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ABSTRACT 

The solar salt mining process involves collecting salt water from the sea 
and trapping it in an interlinked network of shallow ponds where the sun 
evaporates most of the water. As soon as the brine reaches its saturation 
point, salt crystallisation occurs. Several factors influence this mining 
process, each with a degree of variability that results in a risk factor 
owing to uncertainty. This study proposes a two-stage stochastic 
programming model, called ‘a recourse model’, that maximises salt 
crystallisation while providing solutions that are hedges against 
uncertainty. First, the theoretical background on optimisation theory is 
provided, followed by an overview of the mining processes. Second, the 
recourse model is verified and validated using historical data and 
comparing the results with its deterministic counterpart. The main 
contribution of this study is the formulation of the recourse model and 
the value that this approach adds when dealing with uncertainty in any 
decision-making process. 

 OPSOMMING  

Die sonsoutmynproses behels die versameling van soutwater uit die see 
en vasvang in 'n onderling gekoppelde netwerk van vlak damme waar die 
son die meeste van die water verdamp. Sodra die pekelwater sy 
versadigingspunt bereik, vind soutkristallisasie plaas. Verskeie faktore 
beïnvloed hierdie mynbouproses, elk met 'n mate van veranderlikheid 
wat 'n risikofaktor tot gevolg het as gevolg van onsekerheid. Hierdie 
studie stel 'n twee-stadium stogastiese programmeringsmodel voor, 
genaamd ''n beroepsmodel', wat soutkristallisasie maksimeer terwyl 
oplossings verskaf word wat teen onsekerheid verskans word. Eerstens 
word die teoretiese agtergrond oor optimeringsteorie verskaf, gevolg 
deur 'n oorsig van die mynbouprosesse. Tweedens word die 
beroepsmodel geverifieer en bekragtig deur historiese data te gebruik 
en die resultate met sy deterministiese eweknie te vergelyk. Die 
hoofbydrae van hierdie studie is die formulering van die beroepsmodel 
en die waarde wat hierdie benadering byvoeg wanneer onsekerheid in 
enige besluitnemingsproses hanteer word. 

 

 

 

 

1. INTRODUCTION 

Solar salt mining involves collecting salt water from the sea and trapping it in an extensive network of 
interlinked dams where water evaporation occurs. Subsequently, the brine is placed in evaporation pans 
where salt precipitation occurs, and the salt is mined. The dams are 200 mm deep, with room for 200 mm 
of extra water. Shallow dams with a large surface area maximise the brine (salt water) evaporation as it 
navigates through the network of dams. The brine in each dam has a higher specific gravity (SG) than in 
the previous dam. Specific gravity is determined by the density of a reference material at some 
temperature, divided by the density of pure distilled water at 0 °C, and is a unitless number [1]. 
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About 80% of the original water is lost in passing through the system. The dams are positioned in such a 
way as to minimise the number of pumps that are required to transport the water, thereby reducing 
operational costs. The flow of water is primarily controlled with rudimental slues and gravity. After passing 
through the network of dams, the brine flows into the salt pans, where salt crystallisation occurs. The 
tempo of salt crystallisation increases as the SG of the water increases. Multiple other minerals are present 
in the water. Figure 1 plots the chemical composition of the minerals in the water at various SG levels. 

 

Figure 1: Chemical composition of brine 

When the salt (NaCl) concentration is higher than 250 g/l, the tempo of crystallisation is optimal. As soon 
as the salt concentration decreases, the concentration of impurities such as magnesium sulphate (𝑀𝑀𝑀𝑀𝑀𝑀𝑂𝑂4) 
and magnesium chloride (𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙2) rapidly increases. This contaminates the salt and lowers the quality of 
the final product. Maintaining a constant SG of between 1215 kg/m3 and 1240 kg/m3 in the salt pans is 
essential; draining and replacing the water is also necessary. 

It takes roughly 18 months for enough salt to crystallise in a pan before harvesting can begin. For this 
reason, the system must be balanced, meaning that there is enough brine higher up in the system at an SG 
level slightly lower than 1215 kg/m3. This ensures that crystallisation only occurs in the salt pans where 
the salt can be harvested. 

The mine’s planning is currently based on historical data. This planning method has a significant margin of 
error, leading to possible supply uncertainty from the salt pans. Given the system’s sensitivity, there is a 
high risk of unbalancing it while optimising the salt production process. In the event of a salt shortage, the 
factory would be unable to satisfy demand. An unreliable business would suffer a loss in sales and 
customers, which would immediately have an impact on the company’s revenue; and a revenue loss would 
severely harm numerous aspects of the company [2]. 

It is evident that the salt mining process is complicated and is badly affected by uncertainty. The network 
of evaporation dams and crystallisation pans forms a delicate system that must be balanced. Various 
uncontrollable weather factors significantly affect the system, and must be monitored daily. All of these 
factors play a role in the supply capacity of the system, leaving a significant margin of uncertainty. The 
salt mine’s supply does not currently meet the factory’s demand.  

