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ABSTRACT 

A prominent application area in the domain of computer vision is human 
activity recognition, which involves automatically detecting people’s 
actions from video footage. In this paper, a generic decision support tool 
capable of performing human activity recognition by employing 
computer vision is developed. The objective of the decision support tool 
is to facilitate the analysis of video footage by learning to identify human 
activities from video footage. The decision support tool facilitates the 
processing of raw data, the training of a computer vision model in 
respect of the processed data, and the deployment of the trained 
computer vision model in respect of unseen video footage. This paper 
details a computerised implementation of the decision support tool in 
respect of a benchmark data set and real-world data set involving the 
cash replenishment process of a South African bank. 

 OPSOMMING  

’n Prominente toepassingsgebied in die veld van rekenaarvisie is 
menslike aktiwiteitsherkenning, wat behels dat mense se optrede 
outomaties vanaf videomateriaal geanaliseer word. In hierdie artikel 
word 'n generiese besluitsteunsinstrument ontwikkel wat in staat is om 
menslike aktiwiteitsherkenning uit te voer deur rekenaarvisie te gebruik. 
Die doel van die besluitondersteuningsinstrument is om die ontleding van 
videomateriaal te fasiliteer deur te leer om menslike aktiwiteite uit 
videomateriaal te identifiseer. Die besluitondersteuningsinstrument 
fasiliteer die verwerking van rou data, die opleiding van 'n 
rekenaarvisiemodel ten opsigte van die verwerkte data, en die 
ontplooiing van die opgeleide rekenaarvisiemodel ten opsigte van 
ongesiene videomateriaal. Hierdie vraestel beskryf 'n gerekenariseerde 
implementering van die besluitsteuninstrument ten opsigte van 'n 
maatstafdatastel en werklike datastel wat die kontantaanvullingsproses 
van 'n Suid-Afrikaanse bank behels. 

 

 

 

 

1. INTRODUCTION 

Contemporary advances in the domain of machine learning and the increased capabilities of computer 
hardware have led to the computational viability and proliferation of computer vision (CV) – i.e., the field 
of study that algorithmically enables computers to ‘see’ and comprehend a physical environment (typically 
expressed using image-based data such as photos and videos). Multiple tasks may be performed on visual 
data with the aid of CV, such as object detection [1]–[3], pose estimation [4]–[6], and  activity recognition 
[7]–[9], the last of which is the focal point of this research. Human activity recognition (HAR) can be defined 
as the field of study that aims to recognise human activities from multiple observations of actions 
performed by key subjects in their environments [10]. HAR methodologies may be applied to a variety of 
problems, ranging from ambient assisted living for elderly people to surveillance monitoring, sports 
analytics, and even behavioural analysis [10].  
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\Although many CV-based approaches to HAR deliver state-of-the-art performance on benchmark data sets, 
they lack the utility to be applied to different data sets without considerable modification. The primary 
aim in this project is to design and develop a generic decision support tool (DST) that can employ CV models 
to identify human activities from video footage. The proposed DST, called the computer vision human 
activity recognition tool (CV-HART), employs a deep-learning-based CV model to perform the recognition 
of activities. The model is first trained and evaluated on a benchmark HAR data set in order to verify the 
working of the CV-HART. A case study is also performed on data provided by the industry partner attached 
to this project (i.e., a large South African retail bank) in order to demonstrate further the utility of the CV 
model and the CV-HART. The case study focuses on the task of automating the monitoring of the bank’s 
cash replenishment process at automated teller machines (ATMs).  

The remainder of this paper is organised as follows: first, the literature relevant to the work carried out in 
this project (i.e., deep learning, HAR, and DSTs) is discussed in Section 2, which is followed by a detailed 
discussion in Section 3 of the design and development of the proposed CV-HART. In Section 4, the tool’s 
verification in respect of a widely used benchmark data set is addressed. The validation of the CV-HART is 
discussed in Section 5, which involves its application to a real-world case study of the industry partner. The 
paper is then concluded in Section 6 with a summary of its contributions and possible extensions for future 
work. Supplementary material is relegated to Appendix A. 

2. LITERATURE REVIEW 

In this section, the domains relevant to the work presented in this paper are discussed, namely deep 
learning, HAR, and DSTs. A brief discussion of similar work (with respect to the proposed CV-HART) is also 
presented.  

