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Introduction
In an editorial article in the European Journal of Psychological Assessment titled ‘Why psychological 
assessment needs to start worrying about model fit’ (p. 313), Greiff and Heene (2017) claimed that 
in the preceding two decades researchers had relied heavily on Hu and Bentler’s (1999) suggested 
cut-off values for indices of model fit in structural equation modelling (SEM) for the majority of 
publications in the field of psychology, despite strong warnings against such practices. More 
specifically, Jackson et al. (2009, cited in McNeish & Hancock, 2018) contended that close to 60% 
of 350 published psychology studies explicitly used model fit indices to adjudicate model fit and 
concluded ‘we also did not find evidence that warnings about strict adherence to Hu and Bentler’s 
suggestions were being heeded’ (p. 2). Goodness-of-fit (GoF) indices, such as the comparative fit 
index (CFI) and the root mean square error of approximation (RMSEA), have been shown to be 
unreliable, because they are insensitive to important misspecifications at the local indicator level, 
even for close-fitting SEMs (Hayduk, 2014; McNeish & Hancock, 2018; Ropovik, 2015). According 
to Ropovik (2015) the residual correlation matrix for measurement models was meaningfully 
inspected in only 3% of publications in psychology indicating that most authors were oblivious 
to the importance of local indicator misspecification analyses (e.g. correlated residuals). 
Goodness-of-fit indices are at most provisional indicators of model fit and should always be 
complemented by local indicator misspecification analysis (Greiff & Heene, 2017; Ropovik, 2015; 
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Schaap, 2019). According to Ropovik (2015), empirically 
sound measurement models are prerequisites for the integrity 
of research findings, and their use impacts on the replicability 
of research directly. Re-evaluating SEM models that were 
previously accepted using predominately GoF indices 
without local indicator misspecification analyses may clear 
the backlog of negative consequences of earlier deficient 
model testing and enhance model replicability (Hayduk, 
2014; Schaap, 2019). In this study, the value of going beyond 
GoF indices in evaluating the dimensionality of a measure by 
offering a meaningful explanation of model (mis)fit using 
local indicator misspecification analysis by means of Bayesian 
structural equation modelling (BSEM) has been demonstrated 
(Asparouhov et al., 2015).

The MACE (the acronym MACE represents the names of the 
authors), a measure of work-to-family enrichment (WFE) 
based on Greenhaus and Powell’s (2006) theory of WFE, was 
used to demonstrate the usefulness of BSEM and local 
indicator misspecification analysis in testing a measures 
dimensionality. According to Schaap and Koekemoer (2021), 
resolving the dimensionality vacillations of the MACE 
reported across studies is important. In this study the theory 
and findings published in Schaap and Koekemoer (2021) has 
been tested using alternative samples, different measurement 
formats and a different statistical theorem known as Bayes 
theory. This approach is known as ‘conceptual replication’ 
(p. 5) which tests the robustness and generalisability of a 
theoretical claim to alternative methodological procedures, 
format of the measure and samples (Zwaan et al., 2017). 
Zwaan et al. (2017) calls for making replicability main stream 
in the behavioural sciences. Measurement model replicability 
is key to the building of sound theory. 

The WFE has been defined as the ‘extent to which experiences 
in one role improve the quality in the other role’ (Greenhaus 
& Powell, 2006, p. 73). The WFE theory postulates that the 
resources (skills and perspectives, social capital, psychological 
and physical resources, flexibility and material resources) 
generated in the work context can be transferred to the family 
domain, resulting in improved performance, affect and 
ultimately ‘quality of life’ (De Klerk et al., 2013). 

The most prominent and internationally best-known measure 
of WFE is Carlson’s Work-to-Family Enrichment Scale 
(WFES) (Carlson et al., 2006). In the South African context, 
the multidimensional MACE Work-to-Family Enrichment 
Scale (MACE-WFE) is a bidirectional measure consisting of 
the family-to-work enrichment scale (MACE-F2WE) and the 
work-to-family enrichment scale (MACE-W2FE), that was 
developed by De Klerk (2013) and later published in a 
scientific journal (De Klerk et al., 2013). In most studies the 
WFE was used as a first-order factor model, while in other 
studies a second-order model was added to avoid the biasing 
effects of multicollinearity in the analyses (De Klerk et al., 
2015; Koekemoer et al., 2017; Marais et al., 2014; Van Zyl, 
2020). Except for De Klerk (2013), none of these earlier studies 
tested for a first-order unidimensional model of the MACE-

W2FE, despite strong empirical evidence suggesting that a 
substantive general factor existed (Schaap & Koekemoer, 
2021). According to Reise et al. (2010), first-order 
unidimensional models for measures of psychological 
constructs rarely display good GoF, whereas first-order 
multidimensional models and hierarchical models almost 
always display good GoF. This appears to be true for the 
MACE-W2FE, where good-fitting models guided by GoF 
indices were reported for a correlated first-order model 
(De Klerk et al., 2015) and a second-order model (Koekemoer 
et al., 2017; Marais et al., 2014).

According to Rodriguez et al. (2016), there is ample evidence 
that measures of psychological constructs are almost 
universally hierarchical constructs (they contain both general 
and specific domains). However, psychological measures are 
often broken up into subdomains to represent multidimensional 
measures with high GoFs, whereas they could have been 
interpreted as single latent variables with trivial elements of 
multidimensionality despite showing lower GoFs (Reise et al., 
2013a; Rodriguez et al., 2016). Consequently, measurement 
models that support unidimensional constructs with trivial 
elements of multidimensionality – also known as an 
‘essentially’ unidimensional factor model that can be 
univocally interpreted (Reise et al., 2013b; Rodriguez et al., 
2016) – frequently remain untested.

Moreover, GoF indices have been shown to be overly 
sensitive in testing essentially unidimensional models 
because these models rarely show acceptable model fit, even 
when the model misspecifications are minor and are thus 
unlikely to have any substantive consequences (Reise et al., 
2013a). Schaap and Koekemoer (2021) recently found support 
for an essentially unidimensional model of the MACE-W2FE 
using bifactor and local indicator misspecification analyses 
in SEM with the frequentist-based maximum likelihood (ML) 
estimation, after the unidimensional model was rejected by 
the GoF indices. However, these findings may not generalise 
to other samples and measurement formats or when different 
and more refined methods of analyses are used. In this study, 
the authors tested if an essentially unidimensional model of 
the MACE-W2FE is retained across study samples and 
measurement formats using BSEM. The authors believed 
that much can be learned by first explicating the 
unidimensional model misfit for the MACE-W2FE found in 
the original sample and study by De Klerk (2013) – a model 
misfit that sent a clear signal for the adoption of alternative 
models in later studies (De Klerk et al., 2015; Koekemoer 
et al., 2017; Marais et al., 2014). The authors proceeded to 
replicate their findings on a second independent study 
sample that recently completed a different format of the 
MACE-W2FE. 

Therefore, the main objective of this study was to test the 
essentially unidimensional model of the MACE-W2FE on two 
independent study samples and different measurement 
formats (blocked vs. random item ordering) using BSEM and 
local misspecification analysis. The authors strongly believed 
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that the use of BSEM in explicating measurement model (mis)
fit in CFA should significantly advance theory development 
in general, and in specifics for the MACE. The ‘diagnostic 
evidence accompanying a model’s failure to fit’ has been 
used(p. 2) to determine the level and extent of misspecification 
in measurement models that represent theoretical constructs 
(Hayduk, et al., 2007, cited in Schaap, 2019).