This study aims to address the problem by proposing a two-stage stochastic programming model – that is, 
an optimisation model that addresses the supply uncertainty from the salt mine; and to provide future 
research opportunities that are based on the findings and discoveries that are documented here. This model 
aims to maximise the salt crystallisation while providing solutions that provide a hedge against uncertainty. 
The main contribution of this study is the formulation of the recourse model and the value that this 
approach adds when dealing with uncertainty in the decision-making process. 
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In Section 2 a literature study is conducted on optimisation theory and stochastic programming models; 
then the constraints, restrictions, and rules that govern the system’s behaviour will be quantified. The two-
stage stochastic programming model is formulated and proposed in Section 3. Section 4 documents the 
verification and validation of the model, followed by a summary and the conclusion in Section 5.  

2. LITERATURE REVIEW 

The literature study is conducted to understand the industrial engineering techniques and basic principles 
that are required to solve the problem described in Section 1. 

2.1. Overview of optimisation theory 

To deal with disruption and uncertainty, the industry must use tools while considering the business 
situations, difficulties, limitations, and constraints [2]. Using optimisation theory as an approach to 
decision-making is a repetitive process in which a model is developed and continuously tested. This allows 
for a simple model to be developed that captures the essence of the system or problem being addressed. 
After that, sophisticated complications and constraints are added. A mathematical model is a mathematical 
representation of a real-world system or problem with varying complexity levels.  

Developing a mathematical model aims to obtain a scientific understanding of a system, evaluate the effect 
of change on a system, and aid in tactical and strategic decision-making [3]. The two main types of model 
are distinguished by the kind of outcome that is predicted. Deterministic models are formulated with a set 
of constants that are derived from real-world data, consider random variables, and exclude uncertainty. 
Generally, these random variables are derived as the mean of a data set, but they do not always accurately 
represent the data [4]. Various models are developed that deal with deterministic optimisation. These 
include, but are not limited to, linear programming (LP) and integer linear programming models (ILP). To 
provide more context, the standard formulation of an LP is as follows:  

Maximise             

𝑓𝑓(𝑥𝑥) =  𝑐𝑐𝑇𝑇𝑥𝑥 (2.1) 

 subject to  

𝐴𝐴𝑥𝑥 = 𝑏𝑏  (2.2) 

and 

𝑓𝑓𝑥𝑥 ≥ 0 (2.3) 

where 

 𝑐𝑐 ∈ ℝ, 𝑏𝑏 ∈ ℝ𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛       (2.4) 

Linear programming is applied in various industries such as mining [5], finance [6], manufacturing [7], and 
the retail industry [8]. Deterministic optimisation’s counterpart, stochastic optimisation, deals with 
decision-making under uncertainty. These models consider uncertainty and predict a distribution of possible 
outcomes [9].  

Various methods deal with decision-making under uncertainty. These include robust optimisation and 
chance-constrained and stochastic programming. This paper focuses on stochastic programming, and 
therefore explains it in detail.  

Stochastic programming is a mathematical model for solving linear or integer programming models while 
considering a degree of uncertainty within parameters, and is known for “providing solutions hedged against 
uncertainty”. The formulation of a stochastic programming model is more complicated than that of a 
standard LP. A stochastic programme is a set of linear programmes representing various outcomes that 
depend on the uncertain events that occur. A stochastic model will give an LP the optimal solution, 
regardless of the variables’ uncertainty level. Different formulations deal with uncertainty, such as two-
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stage and multi-stage stochastic programming models [10]. This study focuses specifically on the two-stage 
stochastic programming approach. A two-stage stochastic programming model is formulated as follows: 

Minimise 

𝑐𝑐𝑇𝑇𝑥𝑥 + 𝛦𝛦[𝑄𝑄(𝑥𝑥,𝐷𝐷)]     (2.5) 

where 

𝑥𝑥0 ≥ 0 (2.6) 

While solving an optimisation problem, one has access to information on which a decision is made. This is 
referred to as the first-stage decision. The first term (𝑐𝑐𝑇𝑇𝑥𝑥) represents the first-stage decision, with the 
vector (𝑥𝑥) being the decision variable. After this decision, a few possible outcomes may occur later, and it 
is impossible to know which one will influence the model’s performance. Each of these outcomes is referred 
to as a scenario, where 𝑀𝑀 = {𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚,ℎ𝑚𝑚𝑀𝑀ℎ}, and a decision must be made that accommodates each of 
these scenarios. This decision is called a second-stage decision, represented by Ε[𝑄𝑄(𝑥𝑥,𝐷𝐷)]. The second-
stage decision must be made in conjunction with the first-stage decision when it is unknown which scenario 
will be realised [11]. Therefore, the second-stage decision is also referred to as the expected function.  

In industry, there is a wide application of two-stage stochastic programming models. For example, Liu et 
al. [5] proposed a two-stage stochastic programming model to allocate retrofit resources for highway 
bridges to provide protection against natural and human-caused hazards. Bisset [12] developed a stochastic 
programming model for marketing campaign optimisation. The industry context and all of the essential 
factors to consider when developing a recourse model are explained in the next section. 