2.1. Deep learning 

Deep learning is a term used to describe artificial neural networks (ANNs) that comprise many hidden layers 
[11], and represents the most prolific approach to CV. One specific algorithm, and perhaps the most 
influential algorithm in the field of CV, is the convolutional neural network (CNN) [12]. Although the 
foundational work of CNNs can be traced back to the conceptual work of Hubel and Wiesel [13] in the 1960s 
and the first computerised implementation thereof by Fukushima’s Neocognitron [14] in the 1980s, it is 
arguably the paper by Le Cun et al. [12], entitled “Handwritten digit recognition: Applications of neural 
network chips and automatic learning”, that can be regarded as the most profound. In the early 2010s, Le 
Cun et al. simplified the Neocognitron architecture and applied the method of backpropagation to train 
the model efficiently in a supervised learning fashion at scale, ushering in an era of CNN proliferation. 

CNNs are specifically designed to process data that are characterised by spatial dependence, such as images 
comprising a grid-like structure. CNNs replace the conventional ANN operation of matrix multiplication (as 
is the case, for example, in multi-layer perceptrons) with a so-called convolution operation for efficient 
feature extraction [11], [15]. There are three central notions that underpin a CNN’s working and that 
contribute to their innate computational capabilities, namely sparse connectivity, parameter sharing, and 
equivariance to translation [11]. The ResNet model architecture from He et al. [16] is one of the most 
influential architectures in the field of CV. A number of popular deep-learning architectures are based on, 
or draw inspiration from, the fundamental concepts of ResNets. One of the most influential is the You Only 
Look Once (YOLO) algorithm and, even more prolific, its second version, YOLOv2 [17]. The YOLOv2 
algorithm draws inspiration from ResNets by employing a so-called passthrough layer, similar to the identity 
mappings employed by ResNets, to combine features from various resolutions and abstraction layers. 

In the context of HAR, a number of architectures employ ResNets. Gowda et al. [18] use two ResNet 
backbone networks in their SMART frame selector algorithm for action recognition. Similarly, Qiu et al. 
[19] use ResNet backbones in their local and global diffusion model, achieving state-of-the-art activity 
recognition results. Another powerful HAR model is proposed by Tran et al. [20] that employs an adapted 
ResNet model with modifications to the architecture’s dimensionality for improved performance. 

2.2. Human activity recognition 

HAR may be formally described as the task of recognising a human activity based on information from 
various sensors [10]. Sensors in the domain of HAR may include cameras, wearable sensors, and sensors 
placed throughout an environment. HAR is widely regarded as a difficult task, as actions may consist of a 
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single atomic movement, such as jumping, or a combination of movements, such as following a recipe. 
Additional complexity may be ascribed to recognising similar activities that are performed in different 
settings or by different people. There is a considerable variety of HAR applications in the literature, 
examples of which include ambient assisted living for elderly people [21]–[23], security and surveillance 
[24]–[26], sports analysis [27]–[29], and behaviour analysis [30]–[32].  

HAR can be separated into two main branches, sensory-based and vision-based methods, the latter of which 
is the focus of this study. As the name suggests, vision-based sensing employs images and videos to recognise 
activities performed by humans. Images or videos can be captured or recorded using various devices such 
as cell phone cameras, sports cameras, and surveillance cameras. While vision-based activity recognition 
can deliver a favourable performance, a few key drawbacks are worth considering, such as its expensive 
nature, its increased computational complexity, and privacy issues that are applicable to certain vision-
based action recognition methods [10].  

Various computational domains for performing HAR have been proposed in the literature. Examples of these 
approaches include action recognition [18], [33], pose estimation [34], [35], and spatiotemporal action 
localisation (STAL) [36]–[38], the last of which is the focal point. While action recognition aims to identify 
what action is performed in a video, STAL aims not only to detect what action occurs but also to identify 
when the action occurs and the spatial location in the frame(s). A powerful STAL architecture is the You 
Only Watch Once [39] (YOWO) architecture. YOWO, as shown in Figure 1, consists of two different network 
architectures, referred to as backbone networks. A 2D backbone extracts spatial information while a 3D 
backbone extracts temporal information from previous frames concurrently. The information from both the 
2D and the 3D networks is combined using a channel fusion and attention mechanism. The success of various 
YOWO applications warrants its inclusion in this paper. 