In order to determine the extent to which the MACE-W2FE 
versions reflect a single latent variable for two study samples, 
the ‘substantive-methodology synergy’ (p. 14) approach, 
coined by Marsh and Hau (2007, cited in Schaap & 
Koekemoer, 2021) has been used. This approach involves 
applying innovative and high-precision statistical techniques 
(in particular, BSEM) to complex substantive issues in order 
to advance theory. The main contribution in this study is a 
synergy of the following substantive and methodological 
components: (1) to test the conceptual replicability of the 
essentially unidimensional model of the MACE-W2FE and 
(2) to demonstrate the usefulness of BSEM as an innovative 
and high precision statistical technique that goes beyond 
GOF indices in SEM.

In accordance with the substantive-methodology synergy 
approach, the substantive issues, namely the theoretical 
model that underlies the MACE-W2FE and related 
construct validity studies are first presented. This is 
followed by a theory on the methodological issues of 
model testing in SEM and the background to BSEM as a 
tool to investigate reasons for model misfit at a local 
parameter level. 

Substantive issues
The construct WFE of Greenhaus and Powell (2006) are 
defined as:

[T]he extent to which a variety of resources from work and 
family roles have the capacity to encourage individuals and to 
provide positive experiences, which enhance the individuals’ 
quality of life (performance and positive affect) in the other role 
(Schaap & Koekemoer, 2021, p 12). 

The theory of role accumulation based on the work of Sieber 
(1974) is applied in WFE, where the positive experiences and 
outcomes of different roles are seen to enrich each other. 
Facets of WFE may include: 

1. task and role related skills (e.g. problem-solving and 
multi-tasking skills) 

2. psychological (e.g. positive self-esteem and tenacity), 
physical health and fitness resources 

3. social capital resources (e.g. interpersonal relations and 
professional networking)

4. flexibility (e.g. scheduling, timing, pacing and location) 
5. material resources (e.g. cash and donations accrued).

The argument is that when employees experience enrichment 
in either their work or family roles, they tend to reciprocate 
with more willingness to put an effort into these roles 
(Koekemoer et al., 2017). As a result, WFE is rapidly becoming 

a key focus for academics, organisations and human resource 
practitioners.

The bidirectional nature of WFE constructs allows for 
independent measures that can be applied concurrently or 
independently, depending on the direction of the relationship 
of interest (F2WE or W2FE). The MACE-WFE bidirectional 
MACE-F2WE and MACE-W2FE was developed by De Klerk 
et al. (2013). Multiple versions of the measure were produced 
during its development and every iteration refined the 
measure. This study focuses on the 18-item version of the 
MACE-W2FE component of the MACE-WFE, which has 
been used in numerous studies (De Klerk et al., 2015; 
Koekemoer et al., 2017, 2020; Marais et al., 2014). 

The WFE theory of Greenhaus and Powell (2006) was 
represented in the MACE-W2FE as a first-order correlated 
4-factor measurement model, consisting of the acquisition 
and refinement of distinct work role resources that improve 
an individual’s quality of life within the family role. In this 
regard, the four work role resources were applied which 
include perspectives (P) (indicating the skills, perspectives 
and values at work for employees), affect (A) (relating to the 
self-concept, positive affect, energy levels and mental acuity 
of employees), time management (TM) (i.e.ability of 
employees to be flexible in their scheduling and timing of 
work) and social capital (S) (where employees maintain and 
support interpersonal relationships) as described in 
Koekemoer et al. (2017).

De Klerk et al. (2015) obtained good model fit (CFI = 0.97, 
Tucker-Lewis index [TLI] = 0.96 and RMSEA = 0.05) for the 
4-factor 18-item version, and they report moderate to high 
correlation coefficients between factors, ranging between 
r = 0.54 and r = 0.63. The MACE-W2FE’s four factors correlated 
significantly with work vigour (r = 0.26–0.39), job satisfaction 
(r = 0.29–0.43), career satisfaction (r = 0.26–0.41) and work 
dedication (r = 0.27–0.40). Well-fitting second-order models 
for the MACE-W2FE were found to display high correlations 
with subjective career success (r = 0.52), commitment 
(r = 0.55), work engagement (r = 0.50) and job satisfaction 
(r = 0.66) and confirm the criterion validity of the common 
factor that underlies group-specific factors (Koekemoer et al., 
2017; Marais et al., 2014).

Greenhaus and Powell’s (2006) theory of WFE conceptually 
supports the notion that WFE is ‘an essentially unidimensional 
or broad construct that is informed by events and outcomes 
across the full spectrum of WFE resources’ (Schaap & 
Koekemoer, 2021, p. 4 ). The high correlations among the 
MACE-W2FE subfactors (r = 0.54–0.64) and well-fitting 
second order model suggest that the WFE construct is 
probably hierarchical (in other words, high common variance 
underlies group-specific factors) (Schaap & Koekemoer, 
2021). Consistent with Schaap and Koekemoer’s (2021) 
study, the authors conceptualise the MACE-W2FE as a 
single substantive breadth factor (which is essentially 
unidimensional) that encompasses non-substantive narrow 
factors (group-specific dimensions) representing the four 
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different resources of WFE (perspectives, affect, time 
management and social capital). If the assumption of strict 
unidimensionality (a narrow single latent variable) is not 
met, essential unidimensionality (a single latent variable 
with breadth) may be assumed, where the factor score is 
shown to be univocal with negligible biasing effects of the 
multidimensionality that is present in the item response data 
(Rodriguez et al., 2016). 

Methodological issues
Studies suggest that different formats (e.g. item order) of a 
measure can cause systematic method effects in the data that 
result in a measurement model not replicating across studies 
(Loiacono & Wilson, 2020). Ordering items according to the 
construct measured (blocked item ordering) has shown the 
inclination to inflate reliability and bias construct validity 
statistics (e.g lower discriminate validity and higher factor 
loadings) and inflate systematic errors such as method biases 
(e.g. correlated residuals ascribed to similar item semantics 
or item adjacency) (Loiacono & Wilson, 2020; Wilson & 
Lankton, 2012). According to Lazarus (1966, 1993), the 
inflated statistics can be ascribed to respondents avoiding 
cognitive dissonance by responding in a conforming manner 
to items of the same construct that are in close proximation of 
each other through guessing or extrapolating the expected 
relationships (Loiacono & Wilson, 2020). Therefore, the use 
of the blocked item ordered version of the MACE-W2FE 
could inflate the factor loadings estimates, reliabilities, and 
increase correlated residuals in the factor models. Moreover, 
the random item ordering and the blocked item ordering 
versions of the MACE-W2FE could lead to different findings 
about the dimensionality of the measure and needed testing.

It is potentially dangerous to accept CFA models at face 
value using GoF indices without inspecting local indicator 
misspecifications (Greiff & Heene, 2017; Schaap, 2019). The 
CFA studies have shown that unidimensional measurement 
models containing numerous items are routinely rejected by 
GoF indices, because such models hardly ever describe the 
real data in social sciences (Bentler, 2009). Data in the social 
sciences have been reported to be fallible, and they therefore 
warrant more flexible approaches for effective evaluation of 
the plausibility of highly restrictive but more parsimonious 
measurement models (Asparouhov et al., 2015; Reis, 2017). In 
case a strict unidimensional model is rejected, as was reported 
for the MACE in the study by De Klerk (2013), researchers 
often accept the much less restricted multi-dimensional 
group-specific factor models that show good model fit, 
but fail to recognise that the group-specific factors may 
reflect a deceptive artefact or trivial substantive uniqueness 
(Rodriguez et al., 2016). Artefacts or pseudo-specific group 
factors that are characterised by narrow specifics blown into 
bloated specifics are difficult to detect without skilful factor 
analysis, and one may end up with a systematically biased 
measure (Cattell & Tsujioka, 1964). The multidimensional 
models of the MACE previously reported in various studies 
may have consisted of artefacts or pseudo-specific group 
factors despite showing good model fit (De Klerk et al., 2015; 

Koekemoer et al., 2017; Marais et al., 2014; Van Zyl, 2020). 
Moreover, Schaap and Koekemoer (2021) more recently 
found support for the notion in a study using extended SEM 
techniques and concluded the MACE should be regarded as 
an essentially unidimensional model despite the model fit 
indices showing a low model fit.

