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Models of population growth
There are several standard models for the rate of change of

a population which we consider sufficiently large to be treated
as a continuum, that is, the models which we use are based on
ordinary differential equations rather than being discrete or
stochastic models. They are

1.

This is the trivial model in that the population is assumed to be
constant. Such a model is not without its uses. If one is consider-
ing a population over a period of time sufficiently small for the
normal means of increase and decrease of population to have
any effect, one can treat the population as a constant. In one of
the classical epidemiology models, the famous SIR model of
Kermack and McKendrick,1 described by the system of three
equations

in which the overdot denotes differentiation with respect to
time, the population N is divided into three groups, or com-
partments, comprising the susceptibles (S), the infectives (I)
and the removed (R) we have such a situation. The contraction
of the disease is measured at a rate r and is assumed to be pro-
portional to the product of the susceptibles and the infectives,
i.e. there is an assumption of the equal probability of mixing of
any pairs in the population. Murray (ref. 2, p. 320) notes that
this is a major assumption and in many situations does not
hold, a notable example being most sexually transmitted
diseases. The effect of the disease is measured by the rate of
removal of infectives. In the case of a benign disease, this class
becomes the proportion of the population which has recov-
ered with immunity. In the case of a malign disease, this class is
just the removed. Provided the disease acts over a short period
of time, the constancy of the population may be assumed. In
the case of a fatal disease, the shortness of the period of time is
doubtless beneficial to the comfort of the investigators.

2.

The constant rate of increase of the population described by
(1.4) enables one to do a little more than with (1.1) without a
serious increase in the mathematical difficulty.

3.

in which the proportional rate of change of population is given
by the parameter σ. This is the famous model published by the
Englishman, Thomas Malthus,3 in 1798 with the rather discon-
certing implication that the continued rapid growth of popula-
tion—a feature of 18th-century Europe by comparison with
previous centuries during which plague and war effected a
more modest rate of growth of population—would lead to
massive starvation. The model excited public opinion and
became sufficiently entrenched in the popular imagination for
Malthus generally to be regarded as the pioneer of mathemati-
cal modelling in the inexact sciences, despite the rather more
sophisticated model advanced by Daniel Bernoulli4 in his
study of the effect of inoculation with cowpox on the spread
of smallpox nearly 40 years before the work of Malthus was
published. An integrable example of this nature has been
discussed by Nucci and Leach,5 with the model described by
the sets of equations

in which S(t) is the susceptible component of the population,
I(t) is the infected component of the population, µK represents
a constant rate of replenishment of susceptibles, µ is the pro-
portionate death rate, β is the infectivity coefficient of the typi-
cal interaction term, and γ the recovery coefficient.

4.

in which the additional parameter, C, is of the nature of a ‘car-
rying capacity’. This variation was introduced 40 years after
the model of Malthus in 1838 by the Hollander Verhulst,6 to
avoid the obvious excesses to which the model of Malthus led.
By a curious twist of fate (1.10), which is usually known as the
logistic equation rather than Verhulst’s equation, gained con-
siderable notoriety about quarter of a century ago in its dis-
crete form as a simple paradigm of chaos for suitable values of a
parameter which is equivalent to the increasing of the time
step to something considerably beyond a value which would
be regarded as reasonable for a numerical procedure.

These four model equations—(1.1), (1.4), (1.6) and (1.10)—can
be regarded as successive approximations of the same phenome-
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non. For a short period, one could regard the population as
constant. For a longer period of time a constant rate of increase
could be used. The next model is to assume that the rate is
proportional to the existing population and, finally, one must
take into account the limitations of the environment in which
the population is growing by adding the additional term due to
Verhulst.

Because these different models have validity for different
regimes, it is possible to find a mixture of growth rates in a popu-
lation containing varied components. An early example of this
can be found in extensions to the models of Lotka and Volterra.
Volterra7 proposed the model, related to fishing in the Adriatic,

in which now N(t) is the population of the desired species
(presumably desired for fishing) and P(t) is the population of a
predator species. The parameters a, b, c and d determine the rates
at which the populations increase and decrease and interact
with each other. A similar model, in this case connected to
chemical reactions, was proposed by Lotka8 about the same time.
The bilinear term PN is typical of Lotka–Volterra models. In this
model, the species N, the prey, is taken to have Malthusian
growth with the implicit assumption that the species P, the
predator, consumes sufficient of the prey for the Malthusian
growth not to be excessive in terms of the carrying capacity of
the local environment. In the case that the predator does not
make serious incursions upon the population of the prey, it is
more appropriate to replace the Malthusian term with a logistic
term, so that (1.12) becomes

One notes that the Malthusian term in (1.13) gives a reduction
in the population of the predatory species and so there is no
need to introduce a logistic term here. Thus, in the one model
different modes of growth of a population may be included
without any affront to sensibility.