 
 

Figure 1: YOWO model architecture (adapted from Köpüklü et al. [39]) 

2.3. Decision support tools 

Decision support systems, through which DSTs are contextualised, can be described as computerised 
technology-based solutions that employ a data-driven approach to modelling decision-making problems 
[40]. DTSs are designed to facilitate the decision-making process and to support the decision-maker while 
facilitating and automating various intermediate processes. In the discussion that follows, the main 
concepts pertaining to the specific type of DST proposed in this paper are addressed. 

2.3.1. Components 

Shim et al. [40] report that a conventional DST comprises three main facets, namely a database component 
with database management capabilities, a modelling (or functional) component combined with a model 
management system (MMS), and, finally, a user interface (UI).  
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Database component 

The database component of a DST, which may also be described as a database management system (DBMS), 
is dedicated to creating, storing, removing, and changing data entries that are used as part of the DST. A 
database can be described as a collection of data that represent aspects of the real world, each of which 
is logically coherent with inherent meaning, and is designed, built, and populated for a specific purpose 
[41]. A DBMS can employ one or more database types; examples of prominent database types are relational 
databases, graph databases, temporal databases, geographic databases, and hierarchical databases, to 
name a few [42], [43]. The hierarchical database model is the most relevant database type, given the scope 
of this research, attributable to the database structures employed by the benchmark data set that was 
considered – i.e., UCF101 [44].  

Modelling component 

Various types of model can be used in DSTs, such as optimisation models, simulation models, and data-
driven ML models [45]. This functional component also employs an MMS. An example of model management 
that may be performed is a ‘what if’ analysis, which performs various tests to determine the model output 
based on different inputs and scenarios. When multiple models and sub-models are used simultaneously, 
the MMS is also responsible for combining the models’ results. It is common to have multiple models in a 
competing fashion, according to which different models are presented with the same inputs, whereafter 
the results of the different models are compared so as to select the best-performing model.  

User interface component 

The UI component is the primary (and typically the only) interaction point between the user and the DST. 
So it is important for the UI to be well-designed and therefore easy to use. A UI comprises two parts, the 
first of which pertains to the input, which enables users to input commands, data, and instructions, whereas 
the second part pertains to the output, which enables the system to communicate with the user by 
requesting more or correct information, showing errors, and providing solutions to the problems specified 
by the user [45]. UIs can be categorised into various types, such as menu-based, form-based, question-and-
answer, command line, and – the most popular – graphical UIs [41], [46].  

2.3.2. Data flow 

For a DST to provide decision support effectively, the different components of the DST must communicate 
with one another by passing information and data between components. A frequently used approach to 
illustrating the flow of information in a system is a data flow diagram (DFD), which represents the inputs, 
processes or components, and outputs of the system under consideration [45]. A large system can be 
represented by an overview DFD that can be further decomposed into a series of stacked DFDs that contain 
more detail of the various sub-components. A DFD can be created by using combinations of only four 
elements, as shown in Figure 2. 

 

Figure 2: Elements of a DFD (adapted from Kendall and Kendall [45]) 

The entity element represents external entities that interact with the system, such as system users. The 
data flow element indicates the direction in which data flow between entities and processes. The processes 
employed by the system to transform the input are represented by the process element. Finally, the data 
store element represents the data stores used for data storage purposes in respect of input by the user and 
other data such as results generated by the DST.  
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2.4. Related work 

In their paper entitled “Implementation of an anomalous HAR system”, Shreyas et al. [47] presented a HAR 
system that focuses on anomaly detection. The authors aimed to detect anomalous behaviour automatically 
and in real time, such as theft, abuse, fights, and accidents to name a few) from CCTV footage by employing 
HAR. Shreyas et al. performed a case study on the UCF-101 crime data set, which contains 13 anomaly 
classes. A 3D CNN feature extractor was employed to learn and extract spatiotemporal features. One of 
the limitations of the HAR system presented by Shreyas et al. was that specific actions were not detected; 
instead an anomaly score was computed. 

A second study – in a paper entitled “Human activity recognition system from different poses with CNN” by 
Atikuzzaman et al. [48] – presented a HAR system that was capable of detecting and recognising different 
classes of human activities. The authors created their own data set comprising five human action classes 
with a combination of 5 648 frames captured by either a laptop camera or a CCTV camera. The activity 
recognition component employed a custom CNN architecture with six convolutional layers and a three-layer 
perceptron. Atikuzzaman et al. achieved a pose extraction accuracy of 99.86%, followed by near-perfect 
precision and recall scores for the actions detected from the extracted images. The limitations of the 
proposed HAR system include a lack of action diversity and an inability to detect actions for multiple people 
in one frame. 