2.2. Industry context 

The constraints, restrictions, and rules that govern the system’s behaviour must be quantified in order to 
model and optimise the system. The five main factors that have the greatest influence have been identified: 
1) salt water intake, 2) available evaporation and crystallisation surface area, 3) crystallisation rate, 4) 
brine evaporation rate, and 5) other limitations. These are explained in detail in Sections 2.2.1 to 2.2.5 
below. 

2.2.1. Salt water intake 

The tide must be accounted for because salt water is pumped from the nearby estuary into the system. 
The tide affects the amount of salt present in the water. Ideally, water is only pumped at high tide. The 
pumps can operate for 15 hours daily to pump enough water into the system. There are two pumps, with a 
capacity of 750 and 650 litres per hour respectively. The salt content of the water is 14 grams per litre, as 
specified by the company.  

2.2.2. Available evaporation and crystallisation surface area 

Solar salt evaporation is relies heavily on the available surface area. The current combined area (at the 
primary and secondary sites) that is suitable for use as evaporation ponds and crystallisation pans is given 
in Table 1. 

Table 1: Current surface area allocation at the company 

Area allocation Surface area (𝒎𝒎𝟐𝟐) 

Evaporation dams 4 363 083 

Crystallisation ponds 918 339 

Total 5 281 422 



101 

For the model, considering only the total available area is essential. For the purpose of this model, three 
area allocations are used: the low SG evaporation area, the high SG evaporation area, and the crystallisation 
area. 

2.2.3. Crystallisation rate 

The SG levels of the brine directly impact the salt’s crystallisation rate (precipitation) and the evaporation 
rate that is experienced. The company’s current planning system uses statistically predicted growth rates, 
as shown in Figure 2. The company requires that these growth rates be used for the mathematical model.  

 

Figure 2: Expected crystal growth rate 

The growth rate indicates that the salt crust formed at the pan’s bottom will grow by the amount indicated. 
The actual crystallisation rates are not constant, and depend on the weather and the management of the 
salt pan. 

2.2.4. Brine evaporation rate 

The company has a weather station with documented weather data from 1993 to 2021. One of these 
measured data points is the evaporation rate of brine. However, this measurement is only applicable to 
seawater. As the salt concentration increases in the water, the evaporation rate reduces drastically.  

Figure 3 shows the monthly evaporation from 1993 to 2021. However, this does not consider the 
accumulative rainfall that occurs. The model derived by Glen Akridge [6] can be used with the additional 
recorded data points to determine more accurately the exact evaporation rates. This introduces a high 
level of complication to the model; but adding this to the model at a later stage is a possibility. Measuring 
the evaporation levels is also not an option, as each pond has a continuously variable inflow and outflow of 
brine. 

  
Figure 3: Accumulative monthly brine evaporation rate 
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As seen in Figure 3, some years experience a higher tempo of evaporation, which is advantageous, provided 
that enough seawater can enter the system simultaneously. For each month, the evaporation follows a 
normal distribution. Therefore, each month has a distinct mean and interquartile range (IQR). This 
variability source dictated the system’s behaviour (evaporation rate and crystallisation tempo). The 
company currently estimates the evaporation levels for brine with a medium SG level of 70% and a high SG 
level of 50% of fresh water. 

2.2.5. Other limitations 

Harvesting of salt can only begin once a crust of at least 300 mm has formed. A crust of 150 mm must be 
left behind, and cannot be harvested; this is to ensure that the harvesting machine does not strike rocks. 
The company uses an SG of 1.14 for the dry salt (formed as the crust) to calculate the mass of the salt 
formed in the crust.  

The data points and the information provided and discussed in this chapter form an integral part of 
developing the mathematical model that addresses the uncertainty at the salt mine. The data provided and 
the company’s assumptions must be used, as these are the model’s requirements. These points provide 
guidance and a framework for the system’s behaviour and for mathematical modelling. 

3. MODEL FORMULATION 

Formulating a recourse model consists of three parts. First, the model scenarios are described, followed by 
the model notation and assumptions. Last, the proposed mathematical model is formulated. 

3.1. Decision-making under uncertainty: Scenario explanation  

As previously mentioned, the brine’s evaporation rate has a direct impact on the salt that is produced. 
Owing to the high level of variability in the monthly evaporation rate, the following three scenarios are 
derived: 𝑀𝑀 = {low, medium, high}. Associated with each scenario 𝑠𝑠 ∈ 𝑀𝑀 is a probability 𝑝𝑝𝑠𝑠. Each scenario is 
paired with a different monthly evaporation rate for one year of production, as shown in Table 2.  

Table 2: Two-stage model scenarios 

Scenario (𝒑𝒑𝒔𝒔) Likelihood (%) Evaporation rate (mm) 

Low (𝑝𝑝𝑙𝑙) 33.3% µ + IQR 

Medium (𝑝𝑝𝑚𝑚) 33.3% µ 

High (𝑝𝑝ℎ) 33.3% µ - IQR 

Table 2 shows the distinct scenarios that may occur, along with an assigned likelihood of occurring. The 
evaporation rate is determined as the mean evaporation rate for the month ± the IQR for that month, as 
obtained from Figure 3. The model notations are defined in Section 3.2. 