Thus, it can be concluded that where good model fit is 
obtained and appears to support the theory, researchers may 
still make erroneous conclusions about models. Clark and 
Bowles (2018) pointed out the importance of using supportive 
methods such as parallel analysis (Horn, 1965) and bifactor 
strength indices (Rodriguez et al., 2016) along with global fit 
indices in order to determine the dimensionality of a measure. 
In addition, Greiff and Heene (2017) emphasised the 
importance of doing local indicator misspecification analysis 
to explicate model (mis)fit.

The assumptions of unidimensionality and pure factors are 
rarely obtained from the questionnaire data that are so often 
used for research in the social sciences (Marsh et al., 2013). 
The assumption of unidimensionality in CFA models that 
assume zero misspecification (e.g. zero correlated residuals) 
is unrealistic and does not reflect substantive classical test 
theory, which allows for non-substantive deviation from 
zero, random error variance or ‘white noise’. Correlated 
residuals are a major reason for model misspecification in 
CFA and need to be evaluated alongside GoF indices to avoid 
misleading or biased results (Sellbom & Tellegen, 2019). The 
BSEM is useful for evaluating local indicator misspecifications 
in CFA models such as correlated residuals to determine 
whether the data support a hypothesised model (Schaap, 
2019). A nontechnical explanation of the rationality and value 
of BSEM relevant to this study is justified at this point.

Bayesian structural equation modelling uses Bayes’ theorem 
in CFA plus prior information to:

‘[P]arse out meaningful model misspecifications from small 
(ignorable) model misspecifications that can also be the cause of 
model rejections when such small misspecifications are in great 
number or the sample size is large’(Asparouhov & Muthén, 
2017, p 2 as cited in Schaap, 2019).

Whereas the frequentist-based ML estimations in CFA ignore 
prior information for models tested (e.g. all correlated 
residuals are specified to be zero every time the model is 
tested), Bayes’ estimations in CFA rely on prior information 
of what can be regarded as trivial model misspecifications 
(such as correlated residuals ranging from –0.20 to 0.20), and 
they use probability estimates to support or reject the 
assumption of triviality (Asparouhov et al., 2015). In BSEM, 
prior information from classical test theory is also used to 
specify small-variance priors or ‘soft constraints’ (such as 
correlated residuals between -0.20 and 0.20) (Liang, 2020, 
p.4). In BSEM, the product of the likely distribution of the 
sample data and simulated data from Monte Carlo 
simulations determines the probability that the parameter 
estimates (the posteriors) will be within the specified priors’ 
variance range.
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When the CFA model is run through the Bayes’ estimator, all 
parameters that fall within the specified model are freed 
concurrently, allowing the evidence in the data – where such 
evidence exists – to drive the parameters away from zero 
(Asparouhov et al., 2015). The parameters that escape the 
small prior variances’ settings are likely to be substantive and 
therefore improve model fit, calling for closer inspection of 
these parameters. All target factor loadings, or the free 
parameter estimates of a Bayes’ CFA model, need to be 
estimated using noninformative priors (infinite variances 
from zero). Bayes’ target factor loadings and error estimates 
closely represent ML estimates wherever zero misspecifications’ 
priors apply (such as zero-correlated residuals) for moderate 
to large sample sizes (De Bondt & Van Petegem, 2015; Van de 
Schoot et al., 2014). 

The BSEM allows for the effective parsing out of substantive 
misspecifications from trivial model misspecifications in a 
strict unidimensional CFA model by relaxing the untenable 
assumptions of zero model misspecification. Trivial model 
misspecifications are associated with an essentially 
unidimensional CFA model. Thus BSEM serves to diagnose 
misspecifications in conventional CFA models, rather than 
replacing CFA models (Asparouhov et al., 2015).

The BSEM’s ability to concurrently free all small variance 
correlated residuals reduces chance effects and the risk 
of parameter misspecification, while sustaining model 
identification and successful convergence. If all correlated 
residuals are freed concurrently, it is not possible to use a 
ML estimator (Saris et al., 2009) for a CFA model, as it 
would lead to an unidentified model and thus to 
nonconvergence. Furthermore, the post hoc and sequential 
freeing of parameters, using modification indices and the 
ML estimator to study model fit, is susceptible to chance 
effects and a high risk of parameter misspecification (De 
Bondt & Van Petegem, 2015; Muthén & Asparouhov, 2012).

In this study, the authors seeked to test the tenable hypothesis 
that the data from two independent study samples support 
an essentially unidimensional measurement model for 
respectively a random and blocked item ordering format of 
the MACE-W2FE, using BSEM and local item misspecification 
analyses.

The authors hypothesised the following H1: the essentially 
unidimensional measurement model of the MACE-W2FE is 
supported by the data obtained from the two study samples and the 
different item ordering formats (random versus blocked) using 
BSEM.

Research design
Research approach
The authors used a quantitative research approach and cross-
sectional survey data to test the essentially unidimensional 
model of the MACE-W2FE.

Research participants
The first convenience nonprobability study sample (N = 627) 
was South African employees from a wide range of industry 
sectors, namely agricultural, engineering, information 
technology (IT), manufacturing, services, finance, and 
education. Most of the sample consisted of Western 
Germanic language speakers (Afrikaans and English home 
or mother tongue language) (82%) of which 67% were female 
employees. In respect of qualifications, 4% did not obtain a 
National Senior Certificate, 30% had obtained a National 
Senior Certificate, 17% held a diploma, 45% possessed a 
degree or a postgraduate degree, and 3% did not report the 
qualification. The age of the sample ranged between 18 years 
and 74 years. Most of the respondents were in the age 
group of 24–33 years (36%), followed by the age group 34–43 
years (24%).

The second convenience nonprobability study sample 
(N = 346) was drawn from six companies that are in the 
financial industry. The respondents represented diverse home 
language groups (African, Western Germanic, Asian) of 
which 63% were female employees. In respect of qualifications, 
10% did not obtain a National Senior Certificate, 43% had 
obtained a National Senior Certificate, 15% held a diploma, 
28% possessed a degree or a postgraduate degree and 10% 
did not report the qualification. The age of the sample ranged 
between 19 years and 65 years. The average age was 37.6 
years, and the standard deviation was 9.6. 