3. COMPUTER VISION HUMAN ACTIVITY RECOGNITION TOOL 

A high-level overview of the CV-HART’s design (comprising three components and a GUI) is shown in 
Figure 3. For the sake of brevity, discussions of the database and the GUI components are omitted. 
Graphical illustrations of the GUI, however, are presented in Appendix A. 

 

Figure 3: A graphical DFD representation of the proposed CV-HART 

3.1. Processing component 

The processing component of the CV-HART comprises two sub-processes, also referred to as modules. A 
user can choose to input labelled or unlabelled data. A module evaluates and translates the decisions made 
by the user to the system regarding whether a user inputs new data or employs currently available data, 
and whether the data are labelled or unlabelled. If a user chooses to create a new project and to upload 
new data, additional information about the data is required, such as the number of action classes, the 
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names of those action classes, and the name of the project. This information is then used to create an 
empty database in the correct structure for the project. 

If a user inputs unlabelled data or wishes to label already inputted data, the user can use a data labelling 
module for this purpose. The video files provided by the user are all saved to a central raw data folder. 
The raw video files are selected and labelled iteratively, after which the labelled data are saved as images 
and text files containing annotations for the labelled actions. A data labelling tool called DarkLabel [49], 
an open-source utility program for image and video labelling, is employed as part of the labelling module. 
The annotation files are created per frame with a single label file containing all the actions labelled in that 
frame. The data labelling process is an iterative process, according to which each frame is presented to 
the user through the GUI, and the user provides bounding boxes (shown in Figure 4) for all the actions in 
the frame — a process that is repeated until the user is satisfied with the number of labelled frames. 

 

Figure 4: Example frame of bounding boxes drawn around persons performing an action 

If a user wishes to crop the images in the data set, the CV-HART provides a module for this purpose. This 
reduction of the image size reduces the computational time required by removing areas in which no actions 
occur. In an iterative manner, the most extreme labels are created – i.e., the labels closest to the edges 
of the images. The extreme labels are then presented for consideration. The user can choose to crop the 
images with respect to the outside edges of the extreme labels, to provide different margins for cropping, 
or not to crop at all. The refined data set (including labels) is then saved to a database. 

Next, a module separates the data into training data and testing data (the latter of which is applicable to 
the deployment component). Another folder is subsequently created containing the ground-truth values, 
which collectively represent the correct labels of the testing data set. These ground-truth label files are 
employed during evaluation in order to calculate the performance of the trained models. The last step of 
the labelling module involves generating so-called anchor boxes. Anchor boxes can be described as possible 
bounding box suggestions, based on prior knowledge that guides the model towards improved starting 
points. 

3.2. Modelling component 

Once the data processing is complete, inputs pertaining to the modelling component of the CV-HART are 
provided by the user. The user can decide to train a model either from an existing trained model state or 
from a completely new randomly initiated state. A model can be any deep-learning model that is capable 
of HAR; however, CNN-based architectures and other deep-learning architectures (designed explicitly for 
HAR), such as the YOWO architecture, are suggested. In the case of model training, the user is prompted 
to specify model parameter values. A list of possible parameters (typical value ranges or options) is shown 
in Table 1. 
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Table 1: YOWO model parameters and values/ranges 

Parameter Possible values/ranges Source 
Learning rate 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001 [11] 
Batch size 8, 16, 32, 64, 128, 256, 512 [50] 
Clip length (frames) 6, 18 [39] 
Backbone training state pre-trained, untrained [39] 
Backbone models ResNet18, ResNet50, ResNet101, ResNeXt101 [39] 

After parameter values and options have been selected, a deployable model is created and trained. 
Feedback (e.g., training performance) is continually presented via the user interface. After the model 
training procedure has been concluded, model performance is evaluated. A popular performance metric 
known as frame mean average precision (abbreviated as ‘frame mAP’) is used in this paper. Frame mAP is 
typically used to evaluate the performance of object detection models, as it provides a robust measure of 
both model accuracy and localisation in a video (or a sequence of frames) [51]. 