3.2. Model notation 

The following indices are defined:  

• 𝑚𝑚 ∈ 𝐼𝐼 is the index for the area allocation. 

• 𝑡𝑡 ∈ 𝑇𝑇 is the index for periods (months). 

• 𝑠𝑠 ∈ 𝑀𝑀 is the index for the designated scenarios. 

The following decision variables are identified: 

• 𝑎𝑎𝑖𝑖  is the total area designated for the specific area 𝑚𝑚. 
• 𝜍𝜍𝑡𝑡 is the total amount of crystallised salt for month t.  

• 𝑞𝑞𝑠𝑠𝑡𝑡𝑖𝑖  is the total volume of brine that flows into location 𝑚𝑚. 
The following parameters are defined: 
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• 𝑚𝑚𝑎𝑎𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖  is the total volume of brine that flows into location 𝑚𝑚. 
• 𝑠𝑠𝑚𝑚𝑎𝑎𝑖𝑖𝑠𝑠𝑡𝑡  is the total amount of salt that flows into location 𝑚𝑚. 
• 𝑚𝑚𝑠𝑠𝑡𝑡𝑖𝑖  is the total volume of fresh water that is evaporated. 

The following constants are formulated:  

• 𝐺𝐺𝑛𝑛  is the SG of salt. 

• 𝐺𝐺𝑤𝑤 is the SG of fresh water. 

• 𝑀𝑀𝑡𝑡 is the crystal growth for month t. 

• 𝑇𝑇 is the total available area. 

• 𝑄𝑄𝑡𝑡 is the maximum volume of water pumped into the system for month t. 

• 𝐷𝐷 is the total salt demand for one year of production. 

• 𝐸𝐸𝑠𝑠𝑡𝑡  is the evaporation tempo. 

The following assumptions are made: 

• The model will be applied for a period of one year t.  

3.3. Proposed two-stage stochastic programming model 

Maximise: 

∑ 𝝇𝝇𝒕𝒕𝑻𝑻
𝒕𝒕=𝟏𝟏  + ∑ 𝝆𝝆𝒔𝒔 ∑ ∑ 𝒒𝒒𝒔𝒔𝒕𝒕𝒔𝒔𝑮𝑮𝑮𝑮𝒔𝒔𝑰𝑰

𝒔𝒔=𝟏𝟏
𝑻𝑻
𝒕𝒕=𝟏𝟏𝒔𝒔∈{𝒍𝒍,𝒎𝒎,𝒉𝒉}   (3.1) 

subject to: 

∑ 𝒂𝒂𝒔𝒔 ≤ 𝑻𝑻𝑰𝑰
𝒔𝒔=𝟏𝟏       (3.2) 

𝒔𝒔𝒊𝒊𝒊𝒊𝒔𝒔𝒕𝒕𝒔𝒔 ≤ 𝟎𝟎.𝟒𝟒𝒂𝒂𝒔𝒔, ∀ 𝒔𝒔 ∈ 𝑺𝑺, 𝒕𝒕 ∈ 𝑻𝑻, 𝒔𝒔 ∈ 𝑰𝑰   (3.3) 

𝒔𝒔𝒊𝒊𝒊𝒊𝒔𝒔𝒕𝒕𝒔𝒔 = 𝒂𝒂𝒔𝒔𝒔𝒔𝒊𝒊, ∀ 𝒔𝒔 ∈ 𝑺𝑺, 𝒕𝒕 = 𝟎𝟎, 𝒔𝒔 ∈ 𝑰𝑰 (3.4) 

𝒔𝒔𝒊𝒊𝒊𝒊𝒔𝒔𝒕𝒕𝒔𝒔 ≥ 𝟎𝟎.𝟎𝟎𝟎𝟎𝒂𝒂𝒔𝒔, ∀ 𝒔𝒔 ∈ 𝑺𝑺, 𝒕𝒕 ∈ 𝑻𝑻, 𝒔𝒔 ∈ 𝑰𝑰   (3.5) 

𝒔𝒔𝒊𝒊𝒊𝒊𝒔𝒔𝒕𝒕𝒔𝒔 = 𝒔𝒔𝒊𝒊𝒊𝒊𝒔𝒔𝒕𝒕−𝟏𝟏𝒔𝒔 + 𝒒𝒒𝒔𝒔𝒕𝒕𝒔𝒔 − 𝒒𝒒𝒔𝒔𝒕𝒕𝒔𝒔+𝟏𝟏 − 𝒆𝒆𝒔𝒔𝒕𝒕𝒔𝒔 ∀ 𝒔𝒔 ∈ 𝑺𝑺, 𝒕𝒕 ∈ 𝑻𝑻, 𝒔𝒔 ∈ 𝑰𝑰 (3.6) 