We further remark that these four model equations—(1.1),
(1.4), (1.6) and (1.10)—are integrable, indeed trivially so. In fact
all possess the Painlevé property, i.e. they have solutions in
terms of analytic functions. We observe that the systems (1.3)
and the pair (1.8) and (1.9) have the property that their respec-
tive sums are simply (1.1) and (1.4) in suitable variables, respec-
tively. This is not the case with the Lotka–Volterra model, (1.12)
and (1.13), except for the specific cases in which the parameters
are related according to a = c and b = d and then the base model
is simply (1.1).

Systems such as the SIR model represented by (1.3), which can
be summed to give a single scalar equation in one variable, are
called ‘decomposed systems’ and may be viewed as the decom-
position of the single equation, (1.1) in the case of (1.3), according
to some rule. The question which we wish to address here is the
integrability of the decomposed systems.

We made the point above (following Murray2) that the
assumption of free mixing is generally not valid for sexually
transmitted diseases, but there is an example—based upon the
properties of gonorrhoea—for which this occurs. The population
is divided into two groups, male and female, and each of these
two groups is divided into susceptibles and infectives. The argu-
ment is that a disease such as gonorrhoea does not confer immu-
nity and so a person who has been treated returns to the class of
susceptibles. The population is assumed to be constant in terms
of the number of females and the number of males, so that the

total population is also constant. The four-dimensional system is

where the lower case letters are the rate constants and the
symbols for susceptibles and infectives are obvious. For an unex-
plained reason, Murray (ref. 2, p. 329) makes the females the
starred variables. We observe that (1.15) is a double decomposi-
tion in that we can write the basic system

as the two-dimensional system

where P = N + N*. Then each of (1.17) and (1.18) can be decom-
posed to give the system (1.15). However, the decompositions of
(1.17) and (1.18) do not give two pairs of independent two-
dimensional systems.

We are interested in integrable decomposed systems. It is
important to realize that the general decomposition cannot be
expected to be integrable. We consider an example which arises
in an analysis of the Yang–Baxter equations,9,10 but in reverse.
The two-dimensional system

can be considered to be the decomposition of the Riccati equation

where z = r + w. The system (1.19) is integrable.11 A further
decomposition of (1.19), in fact to the form given by Golubchik
and Sokolov,10 is

As a Riccati equation, (1.20) possesses the Painlevé property
and is integrable in terms of analytic functions. The first decom-
posed system, (1.19), is equally well-integrable. The second
decomposed system, (1.21), is, according to Golubchik and
Sokolov, integrable, but this integrability is not in terms of
analytic functions.11

In this work we are concentrating on decomposible systems.
More precisely, in the sequel we are going to address certain
classes of decomposible systems. We accept that this is a restric-
tion of the class of dynamical systems to be found in the analysis
of various problems in epidemiology, ecology and related fields.
However, we seek to explore the way in which integrable one-
dimensional systems can be decomposed in such a way that the
decomposed system is also integrable at the same level of
integrability. Since our original systems—(1.1), (1.4), (1.6) and
(1.10)—are integrable in terms of analytic functions, we look to
analytic solutions for the decomposed systems.

A whole class of problems has been excluded from even the
possibility of consideration in this work.