3.3. Deployment 

Upon establishing a satisfactory model through iterative parameter tuning and training, deployment can be 
performed, during which the user can apply a trained CV model to new unseen video data (i.e., testing 
data) in order to perform STAL. The deployment data types can be either video segments or untrimmed 
video streams. Typical deployment decisions include selecting a trained CV model, specifying data types, 
and choosing one or more deployment tasks. After a user has provided the data on which to perform STAL, 
the model creates action detection files that contain the detected actions (also saved in a database).  

So-called action detection timeline (ADT) charts can be generated that provide an intuitive visualisation of 
both the specific detected actions and the corresponding temporal information. These ADT charts facilitate 
the verification of whether detected actions occur in the correct order. ADT charts also provide algorithmic 
performance insight, such as when the model prediction constantly alternates between two detected 
classes. An example of an ADT-generated chart is shown in Figure 15 (in Appendix A). The action detections 
are also visualised as bounding boxes superimposed on the video frames. The corresponding prediction class 
Biking, the confidence score of the class prediction 0.76, and the bounding box, are also displayed. A 
visualised action detection for a cycling video is shown in Figure 18 (in Appendix A). 

4. VERIFICATION 

In order to verify the proposed CV-HART, a computerised instantiation is implemented in respect of an 
open-source benchmark data set, the results of which are presented in this section.  

4.1. Case study data background 

In order to verify the workings of the CV-HART, a verification case study is performed to confirm that the 
algorithmic results produced by the CV-HART implementation are similar to those of Köpüklü et al. [39] – 
i.e., the original paper in which the YOWO architecture is proposed. To this end, the same benchmark data 
set (i.e., UCF101-24 [44]) and the original model parameter values (summarised in Table 2) are employed. 
The UCF101-24 data set is a subset of the UCF101 dataset, containing only 24 of the 101 possible classes. 
The video clips have a frame rate of 25 frames per second and a frame size of 320 x 240 pixels. An example 
frame for each class is presented in Figure 5. Each of the 24 classes comprises 25 groups of videos (i.e., 
groups are based on the actors and the backgrounds), and each group contains between four and seven 
video clips. The extent to which these scenes differ in the different groups is illustrated in Figure 6, in 
which five additional background settings or actors are shown for the Basketball, Fencing, PoleVault, and 
SoccerJuggling classes.  

4.2. CV-HART verification implementation 

The structured approach of systems and software testing (propounded by Kendall and Kendall [45]) is 
adopted for verification purposes. For the sake of brevity, however, the focus is placed only on stage four, 
namely full systems testing with live data, in respect of the modelling component exclusively. ‘Live data’ 
refers to the actual data for which the output is known – i.e., the benchmark data set. The best-performing 



343 

YOWO trained model, as provided by Köpüklü et al. [39], is imported into the CV-HART for evaluation 
purposes. The frame mAP values are calculated by presenting the UCF101-24 data set to the model. A 
summary of the results that are obtained is presented in Table 3. Köpüklü et al. reported a frame mAP 
value of 87.2% for the benchmark model in the original paper, which is almost identical to the value 
obtained by using the CV-HART with the same data set. The CV-HART can therefore be deemed verified 
because of the similarities between the results of the tool’s implementation and those of the original 
authors. 

Table 2: Parameter settings and values used by Köpüklü et al. [39] for the YOWO architecture 

Parameter Setting/value 

2D backbone 19-layer YOLO 

3D backbone 101 layer ResNeXt 

training state pre-trained 

optimiser Stochastic gradient descent 

learning rate 0.0001 

image size 224 x 224 

clip duration 16 frames 

mini-batch size 8 

batch size 16 

learning rate scheduler 
Halve the learning rate 
at 30 000, 40 000, 50 000, 
and 60 000 iterations 

 

Figure 5: Example frames for all 24 classes of the UCF101-24 [44] data set 
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Figure 6: Six example frames for each of the Basketball, Fencing, PoleVault, and SoccerJuggling 

classes of the UCF101-24 [44] data set 

Table 3: AP values obtained by applying the CV-HART to the Köpüklü et al. [39] benchmark model 