Measuring instruments
The 18-item version of the MACE-W2FE developed by De 
Klerk (2013) was used in the study. The items were presented 
in a random order (p2, a1, a3, sc1, tm1, p3, a2, sc2, tm2, p4, 
sc3, tm3, tm4, tm5, p5, p1, p6, tm6) for the original version 
used for Sample 1. The items were presented in a blocked 
order according to subscale or facet (p1, p2, p3, p4, p5, p6, 
a1, a2, a3, tm1, tm2, tm3, tm4, tm5, tm6, sc1, sc2, sc3) for 
Sample 2. The following original four subscales from De 
Klerk (2013) were used: work–family perspectives includes six 
items on skills gained by participants (e.g. ‘My family life is 
improved by the viewpoints I have learned through my 
work’); work-family affect, includes three items on feelings 
gained (e.g. ‘My family life is improved by my work that 
puts me in a good mood’); work-family time management, 
includes six items on time management (e.g. ‘My family life 
is improved by using my time effectively at work’) and 
work–family social capital, includes a three-item scale on the 
support that participants receive from colleagues (e.g. ‘My 
family life is improved by having good relationships at 
work’). The authors used a four-point Likert-scale that 
ranged from 1 (strongly disagree) to 4 (strongly agree). 
Acceptable Cronbach’s alpha coefficients were reported for 
the scales (De Klerk et al., 2015; Marais et al., 2014): work–
family perspectives (0.91 and 0.94), work–family affect (0.84 
and 0.95), work-family time management (0.90 and 0.91) and 
work–family social capital (0.80 – 0.87). 
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Research procedure and ethical considerations
The survey format for the two samples differed, however 
broad comparisons were possible to make on the biographical 
information. The gender groupings and age distribution 
were approximately the same for the samples, although 
qualifications levels were higher for Sample 1. Even though 
language group information was not elicited in the survey 
for Sample 2, it was safe to deduce that Sample 2 was more 
diverse than Sample 1 from prior knowledge of the employee 
demographics in the companies surveyed.

Field workers were used for data collection for Sample 1 and 
hard copies of the survey were distributed personally to the 
employees in each company. For Sample 2, an anonymous 
web-based survey link was distributed to the company 
employees with the assistance of the company’s field 
workers. A response time of 3 weeks was applied. The 
participants were informed of the purpose of the survey and 
their consent was obtained. Participation in the research was 
voluntary. The research ethics committee of the relevant 
university approved the study. 

Statistical analysis
In this study Mplus statistical software version 8 (Muthén & 
Muthén, Los Angeles, California, United States) (Muthén & 
Muthén, 2017) was used for all analyses. The authors adopted 
the Bayes’ estimator in BSEM to test CFA models that were 
equivalent to ML-estimated models, but they included small 
variance priors for the correlated residuals to determine the 
substantiveness of parameter misspecifications at item level. 
In the BSEM analysis, the authors preserved the CFA model 
and allowed the evidence in the data to determine the 
plausibility of the measure, which contained minor 
impurities, or noise, that impacted the model fit. The BSEM 
analysis conducted in this study has previously been fully 
described by Asparouhov et al. (2015, pp. 1574–1577). 

The BSEM fit assessments are calculated as the difference 
between the likely chi-square statistic for the observed 
sample data and the simulated data obtained from multiple 
draws from the posterior distribution of parameter values. In 
Mplus, the chi-square statistic is expressed as posterior 
predictive checking (PPc). The PPc of the observed data 
should match at least approximately 5% of the simulated 
data, on a 95% confidence interval (CI) where the difference 
between the observed and simulated data include the value 
of zero. The overlap or match is expressed as the posterior 
predictive p-value (PPp) and the optimal model fit is 
represented by a 50% match (PPp = 0.50) between the 
observed and simulated data and the zero positioned close to 
the centre of the interval. 

However, because in this study the authors sought to 
evaluate misfit in the CFA models and not to obtain the 
optimal BSEM model, they adopted a PPp value slightly 
higher than 0.05. According to Asparouhov et al. (2015, 
p. 1566), ‘the model slightly exceeding 0.05 would be the 
model of interest as it is considered the BSEM model closest 

to the CFA model that fits well (chi-square of p > 0.05) and 
resolves all the CFA model’s misfits’. Simulation studies 
have shown that PPp cut-off values in the vicinity of 0.01, 
0.05 and 0.10 for model fit appear to be reasonable 
(Muthén & Asparouhov, 2012).

In addition, the comparative fit index (CFI), Tucker-Lewis 
index (TLI) and the root mean square error of approximation 
(RMSEA) model fit index were used that were incorporated 
with the Bayes’ estimator in the latest Mplus version 8.4 
(Muthén & Muthén, 2019). Based on the CFI and TLI indices, 
model fit was considered acceptable when it exceeded 0.90 
and good when it exceeded 0.95. The RMSEA values lower 
than 0.05 reflect a close fit and ones lower than 0.08 reflect 
a reasonably good fit to the data, in line with the 
recommendations of  Hu and Bentler (1999) and Marsh et al. 
(2004). The authors used the scree-plot from a parallel 
analysis (Horn, 1965) in exploratory factor analysis with the 
ML estimator to verify the dimensionality of the measure.

Following the analysis routine stipulated by Schaap (2019), 
the authors started the local indicator misspecification 
analysis by including small variance correlated residuals in 
the models tested, as these are the largest source of potential 
model misspecification. Using the CFA model’s diagonal 
residual covariance matrix (θ) as a basis, small variance priors 
were added to the residual correlates and allowed zero 
correlates to be converted to approximate zero correlates. 
Furthermore, the inverse Wishart prior θ~IW(Dd,d) for each 
parameter was calculated, where D is the residual from the 
CFA model tested and d is the degree(s) of freedom (detailed 
formulae are provided in Asparouhov et al., 2015, p. 5). A 
larger d is required for larger samples to maintain the same 
effect of the specified prior on the parameter estimation 
(Muthén & Asparouhov, 2012). When d increases, the prior 
variances on all correlated residuals will converge to zero, 
and the BSEM model produces a PPp of zero (PPp = 0), which 
is equivalent to a fully constrained CFA model. Therefore, the 
BSEM model is rejected, where the ML-estimated CFA model 
has a statistically significant chi-square value. 

The authors performed a sensitivity analysis with four 
iterations, using different d values while monitoring model 
convergence, to obtain the required model as close as possible 
to PPp = 0.05, which resolves all model misfits. In other 
words, sensitivity analysis was carried out with a sequential 
increase of the constraints imposed on the correlated 
residuals through small variance prior settings, up to the 
point where all the model misspecifications were resolved 
(where PPp closely exceeds 0.05 and shows excellent model 
fit, e.g., CFI > 0.95, RMSEA < 0.05), while retaining a rapid 
convergence rate and the model structure. Statistically 
significant misspecifications below 0.20 on correlated 
residuals can be considered nonsubstantive. The lower the 
values (r < 0.15), the more they resemble random error or 
‘white noise’ arising from indicator impurities. Values in 
excess of 0.20 should be considered as noteworthy in terms of 
substantive test theory, and values close to 0.30 should be 
regarded as important (Muthén & Asparouhov, 2012).
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In addition, the deviance information criterion (DIC) index 
was used, which includes a model complexity penalty based 
on the number of estimated parameters, for selecting the 
preferred model (Asparouhov et al., 2015). As DIC does not 
penalise parameters fixed close to zero in calculating model 
complexity, the index is ideally suited to comparing BSEM 
models (Asparouhov et al., 2015). Lower DIC values signify 
the preferred model. 

Similar to Schaap and Koekemoer’s (2021) study, the authors 
used bifactor strength indices to evaluate the relative bias in 
the unidimensional model that can be ascribed to the 
correlated residuals (e.g. construct-relevant or irrelevant 
sources of variance) identified in the BSEM analysis. The 
indices used were coefficient alpha and omega reliabilities 
(McDonald, 1999), omega (ω), omega hierarchical (ωH and 
ωHS), explained common variance (ECV) (Sijtsma, 2009), 
the percentage of uncontaminated correlations (PUC), factor 
determinacy (FD) (Grice, 2001) and construct replicability 
(H) (Hancock & Mueller, 2001). The absolute average 
relative parameter bias (ARPB) index (Muthén et al., 1987) 
and at item level ARPB-I were used to assess bias on the 
factor loadings that are attributed to construct-relevant 
or -irrelevant sources of variance. A detailed explanation of 
the various indices has previously been given by Rodriguez 
et al. (2016).