When we consider a population and its rate of change, the
models which we have used, certainly in (1.6) and (1.10) as the
rates of change in the two simpler models are independent of the
population, look to the whole population as contributing to its
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increase or, as we have been considering the effects of disease or
predation in the main, its decrease. In some populations,
microbes come to mind; this is not unreasonable as microbes
become capable of replication rather quickly. On the other hand,
populations comprising more complicated species can be
divided into the three classes of nonreproductive due to imma-
turity, reproductive and nonreproductive due to—may we
politely put it—postmaturity. This class of population lies outside
the class of decomposible systems considered in this work. Even
models for which the concern of a proportion of the population
being reproductive is not of major relevance can still exhibit the
same problem. For example, in an epidemiological model for
HIV infection in an homosexual population, Murray (ref. 2,
p. 338) gives the system

where X represents the number of susceptibles, Y the number of
infectious HIV-positive persons, A the number of AIDS patients
and Z the number of noninfectious HIV-positive persons. If we
add the component equations of (1.22), we obtain the equation
for the rate of change of the total population under consideration

where B represents the recruitment rate of susceptibles into the
population, µ is the natural rate of demise and d the additional
rate of demise of the AIDS-afflicted portion of the population, A.
In the absence of AIDS, (1.23) would be a combination of the
one-dimensional models (1.4) and (1.6). However, in the presence
of AIDS the model (1.22) is without the bounds of consideration
in this discussion.

Methods of analysis of systems of first-order ordinary
differential equations

In the analysis of systems of first-order ordinary differential
equations, which in general are not responsive to the ideals of
integrability in terms of closed-form functions, the habit of
almost a century, since the pioneering work of Poincaré estab-
lished the power of his analysis, has been the analysis of the
systems from the point of view of Dynamical Systems, which
can be regarded as an outgrowth—a process of considerable
generalization in itself—of the analysis of Hamiltonian systems
in mechanics. In the fields such as ecology, economics, epidemi-
ology and their likes the methods of Poincaré have been largely
dominant for the simple reason that the systems of differential
equations under investigation are rarely integrable in an ‘obvious’
fashiona). To the analytical methods of Dynamical Systems one
can add the computational methods derived from numerical
analysis. As long as the system has been established to be with-
out chaos, one may rely upon the computations to provide a
numerically accurate description of the evolution of the system.
Of course, if the system is nonlinear—a not uncommon situa-
tion—in structure, the computation of solutions can be calcula-
tionally extremely expensive.

Somewhat neglected in the general scheme of these analyses
are the two methods which have particular relevance to
integrable systems. We refer to the symmetry analysis of Lie and

the singularity analysis of Painlevé. We consider the latter first.
The essence of the Painlevé approach is to expand the solution of
the system of differential equations in terms of a Laurent series
which contains a number of arbitrary constants equal to that of
the order of the system. The precise details of the analysis may be
found in such standard references as Ramani et al.12 and Tabor.13

The symmetry analysis of Lie and its evolution over the past
century and a quarter is simply a matter of invariance of a
functional object.b The invariance of a differential equation
under a transformation—in principle finite, but the genius of Lie
was to use the infinitesimal approach—has the effect of reducing
the dimensionality of the extended phase space in which it exists
and, if the number of symmetries being to both sufficient and
of suitable nature,c the differential equation is reduced to an
algebraic equation and the system generated by the series of
reductions rendered possible by the symmetries becomes a
series of quadratures. This is integrability even though it may
not be possible to express the solution in closed form.

In the analysis of the various systems presented below, we use
the analyses of both Lie and Painlevé. The methods of symmetry
analysis have become quite diverse over the years. In the first
instance, the idea of a point or contact transformation, as is
found in the works of Lie,14–17 was extended to include generalized
transformations by Noether18 and more recently to include
nonlocal transformations.9,20 The rationale for the extension of
the type of symmetry—hence infinitesimal transformation and
ultimately finite transformation—allowed can be stated to be
simply one of utilitarianism.21 If one can make sense of the use of
a particular symmetry in the solution of a system of differential
equations, then that type of symmetry is useful. That these
symmetries can fall outside the classical structure of Lie symme-
tries as representation of the classical Lie groups is not surprising.
The classical Lie groups were established upon a certain structure
and that structure was not as general as the types of symmetry
considered now. There is in fact a pressing need for the re-estab-
lishment of the theory of Lie groups in terms of the modern
appreciation of infinitesimal transformations related to differen-
tial equations. The reason for this is the important role which Lie
groups have played in the interpretation of physical and other
phenomena described by differential equations.