Class AP Class AP Class AP Class AP 

Basketball 64.84 Fencing 93.73 PoleVault 76.83 SoccerJuggling 96.74 

BasketballDunk 90.7 FloorGymnastics 95 RopeClimbing 97.61 Surfing 96.83 

Biking 89.8 GolfSwing 92.34 SalsaSpin 89.14 TennisSwing 86.93 

CliffDiving 88.07 HorseRiding 99.8 SkateBoarding 88.69 TrampolineJumping 82.96 

CricketBowling 72.83 IceDancing 80.89 Skiing 77.11 VolleyballSpiking 85.19 

Diving 98.16 LongJump 63.42 Skijet 97.34 WalkingWithDog 88.52 
      

Average frame mAP 87.23 

An additional verification step involves training a new model from scratch and subsequently comparing the 
algorithmic performance. To this end, the original parameter values employed by Köpüklü et al. are used 
again (shown in Table 2). The following computational resources are employed for the model training: a 
computing cluster comprising eight computer nodes with three identical graphics processing units per node; 
Nvidia Tesla T4, Nvidia Quadro RTX 4 000, and Nvidia Quadro RTX 6 000 GPUs; and for each node, two Intel 
Xeon Gold 5218 central processing unit processors with at least 376 GB of RAM per computer. The following 
modelling results (in respect of frame mAP) are obtained for the five respective epochs (in ascending order): 
83.15, 82.05, 85.72, 84.52, and 83.86. The best model is therefore obtained after epoch three, with a 
frame mAP score of 85.72.   

A summary of a performance comparison between the benchmark and trained models is presented in Table 
4. The performance achieved by the CV-HART model is similar to that of the benchmark model; the overall 
performance is only 1.51% inferior. Eight of the 24 classes show an increase in AP: the LongJump and 
Basketball classes show significant increases of 8.23% and 23.35% respectively. The other 16 classes, 
however, experience a reduction in performance, eight instances of which correspond to a reduction larger 
than 5%. The largest reductions occur in the Skiing and SkateBoarding classes – i.e., 8.10% and 14.68% 
respectively. The performance differences are not entirely unexpected, as the original authors did not 
provide their random seeds for model weight initialisation. Overall, performance is mostly similar, and 
therefore further empirical proof of verification is demonstrated.  
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Table 4: Performance comparison between benchmark and newly trained model 

Class Benchmark Trained Model Difference 

Basketball 64.84 93.19 28.35 

BasketballDunk 90.7 90.84 0.14 

Biking 89.8 86.38 −3.42 

CliffDiving 88.07 84.81 −3.26 

CricketBowling 72.83 68.71 −4.12 

Diving 98.16 98.02 −0.14 

Fencing 93.73 91.82 −1.91 

FloorGymnastics 95 94.76 −0.24 

GolfSwing 92.34 86.44 −5.90 

HorseRiding 99.8 99.81 0.01 

IceDancing 80.89 74.68 −6.21 

LongJump 63.42 71.65 8.23 

PoleVault 76.83 80.55 3.72 

RopeClimbing 97.61 93.77 −3.84 

SalsaSpin 89.14 82.53 −6.61 

SkateBoarding 88.69 74.01 −14.68 

Skiing 77.11 69.01 −8.10 

Skijet 97.34 95.22 −2.12 

SoccerJuggling 96.74 90.87 −5.87 

Surfing 96.83 97.3 0.47 

TennisSwing 86.93 81 −5.93 

TrampolineJumping 82.96 77.23 −5.73 

VolleyballSpiking 85.19 85.55 0.36 

WalkingWithDog 88.52 89.11 0.59 

frame mAP 87.23 85.72 −1.51 

5. VALIDATION 

In order to demonstrate the practical utility of the verified CV-HART, it is applied to a real-world case 
study.  

5.1. Case study background 

According to the South African Banking Association, about 30 000 ATMs are located across South Africa [52]. 
These ATMs are situated at on-site (bank) locations and at off-site locations, such as malls and petrol 
stations. ATMs are constantly replenished. Independent cash in transit (CIT) service providers are typically 
contracted to perform these ATM cash replenishments.  

The industry partner attached to this project, a large South African retail bank, developed strict procedural 
steps and rules to be adhered to by the CIT personnel. Currently, surveillance monitoring is carried out 
manually, which is prone to human error, inefficiencies, and unnecessary expenditure [53]. In an attempt 
to automate this monitoring process, the application of CV to perform HAR is considered. The main 
objectives of this case study involve determining CV-HART’s algorithmic performance in this problem 
context to demonstrate the extent of its potential utility. 
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5.2. Case study data 

The data provided correspond to several months of video footage recorded at an undisclosed location. A 
snapshot of the footage showing the camera angle and layout of the specific room is shown in Figure 7. 
Deliberation with the industry partner resulted in the following action classes being deemed important: (1) 
EnterRoom, (2) OpenSafe, (3) CloseSafe, (4) UseComputer, (5) HandleCash, and (6) ExitRoom. 