In the BSEM analyses, four independent Markov chain Monte 
Carlo (MCMC) chains and a Gibbs sampler we used. The 
authors assessed model convergence using the potential 
scale reduction (the PSR value) factor diagnostic statistic and 
by visually inspecting the trends on the parameter trace and 
density plots. The PSR values that are below or close to 1.05 
indicates convergence. In all the models tested, we used 
50 000 iterations and thinning = 2 (thinning = 2 × 50 000) were 
used to ensure that 100 000 iterations and convergence 
were reached while reducing the burden on computer 

processing and storage capacity, as recommended by Link 
and Eaton (2012).

Ethical considerations
Ethical clearance to conduct this study was obtained from the 
North-West University Economic and Management Sciences 
Research Ethics Committee. (ref. no. NWU-00425-18-S4).

Results
Descriptive statistics showed that the average score for all 
items for the two samples was 2.72 (2.91) and the average 
score for the subscales varied between 2.60 (2.63) and 2.85 
(3.13) (please note the values in brackets are for Sample 2). 
The mean standard deviation for the items was 0.82 (0.92) 
and it varied between 0.76 (0.83) and 0.91 (1.01). The mean 
item skewness was −0.40 (−0.79) and it varied between 
−0.24 (−0.25) and 0.55 (−1.19). The mean item kurtosis 
was −0.23 (0.45) and it varied between 0.14 (1.54) and 
-0.71 (−0.64). The normal distribution was approximated 
(skewness and kurtosis between −1 and +1) for both 
samples. 

The results of the BSEM analysis for both samples are 
presented in Table 1 and Table 2 for each of the models tested 
(see Figure 1 for the models). All the analyses converged 
sufficiently, as all the PSR values were below 1.05, and visual 
inspections of the density and parameter trace plots indicated 
sufficient convergence for all parameters. An example of 
good convergence (item p1 factor loading for the 1-factor 
model in Table 2) is reflected on the parameter trace plot 
shown in Figure 2. The trace plots of the four chains displayed 
clear mixing. Figure 3 provides an example of good 
convergence, as can be clearly seen in the density plot, which 
shows a smooth normal distribution for item p1 factor 
loading for the 1-factor model.

TABLE 1: Bayesian structural equation modeling model fit indices for the tested confirmatory factor analysis models.
Model d # Lower

2.5%
PP limit

Upper
97.5%
PP limit

DIC PPp RMSEA CFI TLI

Sample 1: 

4-factor - 60 214.63 303.24 25539.62 0.00 0.06 [0.05, 0.06] 0.96 [0.96, 0.97] 0.95 [0.95, 0.96]

1-factor - 54 1616.47 1703.85 26933.64 0.00 0.14 [0.13, 0.14] 0.76 [0.75, 0.76] 0.73 [0.72, 0.73]

1-factorR1 100 207 -40.34 71.66 25390.03 0.30 0.03 [0.00, 0.05] 1.00 [0.99, 1.00] 0.99 [0.96, 1.00]

1-factorR2 125 207 -29.34 83.53 25395.03 0.18 0.03 [0.00, 0.05] 1.00 [0.99, 1.00] 0.98 [0.96, 1.00]

1-factorR3 160 207 -15.01 101.90 25405.56 0.07 0.04 [0.02, 0.05] 0.99 [0.99, 1.00] 0.98 [0.96, 1.00]

1-factorR4 175 207 -7.49 110.05 25410.15 0.05 0.04 [0.02, 0.06] 0.99 [0.98, 1.00] 0.98 [0.96, 0.99]

1-factorR3M 160 225 -16.12 98.62 25402.57 0.08 0.04 [0.02, 0.05] 0.99 [0.99, 1.00] 0.98 [0.96, 1.00]

Sample 2:

4-factor - 60 233.78 325.65 12128.51 0.00 0.08 [0.05, 0.06] 0.95 [0.95, 0.96] 0.94 [0.94, 0.95]

1-factor - 54 1402.88 1491.86 13289.81 0.00 0.18 [0.18, 0.19] 0.75 [0.74, 0.75] 0.71 [0.71, 0.72]

1-factorR1 60 207 -23.05 92.26 11964.34 0.13 0.05 [0.00, 0.07] 0.99 [0.99, 1.00] 0.98 [0.96, 1.00]

1-factorR2 70 207 -13.70 103.55 11970.50 0.07 0.05 [0.02, 0.07] 0.99 [0.99, 1.00] 0.98 [0.96, 1.00]

1-factorR3 75 207 -8.34 109.78 11974.06 0.05 0.05 [0.03, 0.07] 0.99 [0.99, 1.00] 0.98 [0.96, 0.99]

1-factorR4 100 207 18.57 139.41 11994.07 0.01 0.06 [0.04, 0.08] 0.99 [0.98, 0.99] 0.97 [0.95, 0.98]

1-factorR3M 70 225 -9.67 107.31 11973.44 0.05 0.05 [0.03, 0.07] 0.99 [0.99, 1.00] 0.98 [0.96, 0.99]

BSEM, Bayesian structural equation modeling; CFA, confirmatory factor analysis; d, degrees of freedom; #, number of free parameters; PP limit, posterior predictive limit; DIC, deviance information 
criterion; PPp, posterior predictive p-value; 4-factor, original first-order four factor model, 1-factor, unidimensional CFA model; R1, R2, R3, R4, 1-factor models used in sensitivity analysis with increasing 
constraints imposed on the correlated residuals through small variance priors settings; R3M, chosen 1-factor model with small variance correlated residuals and method factors (bifactors); RMSEA, 
root mean square error of approximation; CFI, comparative fit index; TLI, Tucker-Lewis index.
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All the models tested in this study are depicted in Figure 1.

Firstly the results of Sample 1, are discussed. The CFA 
results for the 4-factor model proposed by De Klerk et al. 
(2013) presented in Table 1 suggest good model fit 
(CFI = 0.96, TLI = 0.95, RMSEA = 0.06) and a well-defined 
factor structure (see Table 2). In addition, the omega 
reliabilities (Sample 1: 0.80 – 0.91; Sample 2: 0.88 – 0.95) are 
high for all the subscales in the 4-factor model, showing 
acceptable factor uniqueness according to the average 
variance extracted (AVE) criterion (Fornell & Larcker, 1981). 
In Table 2, AVE values for Sample 1 are on the diagonal of 
the correlation matrix. Sample 1’s intercorrelations between 
factors are shown below the diagonal and Sample 2’s 
intercorrelations are above the diagonal. At face value, a 
multidimensional model appears to be supported by the 
data. This makes theoretical sense and would probably be 
readily accepted in a peer-reviewed publication without 
attracting much criticism. However, a more incisive analyst 
– one who understands the hierarchal nature of psychological 

measurement models, the limitations of global fit indices 
and the meaning of the common variance underlying the 
group-specific factors – would investigate the likelihood of 
an essentially unidimensional model as an alternative to the 
4-factor model. The parallel analysis for Sample 1 showed 
that the data best represented a unidimensional model (with 
a single dominant eigenvalue = 8.8) or a weakly defined 
2-factor model (with a second eigen value = 1.69, which 
marginally exceeds the eigenvalue of 1.30 [95% CI] of the 
random data set) (see Figure 4). However, there is no 
theoretical justification for a 2-factor model, which leaves us 
with the unidimensional model as the only model likely to 
be supported by the data. The parallel analysis conducted 
on Sample 2 resulted in the same findings. Unfortunately, 
despite the well-defined factor structure of the 1-factor 
model (Sample1: λ = 0.57 – 0.74, Mean λ = 0.68 and  
Sample 2: λ = 0.61 – 0.84; Mean λ = 0.76) for the two samples 
the global model fit indices results suggest that the model 
has to be rejected (see Table 1, 1-factor). An explication of 
the 1-factor model misfit was therefore called for and the 