However, this is not the place for such an extensive discussion.
As the singularity analysis which is the essence of the Painlevé

test is generally well known and the same can be said of the Lie
analysis for symmetries, we give a brief explanation of the
method of reduction of order,22,23 with which the reader may not
be so familiar.

The method of reduction of order

A system of differential equations

in which the element, xj, of the multivariable, x, can occur in the
right side as a derivative to an order of one less than the particular
value of i in its peculiar differential equation, may always be
written in terms of a system of first-order ordinary differential
equations as
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aGenerally speaking, it is expected that these systems are integrable in the sense of being
nonchaotic but nonintegrable in the sense of failing to possess a solution which can be
expressed in closed form. It should be noted that ‘closed form’ does not carry the traditional
implication of being expressible in terms of elementary functions. A closed-form solution
can be in terms of special functions. The classic example of this is the equation ��x + x = 0.

bCommonly this is considered to be a differential equation, but the idea is equally applicable
to functions.
cThe Lie symmetries of a differential equation constitute a Lie algebra and the internal
relationships of the elements of the algebra act as possible constraints on their utility. For
example, a differential equation invariant under a representation of the algebra so(3), the
algebra of the rotation group in three dimensions has no further constraint imposed upon it
by the third element of the algebra above those imposed by the first and second elements
due to the cyclic nature of the Lie Brackets.



where we assume that the number of first-order equations
equals the number of dependent variables by the simple device
of defining the higher derivatives in (3.1) as new variables.
Consequently, by a curious irony, in one sense, the method of
reduction of order properly starts at (3.2). Since (3.2) is autono-
mous,d one of the dependent variables may be chosen as a new
independent variable. This is the standard method for the reduc-
tion of order of an autonomous system. For the sake of the
presentation, we suppose that the chosen dependent variable is
wn. Then the system (3.2) may be replaced by

and we replace wn by y to indicate its new status.
The analysis of a system, such as (3.3), of first-order ordinary

differential equations for symmetries is a hazardous task as the
system has an infinite number of symmetries and their determi-
nation is by a system of equations which requires the solution of
the original system. One can make additional requirements
upon the symmetries—an interesting and very useful require-
ment is mentioned in the section on the ladder problem—so that
the process of determination is a somewhat more finite process
than that of dealing with the infinite. One method to deal with
this problem is to increase the order of some of the equations in
the system of first-order equations (3.3). The process has been
applied with singular success to the Kepler problem by Nucci22 in
her demonstration that the complete symmetry group of the
Kepler problem could be obtained by means of the standard
methods of the Lie point symmetry analysis. A theoretical exten-
sion may be found in Nucci et al.23 and a number of applications
to variations on the basic underpinnings of the Kepler problem
in Nucci et al.24 One seeks to be able to solve the system of order
(n –1) for one of the dependent variables, so that it may be elimi-
nated and in the process the order of at least one of the
first-order differential equations be increased. In the case of a
very agreeable system, this process may occur several times so
that the system of n first-order equations may be considerably
reduced in number. In principle this process could be used to
reconstruct a single higher-order equation, but experience has
shown that the extension of the procedure past second-order
equations is no more productive than the reduction to second-
order equations. Consequently, one looks to the reduction of
(3.3) from a system of first-order equations to a system which
involves at least one second-order equation. The intrusion of the
second-order equation on the determination of the Lie point
symmetries is extremely significant. The number of Lie point
symmetries is reduced from infinity to a finite number, prefera-
bly a number not zero. The number of symmetries which can be
determined from this system is frequently critical to the explana-
tion, if not establishment, of the original system. We give a very
simple example, albeit one which has attracted a literature of
diverse opinion,25–27,46 namely,

where p ≠ 0, 1, for which there exists not a single Lie point sym-
metry for general f. Nevertheless, (3.4) is obviously integrable.

The Ladder Problem
Our interest in decomposable systems arose from two papers

by Imai and Hirata,29,30 in which they developed a necessary

condition for the existence of Lie point symmetries in n-dimen-
sional systems of first-order ordinary differential equations and
applied the ideas developed there to establish a new integrable
family in the class of Lotka–Volterra systems.e The Lotka–Volterra
systems considered were quite specific in their structures.
Both are homogeneous quadratic systems. The first system con-
sidered was called a ladder system because of the relationships
between the elements of a matrix in the system. The ladder
system is

where the elements of (aij ) are defined by aij = i + 1 – j, i, j = 1, n.
The generalized ladder system has aij = a0 + ai – aj . The ladder
system, which is always integrable in the sense of Lie, has been
extensively investigated from the point of view of the Painlevé
analysis by Andriopoulos et al.31 Imai and Hirata30 established
those values of the parameters in the generalized ladder problem
for which integrability in the sense of Lie is found. We note that
there is a spurious generality in the definition of the element for
the generalized ladder problem, since the constant a0 may always
be rescaled to unity by means of a change of timescale.