𝒆𝒆𝒔𝒔𝒕𝒕𝒔𝒔 ≤ 𝒂𝒂𝒔𝒔𝑬𝑬𝒔𝒔𝒕𝒕𝑹𝑹𝒔𝒔, ∀ 𝒔𝒔 ∈ 𝑺𝑺, 𝒕𝒕 ∈ 𝑻𝑻, 𝒔𝒔 ∈ 𝑰𝑰 (3.7) 

𝒒𝒒𝒔𝒔𝒕𝒕𝟏𝟏 ≤ 𝑸𝑸𝒕𝒕, ∀ 𝒔𝒔 ∈ 𝑺𝑺, 𝒕𝒕 ∈ 𝑻𝑻   (3.8) 

𝒒𝒒𝒔𝒔𝒕𝒕𝒔𝒔 ≤ 𝟎𝟎.𝟔𝟔𝒆𝒆𝒔𝒔𝒕𝒕𝒔𝒔−𝟏𝟏 ,∀ 𝒔𝒔 ∈ 𝑺𝑺, 𝒕𝒕 ∈ 𝑻𝑻, 𝒔𝒔 = 𝟐𝟐 (3.9) 

∑ 𝒂𝒂𝒔𝒔𝑪𝑪𝒕𝒕𝑮𝑮𝒊𝒊𝑻𝑻
𝒕𝒕=𝟏𝟏 ≥ 𝝇𝝇𝒕𝒕 , ∀ 𝒔𝒔 ∈ 𝑰𝑰  (3.10) 

∑ 𝝇𝝇𝒕𝒕𝟏𝟏𝟐𝟐
𝒕𝒕=𝟏𝟏 ≥ 𝑫𝑫  (3.11) 

𝒔𝒔𝒔𝒔𝒊𝒊𝒊𝒊𝒔𝒔,𝒕𝒕 ≤ 𝒔𝒔𝒊𝒊𝒊𝒊𝒔𝒔𝒕𝒕𝒔𝒔𝑩𝑩𝒔𝒔 , ∀ 𝒔𝒔 ∈ 𝑺𝑺, 𝒕𝒕 = 𝟎𝟎, 𝒔𝒔 = 𝟑𝟑    (3.12) 

𝒔𝒔𝒔𝒔𝒊𝒊𝒊𝒊𝒔𝒔𝒕𝒕 = 𝒔𝒔𝒔𝒔𝒊𝒊𝒊𝒊𝒔𝒔𝒕𝒕−𝟏𝟏+ 𝒒𝒒𝒔𝒔,𝒕𝒕,𝒔𝒔𝑩𝑩𝒔𝒔 − 𝒂𝒂𝒔𝒔𝑪𝑪𝒕𝒕𝑮𝑮𝒊𝒊 , ∀ 𝒔𝒔 ∈ 𝑺𝑺, 𝒕𝒕 ∈ 𝑻𝑻, 𝒔𝒔 = 𝟑𝟑  (3.13) 

𝒔𝒔𝒔𝒔𝒊𝒊𝒊𝒊𝒔𝒔𝒕𝒕 ≥ 𝒂𝒂𝒔𝒔𝑪𝑪𝒕𝒕𝑮𝑮𝒊𝒊 , 𝒔𝒔 ∈ 𝑺𝑺, 𝒕𝒕 ∈ 𝑻𝑻, 𝒔𝒔 = 𝟑𝟑   (3.14) 

 

The objective function (3.1) maximises the salt yield in the first stage by allocating the optimal area for 
the crystallisation pans. The second stage maximises the flow of brine within the system. Constraint (3.2) 
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ensures that the total assigned area does not exceed the available area. Constraints (3.3) to (3.6) are the 
parameterised set of constraints that manage the total brine volume in the network of dams. Constraint 
(3.7) specifies the monthly evaporation tempo for the various scenarios. Constraint (3.8) limits the total 
volume of water that is pumped into the system, constrained by the physical pumps that are used. 
Constraint (3.9) defines the brine flow to the next dam, proportional to the volume of water that is 
evaporated in the dam. Constraints (3.10) and (3.11) ensure that the model produces the amount of salt 
that the factory requires. Constraints (3.12) to (3.14) are the parameterised constraints that measure the 
amount of dissolved salt in the crystallisation ponds.  

As mentioned earlier, this study proposes a two-stage stochastic programming model that allocates the 
optimal area for evaporation dams and crystallisation pans. This model is verified and validated in Section 
4.  

4. VERIFICATION AND VALIDATION 

In this section the mathematical formulation of the model is verified. The results obtained by the model 
are validated to ensure that the model is effective and solves the underlying uncertainty problem by 
providing solutions that provide a hedge against uncertainty.  

4.1. Verification 

Section 2 identifies the essential factors to consider when formulating a recourse model, along with the 
stochastic programming model proposed in Section 3. The constants presented by equations (3.1) to (3.14) 
are critically evaluated, using IBM CPLEX (optimisation software) to verify the model. This is conducted by 
evaluating each constraint’s impact on the model’s results. It is essential to note that small-scale data is 
used for the verification phase to simplify the process and to make evaluation easier.  