 

Figure 7: Snapshot of ATM cubicle video data 

5.3. Implementation of CV-HART validation 

A sensitivity analysis is employed to determine the sensitivity of a model’s performance in respect of 
parameter variations. Values deemed to be of a small, medium, and large magnitude are considered for 
each numerical parameter. In the case of non-numerical parameters, a selection of the most popular 
approaches in the literature is used. A baseline model is established (based on the parameters of Köpüklü 
et al. [39], as shown in Table 2) after which individual changes are made to each parameter. A summary of 
the different parameter combinations is presented in Table 5. 

Table 5: Parameter combinations employed during the sensitivity analysis 

Combination Learning 
rate 

Batch 
size 

Clip length Training state 3D Backbone 
model 

Baseline 0.0001 8 16 pre-trained ResNeXt101 

1 0.00001 8 16 pre-trained ResNeXt101 

2 0.001 8 16 pre-trained ResNeXt101 

3 0.0001 16 16 pre-trained ResNeXt101 

4 0.0001 32 16 pre-trained ResNeXt101 

5 0.0001 64 16 pre-trained ResNeXt101 

6 0.0001 8 8 pre-trained ResNeXt101 

7 0.0001 8 16 untrained ResNeXt101 

8 0.0001 8 16 pre-trained ResNet18 

9 0.0001 8 16 pre-trained ResNet50 

10 0.0001 8 16 pre-trained ResNet101 

Ten epochs are used for training, except in the case of combination seven, which evaluates an untrained 
backbone. Accordingly, the untrained model is trained in ten different training runs, each comprising ten 
epochs. This approach accounts for the stochasticity associated with training randomly initialised weights. 
The respective random seeds are provided for replication purposes; they are: 3, 8, 17, 18, 30, 40, 57, 59, 
69, 94. 



347 

 

A summary of the final results for each parameter combinations is shown in Table 6, where the frame mAP 
values for the best epoch for each parameter combination are shown. Only one parameter combination, 
combination 3, improves on the baseline performance. Combinations 4, 9, and 10 achieve admirable 
performance (greater than 90.0). From the results, it can also be reported that the model exhibits notable 
sensitivity to the training state parameter, followed by the learning rate and batch size parameters. The 
best-performing model corresponds to combination 3, and so is employed for the remainder of this case 
study. A summary of class-specific performance is presented in Table 7. The performance is consistent 
across each class. OpenSafe is the only class with a score less than 90%. The best-performing class, 
UseComputer, shows a near-perfect score of 99.61%. 

Table 6: Best frame mAP value for each parameter combination 

Parameter varied Combination Frame mAP 

learning rate 

1 85.28 

2 88.48 

3 93.76 

batch size 4 91.71 
 5 84.00 

clip duration 6 86.13 

training state (best 
state) 

7 79.96 

8 87.98 

3D backbone 
9 92.21 

10 90.41 

Table 7: Individual class APs from the best-performing parameter combination (combination 3) 

Class AP 

CloseSafe 92.00 

EnterRoom 96.50 

ExitRoom 94.24 

HandleCash 91.19 

OpenSafe 89.00 

UseComputer 99.61 

frame mAP 93.76 

In an attempt to glean additional insight from the algorithmic performance, an average bounding box is 
calculated and analysed for each class, as shown in Figure 8. As expected, boxes 1 and 2 – i.e., EnterRoom 
and ExitRoom – are markedly similar, as are boxes 3 and 4 – i.e., OpenSafe and CloseSafe. Box 5 – i.e., 
UseComputer – is the most distinct box, while box 6 – i.e., HandleCash – overlaps with boxes 3, 4, and 5 
(the last of them being the most notable). The best- and worst-performing classes naturally correspond to 
the largest and smallest overlap respectively in respect of bounding boxes. 
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Figure 8: The average bounding boxes for each class of the validation case study 

A confusion matrix (shown in Figure 9) is also constructed in an attempt to gain additional insight into the 
model’s performance. It can be seen that the model does, in fact, confuse classes moderately often, with 
the ExitRoom class being incorrectly predicted in more than 34% of the predictions. Overall, the 
performance is favourable, as confirmed by the main diagonal. 