In Andriopoulos et al.32 the starting point of the investigation
was the observation that the ladder system is a decomposition of
the one-dimensional Riccati equation

where the variable x is decomposed into x1 + x2+ … xn. Equation
(4.2) is decomposed according to the rule for (4.1), and the defini-
tion of aij for the ladder system of Imai and Hirata. Andriopoulos
et al. considered the general problem of decomposition of the
scalar autonomous Riccati equation

where the parameters A and B could take zero values as well as
nonzero values.f

Some illustrative examples
We consider three examples which illustrate these ideas for

systems of the types �x = 0, �x = x and �x = x – x2.

The classical S – I – R model
The classical model of Kermack and McKendrick1 is described

by the system

where in the context of epidemics S is the proportion of the
population susceptible to the infection, I the proportion of popu-
lation infected by the infection, and R that proportion of the
population removed from consideration either through recovery
or death. The parameters r and a represent the infection rate and
the removal rate, respectively. The period under consideration is
such that the normal means of entry and departure from the
population may be ignored. One should emphasize that this
model is not a priori a description of an epidemic. It is a description
of a process of infection and removal. This may become an
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dThe argumentation is equally valid for time-dependent systems since the time variable may
be rendered dependent by means of the usual artificial choice of a new independent vari-
able. For the purposes of the summary of the method presented in the body of this work, we
assume that any adjustment has already been made before the analysis begins.

eImai and Hirata imposed additional constraints upon the symmetries. In fact, the coefficient
functions were required to be analytic in the neighbourhood of some fixed point and the
symmetries were independent of time both in the coefficient functions and in the differential
operators.
fAn additional constant, say C, can be added to (4.3) if so desired and an equivalent analysis
performed.



epidemic under what one could describe as inappropriate
circumstances.

On the addition of the three equations comprising (5.1), we
have

i.e. �N = 0, where now N = S + I + R. Obviously �N N= ⇒0 =
constant = 1. Under the rescalings

the system (5.1) may be written in a form free of parameters as

with the obvious summation (x + y + z)• = 0.
The inclusion of the non-dominant term, –y of (5.4b), at the test

for consistency shows that the system is not integrable in the
sense of Painlevé. To overcome the problem of inconsistency at
the resonance, a logarithmic term must be introduced.

The system (5.4) is a simple decomposition of an integrable
scalar equation. Nevertheless it fails to be integrable in the sense
of analytic functions. A suggestion of the problem is already
found in the relationship between y and x, which can be deter-
mined from the integration of the ratio of (5.4b) and (5.4a), which
gives

where A is the constant of integration. There may be a feeling of a
sense of irony that one of the simplest of models in rational
epidemiology does not have an analytic solution!

In the system (5.4) the variable z is ignorable and so the system
is a candidate for the application of the technique of reduction
of order developed by Nucci22 for the analysis of the Kepler
Problem and elaborated by Nucci et al.23 The quotients (5.4a)/
(5.4c) and (5.4b)/(5.4c) are

which is a system of one independent equation and one coupled
equation. We note that the addition of these two equations and
their subsequent integration leads to the conservation of the
total population. In the spirit of the method of reduction of order,
we would convert the system (5.6) and (5.7) to a single equation
of the second order. We eliminate x to obtain

which is a linear quasi-first-order ordinary differential equation
in y(z). From the solution of (5.8) we obtain the solution of the
system (5.6) and (5.7) to be

so that (5.4c) becomes

The quadrature of (5.11) in closed-form is not possible.
We note that, as a linear second-order ordinary differential

equation, (5.8) has eight Lie point symmetries (ref. 33, p. 405).