4.1.1. Objective function  

The objective function is first verified without including any constraints. To assess the impact of each 
constraint, a baseline must be set for evaluation to occur.  

Table 3: Verification of the total available area on the first-stage decision variable constraints 

Allocation (i) ai 

allocation 1 3 000 500 

allocation 2 1 387 300 

allocation 3 893 640 

Table 3 provides the first-stage decision variables. The model yields 𝜍𝜍 = 189 885 800 kg of crystallised salt, 
which exceeds the demand from the factory. This is expected, since no constraints are yet considered in 
the model. 

4.1.2. The total available area 

One main limiting factor for the company is the total area available for salt production. For constraint 
(3.2), increasing the total available area by 20%, the model is expected to deliver an increased amount of 
crystallised salt, along with an increased surface area allocation for (𝑎𝑎𝑖𝑖) in the first stage of the model. 
The results are shown in Table 4.  

Table 4: Verification of the total available area on the first-stage decision variable constraints 

Allocation (i) ai 

allocation 1 3 168 900 

allocation 2 1 697 600 

allocation 3 1 169 600 
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Table 4 proves that increasing the total available area by 20% increases the value of each area allocation 
compared with the values obtained in Table 3. Furthermore, the total number of tons of salt that is 
crystallised increases to a value of 𝜍𝜍 = 226 875 000. Thus the model performs as expected.  

4.1.3. The total brine inventory 

As demonstrated by constraints (3.4) to (3.6), the initial brine volume in the system is reduced by 50% to 
verify the brine inventory. The maximum capacity of brine held in the system is a significant factor to 
consider; the model is expected to favour increasing the brine flow. For this reason, the model likely favours 
allocating area to (𝑎𝑎1) and (𝑎𝑎2) rather than to (𝑎𝑎3). The results are illustrated in Table 5.  

Table 5: Verification of initial brine inventory on the first-stage decision variable constraints 

Allocation (i) ai 

allocation 1 2 447 400 

allocation 2 1 087 400 

allocation 3 625 260 

From Table 5, the total area allocated is less than that of the control model. Furthermore, the model 
favours (𝑎𝑎1) and (𝑎𝑎2) while barely exceeding the salt demand at 𝜍𝜍 = 129 930 200 kg. This demonstrates the 
importance of having a sufficient brine volume in the system. The model performs as expected. 

4.1.4. Crystallisation tempo 

The given monthly crystallisation tempo is decreased by 20% to verify the crystallisation constraints. 
Therefore, it is expected that the total salt crystallisation will be reduced. The results are shown in Table 
6.  

Table 6: Verification of crystallisation tempo on the first-stage decision variable constraints 

Allocation (i) ai 

allocation 1 3 000 500 

allocation 2 1 387 300 

allocation 3 893 640 

Table 6 indicates that the area allocation has remained unchanged, but that the total salt produced has 
decreased to 𝜍𝜍 = 151 908 200 kg. Thus the model performs as expected. 

4.1.5. Individual scenario evaluation 

The three distinct scenarios 𝑠𝑠 ∈ 𝑀𝑀 = {low, medium, high} are differentiated by the evaporation tempo (𝐸𝐸𝑠𝑠𝑡𝑡). 
When evaluating each scenario individually, it is expected that the salt crystallisation is lower for a low 
evaporation scenario, and increases for the higher scenarios. Evaluating the distinct scenarios also verifies 
the evaporation constraint (3.7), as this is the primary constraint being influenced. Furthermore, the area 
allocation is expected to correlate with the salt crystallisation. The result for each scenario is presented in 
Table 7.  

Table 7: Verification of individual scenario bases area allocation 

Area allocation (ai) Low (𝒑𝒑𝒍𝒍) Medium (𝒑𝒑𝒎𝒎) High (𝒑𝒑𝒉𝒉) 

a1 3 024 100 2 983 700 3 000 500 

a2 1 374 300 1 382 500 1 359 700 

a3 883 080 915210 921 240 
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Table 7 shows that the area allocations of each distinct scenario vary from one another and from the control 
model, as seen in Table 6. As expected, the high scenario (𝑝𝑝ℎ) also allocates a greater area for the 
crystallisation pans (𝑎𝑎3) than the medium (𝑝𝑝𝑚𝑚) or the low (𝑝𝑝𝑙𝑙) scenarios. The result for each scenario is 
presented in Table 8.  

Table 8: Verifying individual scenario bases salt crystallisation (𝛓𝛓𝐭𝐭) measured in kg 

Low (𝒑𝒑𝒍𝒍) Medium (𝒑𝒑𝒎𝒎) High (𝒑𝒑𝒉𝒉) 

187 642 800 194 468 000 195 749 000 

Table 8 illustrates that increased amounts of salt crystallisation occur with higher evaporation levels, 
according to the distinct scenarios. The distinct scenario evaluation is as expected. The second stage of 
the model is therefore verified.  

Section 4.1 evaluates the recourse model’s functionality by assessing each constraint’s impact on the 
results. This section also aims to verify the correctness of the mathematical formulation and code. The 
model performs as expected in each instance.  