Further insight can be inferred from the ADT chart, shown in Figure 10. Upon comparing the detected ADT 
chart with the ground truth data, it is evident that the model detects actions markedly well. The frames 
with the largest number of incorrect class predictions occur at frame number 5 000; and it is interesting to 
note that those frames, and other occurrences of incorrect detection, correspond to instances during which 
no labelled actions of interest occur. The model then continually searches for actions, and the model 
identifies different actions that do not occur at that time. 

To validate the CV-HART further, subject matter experts (SMEs) and key industry partner stakeholders were 
interviewed in the light of the obtained results. These SMEs were Dr Buitendag [54] (manager of insurance 
data and analytics), Mr van Staden [53] (team leader at the cash investigations department), and Mr Gerber 
[55] (projects engineer at the company). All three SMEs stated notable satisfaction with the algorithmic 
performance results obtained by the CV-HART. Buitendag noted that, although the model is complex (in its 
scale) and that real-time application could prove difficult at first, he confirmed that deploying the CV-
HART on batches of live footage could prove practically beneficial. Both Buitendag and Van Staden agreed 
that a larger number of classes could result in improved utility. To this end, Gerber also suggested that 
decomposing classes further into smaller sub-classes – such as expanding OpenSafe to EnterSafeKey and 
OpenSafeDoor – could add value. Van Staden confirmed that the CV-HART could demonstrably aid process 
monitoring. The ADT charts were highlighted in particular, given their practically intuitive nature.  

In summary (and based on the quantitative studies and the qualitative SME discussions), the following 
validation-specific conclusion can be reasonably drawn in respect of the proposed CV-HART: the developed 
tool (which employs HAR techniques based on CV and STAL) represents a successful proof-of-concept in 
respect of high-quality algorithmic performance and practical utility. 
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Figure 9: Confusion matrix in respect of case study predictions 

 

Figure 10: ADT chart depicting the detected actions in a deployment video 

6. CONCLUSION 

In pursuit of the overarching goal of this project, a generic DST for HAR was designed, developed, and 
implemented. The novel CV-HART was developed by incorporating and synthesising three fields of research, 
namely DL, HAR, and DSTs, as reviewed in Section 2. The proposed DST was not only designed conceptually, 
but also implemented practically. In Section 4, the implementation of the CV-HART with respect to a 
prominent benchmark STAL data set – i.e., the UCF101-24 data set [44] – was discussed. The aim of the 
verification case study was to determine whether the YOWO architecture, as it was employed in the CV-
HART, was able to achieve a performance score similar to that of the original authors [39]. The CV-HART 
was verified, and it was shown that a markedly similar performance score could be achieved on the UCF101-
24 data set.  

Aside from the CV-HART’s successful application to the verification case study, the generic capabilities of 
the approach were also demonstrated. To this end, the application of the CV-HART to a real-world case 
study was performed and documented in Section 5. The case study data set constituted video surveillance 
footage provided by an industry partner. Impressive performance was achieved, as exemplified by a frame 
mAP of 93.76%, confirming both that the CV-HART is generic in its applicability and that it delivers a highly 
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favourable performance. To the best of the author’s knowledge, this HAR use case is novel, and therefore 
represents a development of the respective DL and HAR bodies of knowledge. 

Possible avenues for future work include improving the practical utility of the CV-HART by developing 
additional functionality in respect of automatically detecting process breaches by means of, for example, 
rule-based heuristics for process conformance. Other avenues include an investigation into the application 
of the CV-HART to additional domains (beyond sports activities and replenishment surveillance footage) so 
as to showcase further the generic nature of the CV-HART. Other domains of interest include detecting the 
activities of patients in a hospital or in an old-age home for anomaly detection. Another potential avenue 
for future work is to improve YOWO architectural inefficiencies (e.g., batch frame loading) or to create a 
semi-automatic data labelling tool for improved usability.  
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APPENDIX A 

This section contains a number of graphical depictions of the GUI that was developed as part of the CV-
HART.  

 

Figure 11: Main CV-HART window 

 

Figure 12: New project window (left) and load project window (right) 
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Figure 13: Components window (left) and processing window (right) 

 

Figure 14: Select data window 
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Figure 15: DarkLabel window 

 

Figure 16: Model parameters window 

 
Figure 17: Evaluation window 
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Figure 18: Deployment window 
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