Tuberculosis and dengue fever
The techniques of the Lie symmetry analysis and the Painlevé

singularity analysis have been applied to the simplified multi-

strain/two-stream models for tuberculosis and dengue fever,
developed respectively by Castillo-Chavez and Feng34 and Feng
and Velasco-Hernández35 and unified by van den Driessche and
Watmough,36 and by Nucci et al.37 We use the form presented by
van den Driessche and Watmough, namely

where β1 and β2 represent the infection rates for the two strains in
the case of the tuberculosis model and for the two vectors in the
dengue fever model, ν is the contact rate for a double dose of
infection, b is the common birth and death rate, and γ1 and γ2

the recovery rates. The model, (5.12), does not represent the full
system for the tuberculosis model,34 but is a caricature of it to
enable a common discussion with the dengue fever model.35 The
model has a single class of susceptibles and two classes of
infectives corresponding to the two agents of infection.

The model (5.12) is a decomposition of

and belongs to the scheme of our discussion if we set W = N – 1
and T = bt, so that

There is equilibrium at W = 0, which corresponds to N = 1, i.e.
constant demography.g

A simplified model for gonorrhoea
At the outset we introduced a model—somewhat simplified

we are informed—for the sexually transmitted disease gonor-
rhoea as presented by Murray.2 We recall the set of equations as

and observe that not only is the total population preserved [see
(1.16)] but also the populations of males and females separately
in that we have

where N = S + I and N* = S* + I* and S and S* represent the
susceptibles and I and I* the infectives of the male and female
populations, respectively.

It is a simple matter to determine that the leading order behav-
iour is given by

and that the resonances occur at –1 and 1(3). We check for consis-
tency at the resonance by substituting

into the full system (5.15) with the leading order terms as given
in (5.18). At the resonance +1 we obtain the system
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gHere we are being faithful to the representation of the models as given,34,35 although, given
the tendency towards mortality in both diseases and the absence of the politely termed
‘removed’ class, this does seem a little at odds with reality.
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The system (5.20) can be written in a simpler form if the row
operations R’2 = R2 + R1 and R’4 = R4 + R3 are performed. Then we
have

The consistency of the system is evident from (5.21). We note
that the ranks of the coefficient matrix and the augmented
matrix are both two and that we have the explicit relations

There are two arbitrary constants introduced at the resonance,
i.e. the geometric multiplicity of the eigenvector is two. How-
ever, the resonance at +1 is a triple root, i.e. the algebraic multi-
plicity of the eigenvalue is three. There are only three arbitrary
constants, the two introduced in (5.22) and the location of the
movable pole, and so the solution presented cannot be the
general solution of the system (5.15). To obtain the general
solution one must introduce a logarithmic term and this
destroys the analytic nature of the solution.

To make our analysis of the system (5.15) complete, we
consider the transformation of the system of first-order equa-
tions to a scalar higher-order equation. Equations (5.16) and
(5.17) are trivially integrated to give

where A and B are the values of the integrals of (5.16) and (5.17).
We substitute (5.23) into (5.15b) and (5.15d) to obtain the system

From (5.24) we obtain

and, after we substitute this into (5.25) and make some rear-
rangements, we obtain the single second-order differential
equation for S, namely,

The first three terms in (5.27) are dominant and one is not sur-
prised that the exponent of the leading order term is –1 and that
the resonances are at ±1. We substitute

into (5.27) to establish that there is consistency at the exponent
for which the resonance occurs. Specifically we obtain

The coefficient of �
–4 gives

and the coefficient of �
–3 gives

From the result in (5.30) the coefficient of a1 in (5.31) is identi-
cally zero as is to be expected as this is where the resonance
occurs. The terms remaining in (5.31) give the condition

Subject to the constraint (5.32) on the parameters in (5.27), the
latter equation has an analytic solution for S(t). It follows from
(5.26) that S*(t) is also analytic and from (5.23) that I(t) and I*(t)
are also analytic.

The existence of analytic solutions for both S(t) and S*(t) may
explicitly be demonstrated by a performance of the Painlevé
analysis on the system of first-order equations (5.24) and (5.25).

We make the substitutions

to obtain

From the coefficient of �
–2 we obtain

and from the coefficient of �
–1 we have

The rank of the coefficient matrix of the vector (a1, b1)
T is one.