The model is validated in Section 4.2.  

4.2. Validation 

Section 4.1 identified three scenarios for the stochastic model: 𝑀𝑀 = {low, medium, high} evaporation rates. 
First, the area allocation is validated by comparing the area allocation yielded by the recourse model with 
the current area allocation used by the company, as seen in Table 9. 

Table 9: Validation of the total available area from the first-stage decision variable 

Area allocation Surface area (m2) Model results (m2) 

Evaporation dams 4 363 083 4 387 800 

Crystallisation ponds 918 339 893 640 

Total 5 281 422 5 281 422 

From Table 9 it is evident that the model is accurate in area allocation, as there is a clear alignment 
between the model’s results and the current layout at the company. The model suggests that the area for 
evaporation dams should be slightly more than is currently used.  

Second, the effectiveness of the recourse model is evaluated by comparing the results with its deterministic 
counterpart. As described in Section 2, a set of scenarios 𝑀𝑀 = {low, medium, high} is associated with each 
scenario 𝑠𝑠 ∈ 𝑀𝑀 as a probability 𝑝𝑝𝑠𝑠 . The mean value scenario is also generated in this section, and is defined 
as 𝑀𝑀 = {MV}, and associated with a probability( 𝑝𝑝𝑀𝑀𝑀𝑀).  

Table 10 shows the assumed probabilities for each scenario outcome.  

 

Table 10: The assumed probabilities for each scenario 

Scenario (𝒑𝒑𝒔𝒔) Likelihood (%) 

Low (𝑝𝑝𝑙𝑙) 33.3% 

Medium (𝑝𝑝𝑚𝑚) 33.3% 

High (𝑝𝑝ℎ) 33.3% 

Mean value (𝑝𝑝𝑀𝑀𝑀𝑀) 33.33(low) + 3.33(medium) + 33.33(high) 
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A deterministic model excludes any uncertainty in the decision-making process, and also only considers one 
of the scenarios 𝑀𝑀 = {low, medium, high, MV} in the decision-making process, not all three concurrently. 
The results shown in Table 11 were obtained for each scenario. 

Table 11: The individual outcomes of each scenario 

Scenario (𝒑𝒑𝒔𝒔) Single scenario throughput (kg) 

Low (𝑝𝑝𝑙𝑙) 99 078 966 831 

Medium (𝑝𝑝𝑚𝑚) 109 680 925 855 

High (𝑝𝑝ℎ) 115 130 913 671 

Mean value (𝑝𝑝𝑀𝑀𝑀𝑀) 105 215 977 486 

The decision-maker may assume that a low, medium, or high scenario may be realised and decided, based 
on only one outcome. Alternatively, the decision-maker may consider the mean of the three scenarios to 
make the decision.  

For example, if the decision-maker assumes that a low scenario (𝑝𝑝𝑙𝑙) will be realised, 990 789 668 31 kg may 
be obtained; whereas a high scenario (𝑝𝑝ℎ) results in a total of 115 130 913 671 kg. The same is true for the 
medium (𝑝𝑝𝑚𝑚) and mean value scenarios (𝑝𝑝𝑀𝑀𝑀𝑀).  

Basing decisions on only one scenario outcome is unreliable, since one scenario does not accommodate the 
outcome of an alternative scenario. This may lead to a loss in profit or of valuable opportunities. Basing 
decisions on taking the mean is also unreliable, since the mean plans for the average of the probabilities 
occurring; it does not accommodate or consider the impact of alternative scenarios occurring.  

According to Higle [13], a deterministic approach is based on perfect information. The only case in which 
the decision-maker may assume that only a specific scenario will be realised is when enough information is 
available. The decision-maker can adapt after the results are known. If the decision-maker assumes a 
specific scenario, it may lead to a mismatch between the assumed and expected scenarios.  

This analysis shows that solutions must be generated that balance the impact of all scenario outcomes. 
Individual scenarios and the mean value scenario do not balance this impact. This indicates that a 
deterministic approach does not provide solutions that provide a hedge against uncertainty.  

This study proposes a two-stage stochastic programming model that allocates the optimal area for 
evaporation dams and crystallisation pans while providing solutions that provide a hedge against 
uncertainty. To demonstrate that the recourse model provides solutions that do provide such a hedge, that 
model’s results are compared with the deterministic single scenario outcomes’ results, as shown in Table 
12. 

Table 12: The results of the recourse model and the deterministic single scenario outcomes 

Scenario (𝒑𝒑𝒔𝒔) Recourse model 
throughput (kg) 

Deterministic model - single 
scenario throughput (kg) 

 Difference (%) 

Low (𝑝𝑝𝑙𝑙) 107 965 329 204 99 078 966 831 8.58% 

Medium (𝑝𝑝𝑚𝑚) 109 680 925 855 1.58% 

High (𝑝𝑝ℎ) 115 130 913 671 6.42% 

Mean value (𝑝𝑝𝑀𝑀𝑀𝑀) N/A 105 215 977 486 5.53% 

It is important to note that the stochastic model considers all three scenarios, and not the mean value. The 
recourse model generates a result of 107 965 329 204 kg of area allocation. Each scenario outcome is also 
observed. 