TABLE 2: The factor structure of the Bayesian structural equation modeling analyses.
1-factor model Bifactors 4-factor model 

Fact FactR3 FactR3M M1 M2 M3 M4 ARPB-I P A TM SC

Loadings

Item p1 0.72 (0.66) 0.72 (0.65) 0.66 (0.61) 0.40 (0.36) - - - 0.10 (0.08) 0.80 (0.73) - - -

p2 0.61 (0.73) 0.61 (0.72) 0.53 (0.67) 0.44 (0.42) - - - 0.16 (0.09) 0.69 (0.81) - - -

p3 0.66 (0.75) 0.66 (0.74) 0.57 (0.69) 0.49 (0.46) - - - 0.16 (0.09) 0.78 (0.87) - - -

p4 0.71 (0.79) 0.70 (0.78) 0.66 (0.74) 0.36 (0.40) - - - 0.08 (0.07) 0.76 (0.88) - - -

p5 0.72 (0.74) 0.71 (0.74) 0.63 (0.69) 0.48 (0.40) - - - 0.14 (0.07) 0.83 (0.82) - - -

p6 0.73 (0.81) 0.72 (0.80) 0.65 (0.77) 0.46 (0.35) - - - 0.13 (0.05) 0.85 (0.87) - - -

a1 0.57 (0.79) 0.57 (0.78) 0.56 (0.77) - 0.42 (0.35) - - 0.02 (0.02) - 0.82 (0.92) - -

a2 0.68 (0.77) 0.68 (0.76) 0.68 (0.75) - 0.29 (0.38) - - 0.00 (0.03) - 0.76 (0.91) - -

a3 0.61 (0.82) 0.60 (0.81) 0.59 (0.81) - 0.39 (0.28) - - 0.02 (0.01) - 0.82 (0.88) - -

tm1 0.67 (0.82) 0.66 (0.81) 0.61 (0.75) - - 0.38 (0.41) - 0.09 (0.08) - - 0.74 (0.88) -

tm2 0.71 (0.83) 0.70 (0.82) 0.65 (0.78) - - 0.38 (0.37) - 0.08 (0.07) - - 0.77 (0.89) -

tm3 0.73 (0.80) 0.72 (0.79) 0.66 (0.73) - - 0.43 (0.44) - 0.10 (0.10) - - 0.82 (0.87) -

tm4 0.74 (0.84) 0.73 (0.83) 0.68 (0.79) - - 0.39 (0.33) - 0.08 (0.06) - - 0.81 (0.88) -

tm5 0.74 (0.83) 0.73 (0.82) 0.67 (0.79) - - 0.41 (0.32) - 0.10 (.06) - - 0.81 (0.86) -

tm6 0.71 (0.79) 0.70 (0.78) 0.66 (0.78) - - 0.33 (0.17) - 0.07 (0.02) - - 0.75 (0.78) -

sc1 0.60 (0.66) 0.60 (0.65) 0.61 (0.65) - - - 0.30 (0.38) 0.01 (0.03) - - - 0.75 (0.80)

sc2 0.62 (0.61) 0.61 (0.60) 0.63 (0.59) - - - 0.27 (0.44) 0.01 (0.04) - - - 0.72 (0.82)

sc3 0.70 (0.71) 0.69 (0.70) 0.71 (0.69) - - - 0.24 (0.42) 0.02 (0.03) - - - 0.81 (0.92)

Indices

ARPB - - - - - - - 0.08 (0.05) - - - -

PUC - - 0.77 (0.77) - - - - - - - - -

FD 0.97 (0.98) 0.97 (0.98) 0.93 (0.96) - - - - - - - - -

H 0.94 (0.97) 0.94 (0.96) 0.93 (0.96) - - - - - - - - -

ω 0.94 (0.96) 0.94 (0.95) - - - - - - 0.91 (0.93) 0.84 (0.93) 0.91 (0.95) 0.80 (0.88)

Alpha 0.94 (0.96) - - - - - - - 0.91 (0.93) 0.84 (0.93) 0.90 (0.95) 0.88 (0.93)

% ECV - - 0.73 (0.79) 0.12 (0.08) 0.04 (0.03) 0.09 (0.06) 0.02 (0.04) - - - - -

ωH/ωHS - - 0.85 (0.90) 0.30 (0.23) 0.20 (0.14) 0.23 (0.15) 0.11 (0.24) - - - - -

Correlations

P - - - - - - - - 0.79† 0.73 0.74 0.67

A - - - - - - - - 0.61 0.82† 0.76 0.66

TM - - - - - - - - 0.63 0.63 0.78† 0.68
SC - - - - - - - - 0.66 0.67 0.74 0.79†

P, work-family perspectives; A, work-family affect; TM, work-family time management; SC, work-family social capital; M1 to M4, method factors; R, correlated residuals; Fact, 1-factor model; FactR3, 
1-factorR3 model with small variance correlated residuals. FactR3M, 1-factorR3M model with small variance correlated residuals and method factors (bifactors); ECV, explained common variance; ω, 
coefficient omega; ωH/ωHS, coefficient omega hierarchical; FD, factor determinacy; ARPB, absolute mean relative parameter bias; ARPB-I, relative parameter bias for items; H, construct replicability; 
Alpha, Cronbach Alpha.
†, AVE values for Sample 1.
All factor loadings were significant (95% credibility interval that does not contain zero).
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analysis results in this regard are presented in Table 1 and 
Table 2.

Table 1 shows the model fit results of four of the 1-factor 
models (R1, R2, R3, R4) used in the BSEM sensitivity analysis, 
where only the small variance priors set for the correlated 
residuals varied in size. The four models showed trivial 
differences on the GoFs, factor loadings and correlated 
residuals for Sample 1. The model with the PPp value 
slightly exceeding 0.05 was the model of choice (1-factorR3) 
in which all substantive misfit in the conventional CFA 
model was resolved. The model displayed a negative 95% 
PP lower limit (PP limit = −15.01), which in a frequentist 
paradigm implies a good fit (i.e χ2 > p = 0.05, RMSEA = 0.04, 
CFI = 0.99, TLI = 0.98). The model converged rapidly and 

was adequately identified, as required of a CFA model. The 
sensitivity analysis procedure was repeated for Sample 2 
and the results of the model of choice (1-factorR3) could be 
considered close to being the same as for Sample 1. The 
model converged rapidly and was adequately identified, as 
required of a CFA model. The four models showed trivial 
differences on the GoFs, factor loadings and correlated 
residuals.