For consistency of the system we require that the coefficient of
the augmented matrix also be one. This system is

The rank of this system is one if

which is precisely the condition we obtained from the analysis of
the single second-order equation (5.27). We have the required
two arbitrary constants and so there can be no question of the
integrability of the first-order system given by (5.24) and (5.25).
This analysis simply reinforces the conclusion reached above
that the three-parameter solution obtained for the original
system, (5.15), is analytic away from the movable polelike singu-
larity. This type of integrability, which occurs for specific values
of the first integrals of the base system determined by the
relationship (5.38), is something of a generalization of the
integrability which occurs when an integral takes a particular
value, which is the case with configurational invariants38,39 and
in the case of the Painlevé analysis.28,45 In the papers cited, the
value of the first integral was quite specific whereas here it is a
relationship between the values of two first integrals and this
would represent a hypersurface in the space of initial conditions.

The solution obtained is not the general solution of (5.15), as it
lacks the requisite four arbitrary constants of integration. How-
ever, by the procedure which has followed from the reduction of
the system to a single second-order equation we have demon-
strated the existence of an analytic solution of (5.15) containing
three arbitrary constants of integration. Such solutions are not
unknown. We already find one explicitly given in Ince’s book
(ref. 40, p. 355). Another explicit example is found in ref. 11, in
which case the analytic solution of the system can be obtained in
closed form by means of standard methods of integration. This
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type of solution has been interpreted42 as indicating that the
system is at least integrable on a surface in the space of initial
conditions. This interpretation is not universally accepted,43 but
in this instance the interpretation is based upon fact. One must
agree that the interpretation has not been proven as a universal
result.

The system (5.15) and the scalar equation (5.27) have the obvious
Lie symmetry, ∂t , reflecting their autonomy. Even with the
constraint (5.32) there appears to be no other point symmetry.
This is a little curious as one would expect some additional
symmetry in the integrable case, compare similar instances in
Nucci et al.5 and Torrisi and Nucci.44 Evidently such additional
symmetry is not of a point nature, but is either generalized or
nonlocal.

Competition between species
To conclude our set of illustrative examples we consider the

system

This can be taken as the system modelling two competing
species. Both species have growth rates of logistic form and the
competition is assumed to be proportional to the product of the
two populations. To simplify the model so that we can easily
treat it as a decomposed system, we assume that the parameters
(c, d, e and f ) of the growth of population are sufficiently similar
to be taken as equal. This would be the case, for example, of rumi-
nants of similar reproductive habit, grazing the same area of
grassland. Under this assumption we may rescale the independ-
ent and dependent variables so that the system contains just two
essential parameters and may be written as

It is evident that the system (5.41, 5.42) is composible if a + b =
2, for then we have

where w = x + y.
For this model it is interesting to compare the results of the

methods of analysis for integrable systems treated here with the
information obtained by using the methods of dynamical
systems. The equilibrium points of the system (5.41, 5.42) are
located at (0, 0), (0, 1), (1, 0) and (xe, ye), where

Consistency of the system for the interior equilibrium point
imposes the constraint that a = b = 1. In this case the point (xe, ye)
is replaced by the line xe + ye = 1. The equilibrium point (0, 0) is
unstable. Both equilibrium points (0, 1) and (1, 0) are saddles. In
the case of (xe, ye) the eigenvalues are given by

The point is stable if the second eigenvalue is negative. How-
ever, if the system is to be composible, the second eigenvalue is
necessarily positive and the point is a saddle.

We turn now to the singularity analysis of the system (5.41,
5.42). In general the coefficients of the leading-order terms are
given by (5.44) and in the degenerate case β = 1 – α, which
indicates that the nongeneric resonance in this case is zero. The
resonances satisfy the equation

so that

and we note that the expressions for r coincide with those for � in
(5.45) above.

The system (5.41, 5.42) can possess the Painlevé property if
a + b = n + 1 + ab(1 – n), where n is an integer. In the case that
n = 1 we have the condition for the system to be composible and
to have a saddle at the interior equilibrium point. However, we
must check the full system for consistency with the behaviour of
the dominant terms. When we substitute x = ∑i=0 ai�

i and y =
∑i=0 bi�

i into system (5.41, 5.42), we obtain

For consistency, the rank of the augmented matrix must also be
one. This be the case if a + b = 2. As this is the condition for r = 1,
we have consistency and the system possesses the Painlevé
property.