The recourse model provides a solution that partially satisfies all three possible scenarios: low (𝑝𝑝𝑙𝑙), medium 
(𝑝𝑝𝑚𝑚), and high (𝑝𝑝ℎ). If the low scenario occurs, the decision-maker can recover, since the area allocation 
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per kg does not differ by a significant percentage. Alternatively, if the high scenario is realised, the 
company will not meet the demand. However, the decision-maker would retain more profit. It would also 
be able to recover, since the consequences are not significant as the risk of assuming one scenario outcome 
with its deterministic counterpart. The same principle applies to the medium scenario outcome. No 
outcome is guaranteed, so a resource model provides reliable solutions that will partially satisfy all possible 
scenarios that are identified.  

The significance of a recourse model can be greater when more possible scenario outcomes are considered. 
A recourse model’s results do not accommodate each scenario completely; however, it does allow the 
decision-maker to recover for any scenario outcome.  

From the results discussed in this section, it is evident that the two-stage stochastic programming model 
makes the optimal decision and provides solutions that provide a hedge against uncertainty. The area 
allocation determined by the model delivers a balanced result, minimising the impact of weather 
uncertainty. This enables the mine to produce enough salt to meet the demand. 

5. CONCLUSION, SUMMARY, AND FUTURE WORK 

The solar salt mining process involves collecting salt water from the sea and trapping it in an interlinked 
network of shallow ponds where the sun evaporates most of the water. As soon as the brine reaches its 
saturation point, salt crystallisation occurs. Several factors influence this mining process, each with a 
degree of variability that results in a risk factor owing to uncertainty. These include the salt water intake, 
the available evaporation and crystallisation surface area, the crystallisation rate, the brine evaporation 
rate, and other limitations.  

Given these uncertainties, this study proposes a two-stage stochastic programming model that maximises 
salt crystallisation per kg while providing solutions that provide a hedge against uncertainty. The first-stage 
decision allocates the optimal area for crystallisation pans, and the second-stage decision determines the 
volume of brine that flows into a specific area. The brine’s evaporation rate has a direct impact on the 
amount of salt produced. For this reason, three scenarios are generated – 𝑀𝑀 = {low, medium, high} – where 
each scenario is associated with a probability 𝑝𝑝𝑠𝑠. Each scenario is paired with a different monthly 
evaporation rate for one year of production. 

The mathematical formulation of the recourse model is verified to ensure that the model is correctly 
formulated and coded in CPLEX. The effectiveness of the recourse model is validated by first determining 
whether the area allocation yielded by the model is similar to the current area allocation used by the 
company. Second, the recourse model is validated by demonstrating that a stochastic programming 
approach creates solutions that provide a hedge against uncertainty. The recourse model is compared with 
its deterministic counterpart, and the results demonstrate that the two-stage stochastic programming 
model does create solutions that provide a hedge against uncertainty. The area allocation determined by 
the model delivers a balanced result, minimising the impact or risk of weather uncertainty. This enables 
the mine to produce enough salt to meet the demand. 

This study is only an approximation of a real dynamic system. Increasing the model’s accuracy would lead 
to a more complex model to be solved. The current model is verified and validated for one year with three 
scenarios. For future research, increasing the number of scenarios is recommended. Bisset [12] applied a 
stochastic programming approach for marketing campaign optimisation. The computational solving time 
increased exponentially by increasing the number of scenarios in the model. However, various solutions are 
available to solve these types of complex real-life problem, including (but not limited to) the L-shape 
method [14], statistically based models [15], and stochastic decomposition. These types of method should 
be explored for future research.  
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APPENDIX A: MODEL OUTPUT 

The values for the crystallised salt 𝜍𝜍𝑡𝑡 are set out in Table 13. 

Table 13: The data selected for the salt crystallised for the control model 

Time (t) Salt crystallised (𝝇𝝇𝒕𝒕) 

1 2,50E+07 

2 2,00E+07 

3 1,50E+07 

4 9,99E+06 

5 5,00E+07 

6 0 

7 0 

8 0 

9 9,99E+06 

10 1,50E+07 

11 2,00E+07 
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12 2,50E+07 

The values for the area location (𝑎𝑎𝑖𝑖) are shown in Table 14. 

Table 14: The data selected for the area designation for the control model 

Location (i) Area allocated (ai) 

1 3,00E+06 

2 1,39E+06 

3 8,94E+05 

The following data is given in Table 15:  
1. The values for the brine flow (qsti) to the location (𝑎𝑎𝑖𝑖) 
2. The values for the water evaporated (esti) at each location (𝑎𝑎𝑖𝑖) 
3. The values for the brine inventory (invsti) at each location (𝑎𝑎𝑖𝑖) 
4. The values for the total dissolved salt (sinvst) 

Table 15: Auxillary data selected for the control model 
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