphere and cold storage as a quarantine treatment against *Ctenopseustis obliquana* and *Epiphyas postvittana* on 'Royal Gala' apples. *Postharvest Biol. Technol.* **16**, 119–126.

266. Williams M., Brown M., Vesk M. and Brady C. (1994). Effect of postharvest heat treatments on fruit quality, surface structure, and fungal disease in Valencia oranges. *Aust. J. exp. Agric. Anim. Husb.* **34**, 1183–1190.

267. Williams P., Hepworth G., Goubran F., Muhunthan M. and Dunn K. (2000). Phosphine as a replacement for methyl bromide for postharvest disinfestation of citrus. *Postharvest Biol. Technol.* **19**, 193–199.

268. Williamson D.L., Summy K.R., Hart W., Sanchez-R M., Wolfenbarger D.A. and Bruton B.D. (1986). Efficacy and phytotoxicity of methyl bromide as a fumigant for the Mexican fruit fly (Diptera: Tephritidae) in grapefruit. *J. econ. Ent.* **79**, 172–175.

269. Wolfenbarger D.A. and Guenthner A.W. (1998). Effects of irradiation on Mexican fruit fly (Diptera: Tephritidae) larvae infesting grapefruit. *Trop. Agric.* **75**, 375–379.

270. Yahia E.M., Ortega D., Martinez D. and Moreno P. (1999). In vitro mortality of eggs and third instar larvae of *Anastrepha ludens* and *A. obliqua* with insecticidal controlled atmospheres at high temperature. *HortScience* **34**, 527.

271. Yahia E.M. and Ortega-Zaleta D. (2000). Mortality of eggs and third instar larvae of *Anastrepha ludens* and *A. obliqua* with insecticidal controlled atmospheres at high temperatures. *Postharvest Biol. Technol.* **20**, 295–302.

272. Yokoyama V.Y. and Miller G.T. (1987). High temperature for control of oriental fruit moth (Lepidoptera: Tortricidae) in stone fruits. *J. econ. Ent.* **80**, 641–645.

273. Yokoyama V.Y., Miller G.T. and Hartsell P.L. (1987). Methyl bromide fumigation for quarantine control of codling moth (Lepidoptera: Tortricidae) on nectarines. *J. econ. Ent.* **80**, 840–842.

274. Yokoyama V.Y., Miller G.T. and Hartsell P.L. (1987). Methyl bromide fumigation to control the oriental fruit moth (Lepidoptera: Tortricidae) in nectarines. *J. econ. Ent.* **80**, 1226–1228.

275. Yokoyama V.Y. and Miller G.T. (1989). Response of codling moth and oriental fruit moth (Lepidoptera: Tortricidae) immatures to low-temperature storage of stone fruits. *J. econ. Ent.* **82**, 1152–1156.

276. Yokoyama V.Y., Miller G.T. and Hartsell P.L. (1990). Evaluation of a methyl bromide quarantine treatment to control codling moth (Lepidoptera: Tortricidae) on nectarine cultivars proposed for export to Japan. *J. econ. Ent.* **83**, 466–471.

277. Yokoyama V.Y., Miller G.T. and Hartsell P.L. (1990). A methyl bromide quarantine treatment to control codling moth (Lepidoptera: Tortricidae) on nectarines packed in shipping containers for export to Japan and effect on fruit attributes. *J. econ. Ent.* **83**, 2335–2339.

278. Yokoyama V.Y., Miller G.T. and Hartsell P.L. (1994). Methyl bromide efficacy and residues in large scale quarantine tests to control codling moth (Lepidoptera: Tortricidae) on nectarines in field bins and shipping containers for export to Japan. *J. econ. Ent.* **87**, 730–735.

279. Yokoyama V.Y. and Miller G.T. (2000). Response of omnivorous leafroller (Lepidoptera: Tortricidae) and onion thrips (Thysanoptera: Thripidae) to low-temperature storage. *J. econ. Ent.* **93**, 1031–1034.

280. Yokoyama V.Y., Miller G.T. and Crisosto C.H. (2001). Pest response in packed table grapes to low temperature storage combined with slow-release sulfur dioxide pads in basic and large-scale tests. *J. econ. Ent.* **94**, 984–988.

281. Yoshida T., Borgic D.M., Chen P.M. and Mielke E.A. (1986). Changes in ethylene, acids, and brown-core development of 'Bartlett' Pears in low-oxygen storage. *HortScience* **21**, 472–474.

282. Zagory D., Ke D. and Kader A.A. (1989). Long term storage of 'Early Gold' and 'Shinko' Asian pears in low oxygen atmospheres. In *Proceedings of the 5th International Controlled Atmosphere Research Conference, Wenatchee, Washington, 14–16 June, 1989*. Vol. 1, ed. J.K. Fellman, pp. 353–358. Washington State University, Wenatchee, WA.

283. Zapater M. (1992). Methyl bromide as a quarantine treatment for citrus infested by the 'Mediterranean fruit fly'. *Rev. Fac. Agron., Univ. Buenos Aires* **13**, 171–176.

284. Zoffoli J.P., Latorre B.A., Rodriguez E.J. and Aldunce P. (1999). Modified atmosphere packaging using chlorine gas generators to prevent *Botrytis cinerea* on table grapes. *Postharvest Biol. Technol.* **15**, 135–142.