Firstly, the results (not in the brackets) for Sample 1 (the 
results in brackets are for Sample 2) will be discussed in 
detail. The factor structure for the 1-factorR3 model (FactR3) 
depicted in Table 2 is well defined (λ = 0.57 – 0.73; Mean 
λ = 0.67) and notably similar (ARPB = 0.01) to the conventional 
1-factor CFA model (Fact) (λ = 0.57 – 0.74; Mean λ = 0.68). The 
ARPB for a factor must be below 0.10 to 0.15 to be considered 
nonsubstantive or of little concern (Muthén et al., 1987). 
Figure 5 shows that 15% (23/153) of substantive correlated 
residuals were close to or exceeded 0.20. These signify 
residual variance that was not taken up in the main construct 
and may point to the presence of interpretable 
multidimensional constructs that were not modelled or 
nuisance factors such as parallel wording (verbatim 
repetitions, synonyms and similar sentence structure). 

Most of the substantive correlated residuals were among 
items within each subscale and could be clarified with further 
inspection (only two substantive correlated residuals, p6 
with tm3 (r = −0.19) and p6 with tm1 (r = −0.20), were 
observed on items across subscales). The most important 
correlated residuals exceeding 0.30 were a1 with a3 (r = 0.45), 
p1 with p6 (r = 0.36), a1 with a2 (r = 0.30), p5 with p6 (r = 0.32) 
and p3 with p5 (r = 0.31). Interestingly, all the correlates close 
to or exceeding 0.20 displayed strong evidence of parallel 
wording or item redundancy (e.g. a1: ‘My family life is 
improved by my work that puts me in a good mood’ versus 
a2: ‘My family life is improved by my work that makes me 
feel happy’; p3: ‘My family life is improved by my work that 
helps me to understand different viewpoints’ versus p5: ‘My 
family life is improved by my work showing me different 
perspectives’. The existence of method artefacts among 
synonymously worded items was prevalent and consequently 
modelled as method factors where there were substantive 
correlated residuals. More specifically, all items from a 
subscale that correlated substantively (r = 0.20) with at least 
one other item from the same subscale, were included in the 
method factor. When dealing with method artefacts, Morin 
et al. (2016) recommends the use of method factors that 
explicitly estimate construct-irrelevant sources of variance 
as opposed to correlated residuals which simply partials 
them out. 

The BSEM model fit indices for the 1-factorR3M model (FactR3M) 
that included both correlated residuals and methods factors 
are reported in Table 1. The method factors (M1 – M4) were 
partial out from the common factor in FactR3M and effectively 
represent a bi-factor model with small variance correlated 
residuals (Rodriguez et al., 2016) (See Figure 1d). The model 
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P, work-family perspectives; A, work-family affect; TM, work-family time management; SC, 
work-family social capital; p, work-family perspectives items; a, work-family affect items; tm, 
work-family time management items; sc, work-family social capital items; Fact, general 
factor for the 1-factor model; FactR, general factor for the 1-factorR model with small variance 
correlated residuals; FactRM, general factor for the 1-factorRM model with small variance 
correlated residuals and method factors (bifactors); M1 to M4, method factors.
Note that the diagrams are only intended to be illustrative of the different model structures 
and providing larger labels would make models too large to present.

FIGURE 1: Models of the MACE work-to-family enrichment scale tested. 
(a) 4-factor; (b) 1-factor; (c) 1-factorR; (d) 1-factorRM.
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showed a negative 95% PP lower limit (PP limit = −15.01) 
and good global model fit (PPp = 0.05, RMSEA = 0.04, CFI = 
0.99, TLI = 0.98), suggesting that the reasons for model misfit 
had been resolved. The model converged rapidly and was 
identified. The factor structure for FactR3M is provided in 
Table 2 and represents a well-defined factor (λ = 0.53 – 0.71; M 
= 0.63). The absolute relative differences in factor loadings 
(ARPB = 0.08) between models Fact and FactR3M are small, 
with items p2, p3 and p5 contributing most to the difference 

in factor loadings in the factor structures (ARPB-I; p2 = 0.16, 
p3 = 0.16, p5 = 0.14). These three items display a unique but 
trivial substantive element of the MACE-W2FE. Fact and 
FactR3M has essentially a similar factor structure and 
differences in factor scores should be negligible (Rodriguez 
et al., 2016).

Figure 6 shows only 1.3% (2/153) substantive correlated 
residuals close to or exceeding 0.20. The highest is 0.30, 
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suggesting that local indicator misspecifications have 
largely been resolved with the inclusion of method factors 
in FactR3M. The ECV (0.73) and PUC (0.77) exceeded 0.70 and 
ωH exceeded 0.80, suggesting that the relative bias in 
FactR3M is slight and can be regarded as an essentially 
unidimensional model (Rodriguez et al., 2016, p 232). The 
omega HS suggests highly reliable variance for the 
substantive general factor (FactR3M ωH = 0.85) but not for 
the method factors (ωHS; M1 = 0.30, M2 = 0.20, M3 = 0.23, 
M4 = 0.11). The method factors (M1, M2, M3, M4) can be 
considered nonsubstantive, as the ωHS values were below 
0.50 and there were very low ECV values (0.12, 0.04, 0.09, 
0.02) (Rodriguez et al., 2016). The factor determinacy 
coefficient (FD = 0.97) and the H measure of construct 
reliability (H = 0.94) proved to be high (> 0.90) for the 
Fact model, suggesting that the manifest scale scores 

(e.g. item aggregates) closely represent the latent variable 
scores (Rodriguez et al., 2016).

The statistical results of Sample 2 are provided in Table 2. The 
results (provided in the brackets) follow the same pattern as 
was obtained in Sample 1 but showed a more pronounced 
1-factor model (Fact) and a general factor (FactR3M) in the 
methods bifactor model. The low ARPB (0.05) and high ECV 
(0.79), PUC (0.77) and ωH (0.90) values suggested that the 
relative bias in Fact is small and can be regarded as a purer 
essentially unidimensional model (Rodriguez et al., 2016, 
p 232) when compared with Sample 1’s random ordered 
items. The substantive correlated residuals (18% = 27/153) 
were all among items within each subscale and were slightly 
more pronounced (see Figure 5) for Sample 2 and replicated 
the method factors (M1, M2, M3, M4) identified in Sample 1. 
Figure 6 shows only 3.3% (5/153) substantive correlated 
residuals close to or exceeding 0.20 for the FactR3M model, 
suggesting that the local misspecifications identified in the 
FactR3 model had largely been resolved. The method factors 
can be considered nonsubstantive, as the ωHS values 
(M1 = 0.23, M2 = 0.14, M3 = 0.15, M4 = 0.24) were well below 
0.50 and there were very low ECV values (0.08, 0.03, 0.06, 
0.04) (Rodriguez et al., 2016). The factor determinacy 
coefficient (FD = 0.98) and the H measure of construct 
reliability (H = 0.97) proved to be high (> 0.90) for the Fact 
model, suggesting that the manifest scale scores (e.g. item 
aggregates) closely represent the latent variable scores 
(Rodriguez et al., 2016).

Overall, there was sufficient support for hypothesis H1: the 
essentially unidimensional measurement model of the MACE-
W2FE is supported by the data obtained from both the study 
samples and the different item ordering formats (random versus 
blocked) after explicating the model misfit obtained for a strict 
unidimensional model using BSEM. Both the random item 
version of the MACE-W2FE and the blocked item version 
of the MACE-W2FE showed support for an essentially 
unidimensional measurement model. However, the blocked 
item version of the MACE-W2FE showed more pronounced 
parameter estimates and could be ascribed to the inflationary 
effects of respondents avoiding cognitive dissonance by 
responding in a conforming manner to items of the same 
construct that are in close proximation of each other (Loiacono 
& Wilson, 2020). The overall common variance across items 
was higher for Sample 2 resulting in a less biased 
unidimensional model. The authors acknowledge that 
sampling variations between studies may have also impacted 
the results. Irrespective of the observed differences in the 
statistics, the overall findings for the two versions of the 
MACE-W2FE can be considered conceptually similar and 
will be further discussed as such going forward.