One can, of course, examine the system for consistency with
higher values of r. However, there is no possibility that the system
(5.41, 5.42) is composible unless one has a = b = 1.

The composed system, (5.43), is a Riccati equation, a variables
separable equation and a Bernoulli equation. We use of the third
attribute to determine that

where A is the constant of integration. We substitute for y from
(5.49) into (5.41) to obtain

where we have replaced the right side of (5.49) with F(t) to main-
tain a compactness of notation. The equation for x shares the
same attributes as that for w. It has the solution

where B is the constant of integration and we have introduced
‘new time’ through the definition dT = (1 – aF )dt. The solution
for y follows immediately.

This example contains some points of interest. In the case that
the system (5.41, 5.42) is composible to the Riccati equation (5.43),
there is a remarkable agreement in the main parameters of the
singularity analysis and that of dynamical systems. Investiga-
tion of this feature in other systems could be of interest.

Time-dependent systems
It may have been observed that the systems treated above are

autonomous. In the case of short timescales it is probably not
unreasonable to assume that the parameters of a model are
constant. However, on the longer timescales this is scarcely
reasonable for many models. A simple example can be generated
from the model of Volterra, (1.13) and (1.14), in reference to the
problem of ruminants. In this case the prey comprises the grass
and the predator the browser. Over the period of a year, the
amount and quality of grass available to the grazing population
varies. In a realistic modelling of the carrying capacity of a partic-
ular area, this variability in the amount of grazing available must
be taken into account.
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The same idea applies to many models. The treatment of
time-dependent models is not as easy as that of autonomous
models. One hopes that is self-evident. There is a technique
available which enables one to combine the relative ease of
treatment of an autonomous system with the greater accuracy
of a time-dependent model. This is based in the Lie theory.
Suppose that one obtains a certain set of symmetries for a given
autonomous system, say by the method of reduction of order
discussed above. Associated with these symmetries there is a Lie
algebra,h of which the given set of symmetries is a representa-
tion. One can look for other representations of the same algebra
which do not include the symmetry of autonomy, namely, ∂t ,
and so construct an equivalent system which is explicitly
time-dependent. Such a system is as integrable as the original
autonomous system. If the nature of the time dependence con-
sistent with the algebra can be chosen to provide a reasonable
replication of the variability of the parameters in the system one
would expect over time, one has a much more useful model.
Such a model could be used as the basis of a solution to provide a
closer approximation to reality.

We give a simple example through an adaptation of the previ-
ous model for competing species. We observe that the condition
for the system (5.41, 5.42) to be composible, namely, a + b = 2,
does not require that a and b be constant parameters. Naturally,
the ease of analysis by the approach of dynamical systems is lost
and the singularity analysis becomes more complicated. Never-
theless, the composibility of the system and its integration are
not seriously compromised. However, one may wonder a little
about the underlying model. A more realistic model, in which
the variation of the seasons affects the carrying capacity, is

where g(t) is some function which represents the variation of the
seasons. The system (5.52, 5.53) is still composible if a + b = 2.
There is still the potential for a and b to vary in time subject to this
constraint. The composed system is

which is still a Riccati equation and a Bernoulli equation. The
preferred route to integration is through the second option. We
obtain

The equation for x is

and this is readily integrated to give

Conclusion
In this paper we have discussed a number of models arising in

various contexts of population studies.
We have selected particular types of models being systems of

first-order ordinary differential equations with the property
that they can be conflated into a single scalar first-order ordinary
differential equation in a variable which contains all of the
dependent variables of the system. The composed equations
were at most quadratic in the single dependent variable. Even in

the case of the explicitly time-dependent model considered
briefly as a final example, the integration of the single scalar
equation was formally straightforward. The attraction of having
a model which is the decomposition of a single equation is that
the integration of that single equation gives a conservation
law and so effectively reduces the order of the system by one.
Indeed, the very existence of the scalar equation imposes a
constraint and still reduces the order of a system by one.

Although we have treated models comprising only systems of
first-order ordinary differential equations, the principle of
composition can be further extended. There is no need for the
equations to be of the first order. There is no need for the
equations to be ordinary.
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