Discussion
Outline of the results
This study corroborates the finding of Schaap and Koekemoer 
(2021) that the MACE-W2FE can be conceptualised as 
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an essentially unidimensional measurement model. 
The conceptual replication of the MACE-W2FE’s breath 
factor across samples, measurement formats and statistical 
theorems is supported. The methodical-substantive 
synergetic approach used in this study to test the 
conceptual replicability of the theoretically supported 
essentially unidimensional measurement model of the 
MACE-W2FE proved to be valuable. More details on the 
substantive and methodological arguments and findings 
are supplied next. 

Substantive arguments and findings
The ‘WFE can be understood as a general experience directed 
by particular events or outcomes [across the full range of 
WFE resources]’ (Schaap & Koekemoer, 2021, p 12). The 
MACE-W2FE appears to best represent an essentially 
unidimensional WFE construct for the blocked and random 
item order versions of the measure that includes trivial 
elements of multidimensionality, subscale item redundancy 
and white noise across samples. Subdomain redundancy or 
bloated specifics commonly occur in published scales – the 
problem arises when test authors run out of unique questions 
for specific subscales that form part of a broader construct 
(Rodriguez et al., 2016). Moreover, participants respond 
conceptually to related items at a general and specific level, 
which gives rise to an essentially unidimensional factor 
structure that incorporates elements of multidimensionality 
(strong communality among items that underlie group-
specific uniqueness). 

According to Gustafsson and Alberg-Bengtsson (2010), the 
more items in the model the more dominant the common 
variance become and the more meaningful the interpretation. 
As depicted in FactR3M of this study, the multiple item 
MACE-W2FE reflects a perfectly interpretable common 
variable regardless of the multidimensionality caused by 
group-specific factors, method artefacts (e.g. item 
redundancies) or noise. Rodriguez et al. (2016) argued in 
favour of adopting an essentially unidimensional model 
supported by a sound theory (such as WFE) wherever 
justified. Measures of broader constructs where multiple 
domains of construct relevant item content are included 
increases construct representativeness and ultimately 
construct validity (Reise, 2012).

Slocum-Gori and Zumbo (2011) made a strong case for regarding 
quality of life measures as essentially unidimensional – 
inherently tapping multiple minor domains. Corroborating the 
evidence from Schaap and Koekemoer’s (2021) study, there was 
no evidence that the MACE-W2FE consists of related but 
distinct group-specific factors that represent substantively 
unique subdomains of WFE resources.

Methodological arguments and findings
Methodologically based evidence from this study suggests 
that the rejection of the highly constrained 1-factor model 

(Fact) based on the GoF index results alone would have been 
unwarranted without a further investigation of the local 
indicator misfit. The global model misfit obtained can be 
attributed to the cumulative effect of local indicator misfit, 
which can be ascribed to a combination of minor substantive 
elements, method artefacts and insignificant random errors 
or white noise. It was found that the identified random 
correlated residuals and method artefacts in the 1-factor 
model had a negligible effect on factor structure and the 
interpretation of the 1-factor CFA model. Overall, this 
analysis showed that the 4-factor model was deceptive in 
showing a good model fit and well-defined 4-factor structure 
which corroborates the findings of Schaap and Koekemoer 
(2021). The parallel analyses and local indicator misfit 
analysis revealed that the 4-factor model was actually the 
product of shared common variance between all the items in 
the measure and the differentiating effect of method 
artefacts as opposed to substantively meaningful subscales. 
Moreover, accepting the GoF index results in measurement 
model testing without doing local indicator misfit analysis 
can lead to questionable published SEMS and raise questions 
about the theories they are based on (Greiff & Heene, 2017; 
Ropovik, 2015).

Study contribution
This study contributes to the field of WFE by providing a 
sound basis and support for WFE as an essentially 
unidimensional construct for future research. Using local 
indicator misspecification analysis in BSEM, the authors 
have effectively determined that the sources of GoF misfit for 
the strictly unidimensional model were trivial and of little 
consequence. This research enables one to understand the 
dimensionality and intricacies and the MACE-W2FE and the 
supporting WFE theory better, which enhances the validity 
of inferences made from the scale scores. The methodological-
substantive synergies obtained in this study are likely to 
have an impact on WFE theory development and will 
hopefully guide approaches to future WFE measurement 
model testing, including the WFES of Carlson et al. (2006).

Practical implications 
Despite the weak GoF indices, treating the MACE-W2FE as a 
single latent variable should have few practical implications 
in terms of regression estimates in SEM models. The use of 
essentially unidimensional models in studies with external 
variables has a practical advantage over complex bifactor 
and second-order models that are prone to identification 
problems (Zhang et al., 2020). Moreover, Schaap and 
Koekemoer (2021) demonstrated that the second-order factor 
model of the MACE-W2FE should be interpreted with 
caution because the proportionality constraints in the model 
had been violated. However, the weak GoF indices of the 
MACE-W2FE measurement model may reflect negatively on 
a SEM model’s GoF where the focus is on the reflective or 
causal relationship between latent or manifest variables. 
Therefore, it is recommended that researchers consider 
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incorporating aggregated MACE-W2FE scores in SEM 
studies, because the FD and H values for the Fact model 
proved to be high (> 0.90), suggesting that the manifest scale 
scores closely represent the latent variable scores (Rodriguez 
et al., 2016). Therefore, bias in regression path coefficients in 
SEM models with factor scores from the MACE-W2FE 
unidimensional measurement model should be negligible 
(Reise et al., 2013a; Rodriguez et al., 2016). 

Moreover, researchers may consider more sophisticated 
approaches of including the MACE-W2FE in SEM models 
such as generating weighted scale scores using the maximum 
a posteriori method as implemented by Mplus (MAP) and 
the Bartlett method (McNeish & Wolf, 2020). Subsequently, 
Croon’s (2002) correction can be implemented in Lavaan on 
the saved MAP and Bartlett scores that yield unbiased 
estimates and serves as a proxy for latent variables. Moreover, 
plausible values that accurately reflect latent variables as 
implemented in MPlus can be used in SEM path models 
without having to simultaneously estimate the full 
measurement model (Asparouhov & Muthén, 2010). 

Limitations and recommendations
The study could have benefitted from more inclusive and 
larger study samples in respect of representativeness 
(demographics) of the broader international community to 
improve the generalisability of the findings. However, the 
demographic representation of the study samples (strongly 
skewed in favour of white women) is similar to that in 
previous studies carried out on the MACE-W2FE, which 
reduces the effect of sampling fluctuations on the measurement 
models reported. Furthermore, it is recommended the MACE-
W2FE items be reviewed for redundancy. Ongoing validity 
research would benefit the future use of the scale.

Conclusion
The authors conclude that the call for more vigilance in 
model testing and less reliance on ‘golden rules’ for model fit 
seems to be justified for the MACE-W2FE, and for WFE 
theory development in general. Model-fit indices are not 
sufficiently reliable in evaluating the plausibility of essentially 
unidimensional models and should be complemented with 
local indicator misspecification analyses techniques to 
ensure that the model is replicable. More specifically, the 
authors urge researchers to be vigilant about accepting 
multidimensional models without doing local indicator 
misspecification analysis for the danger of such models 
consisting of pseudo-factors or bloated specifics with little 
theoretical meaning.
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