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ABSTRACT 

Anomaly detection has a wide variety of applications, ranging from 
intrusion detection in cybersecurity to fraud detection in finance. Among 
the most prominent applications is predictive maintenance in 
manufacturing, which involves performing maintenance only when truly 
necessary, based on the condition of relevant equipment instead of 
following a fixed maintenance schedule. When implemented correctly, 
predictive maintenance can lead to more significant cost savings than 
other preventative maintenance approaches. Unfortunately, the unique 
challenges present in anomaly detection (including the very broad 
definition of an anomalous instance) make it particularly difficult to 
choose an appropriate algorithm, since each algorithm’s performance is 
so dependent on the use case. In this paper we present an up-to-date 
taxonomy of univariate anomaly detection approaches to predictive 
maintenance, which is aimed at aiding practitioners to design effective 
predictive maintenance models for their specific use cases, based on 
numerical benchmark tests. 

 OPSOMMING  

Anomalie-opsporing het 'n wye verskeidenheid toepassings, wat wissel 
van inbraakopsporing in kuberveiligheid tot bedrogopsporing in 
finansies. Een van die mees prominente toepassings daarvan is 
voorspellende instandhouding in vervaardiging, wat behels dat 
onderhoud slegs uitgevoer word wanneer dit werklik nodig is, gebaseer 
op die toestand van relevante toerusting, in plaas daarvan om 'n vaste 
onderhoudskedule te volg. Wanneer dit korrek geïmplementeer word, 
kan voorspellende instandhouding tot meer beduidende kostebesparings 
lei as ander voorkomende instandhoudingsbenaderings. Ongelukkig maak 
die unieke uitdagings wat in anomalie-opsporing teenwoordig is 
(insluitend die baie breë definisie van wat 'n anomale geval behels) dit 
besonder moeilik om 'n gepaste algoritme te kies, aangesien elke 
algoritme se prestasie so afhanklik is van die gebruiksgeval. In hierdie 
artikel bied ons 'n bygewerkte taksonomie van eenveranderlike 
anomalie-opsporingsbenaderings tot voorspellende instandhouding aan, 
wat daarop gemik is om praktisyns te help om doeltreffende 
voorspellende instandhoudingsmodelle vir hul spesifieke gebruiksgevalle 
te ontwerp, gebaseer op numeriese maatstaftoetse.  

 

 

 

 

1. INTRODUCTION 

The most recent conceptual evolution in maintenance strategies is predictive maintenance. Since this 
strategy prescribes maintenance only when it is truly necessary, significant cost savings may be achieved 
if it is implemented properly. In practice, predictive maintenance may, for instance, take the form of the 
analysis of temperature or vibration readings from sensors installed on critical machinery. If one is able to 
detect anomalies in the time series data from sensors accurately, then these anomalies may indicate that 
maintenance should be carried out before something breaks. This paper contains both a survey of current 
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time series anomaly detection methods and guidelines aimed at aiding practitioners to implement 
predictive maintenance solutions successfully. 

Interest in time series anomaly detection has surged in recent years. While this has led to numerous 
advancements, an explosion in the volume of literature on the topic has created a minefield for 
practitioners. The need for up-to-date surveys, taxonomies, and guidelines is accentuated by the constant 
stream of new algorithms, which are often evaluated according to different methodologies, metrics, and 
data sets. Moreover, a relatively recent paper by Wu and Keogh [1] casts doubt on the veracity and 
reliability of anomaly detection benchmark data sets established before 2020, further emphasising the need 
for a re-evaluation of the most prominent algorithms. The aim in this paper is to close both of these gaps 
for univariate time series by providing an up-to-date and easy-to-use taxonomy of the time series anomaly 
detection literature labyrinth, as well as an appraisal of the most widespread, effective, and recent 
algorithms. 

The paper is structured as follows. First, a brief history of maintenance strategies is provided; this is 
followed by a brief review of some recent predictive maintenance solutions that are implemented in 
practice. Next, the discussion turns to an exposition of anomaly detection in time series, including the main 
difficulties experienced in the field and the types of anomaly one might encounter. Thereafter, a taxonomy 
and brief explanation are presented of the most noteworthy anomaly detection models that are available. 
The experimental design adopted in the paper is detailed next, with a focus on the rationale behind the 
data set, metrics, and models selected for a comparative study. Finally, the results of this study are 
presented and discussed. Conclusions are drawn in the hope of suggesting sensible guidelines for 
practitioners, as well as research avenues worthy of future exploration. 

2. PREDICTIVE MAINTENANCE 

Before diving into the details of time series anomaly detection, it is important to motivate the need for 
predictive maintenance and to provide some historical context. In this section, the evolution of 
maintenance strategies is briefly recounted, and a couple of successful practical predictive maintenance 
applications that require time series anomaly detection are showcased. 

2.1. The history of maintenance strategies 

Since the industrial revolution of the 18th century, manufacturers have continually sought to maximise the 
productivity and efficiency of their manufacturing processes. These efforts to optimise processes typically 
include reducing production downtime. Whenever production lines grind to a halt because of unforeseen 
breakdowns, even for brief periods of time, manufacturers can suffer significant losses. As a result, it is 
imperative to maintain machinery and equipment properly. 

The notion of maintenance has evolved over time, much like manufacturing itself [2]. The simplest and 
oldest kind of maintenance is reactive (or corrective) maintenance. If a reactive strategy is followed, then 
maintenance is only performed once a fault or breakdown has been detected. Naturally, this can be costly. 
Not only is production halted while maintenance is performed, but the machinery might require much 
lengthier, costlier, and more extensive repairs owing to the lack of regular upkeep.  

As a result, the concept of reactive maintenance has evolved into the notion of scheduled or planned 
maintenance. Scheduled maintenance seeks to enhance the productive life of equipment, reduce 
breakdowns, and minimise production losses by maintaining equipment at regular intervals before a serious 
breakdown occurs [2]. When implemented properly, scheduled maintenance can bring about significant 
improvements over reactive maintenance — but there is a complication. If maintenance is performed too 
infrequently, the machinery might break down prematurely anyway. Conversely, excessive maintenance is 
a waste of both time and money [2]. 

This leads to the most recent conceptual evolution in maintenance strategies — that of predictive 
maintenance. Predictive maintenance is aimed at performing maintenance only when truly necessary, thus 
saving both time and money when compared with scheduled maintenance. Although this has always been 
an ideal, the explosive growth in available data and rapid developments in machine learning have relatively 
recently turned predictive maintenance from a pipe dream into a reality [2]. 
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2.2. Typical predictive maintenance solutions 

Arguably, the notion of a control chart, proposed by Walter Shewhart during the 1920s [3], was one of the 
earliest forms of anomaly detection in manufacturing. While control charts remain perfectly adequate for 
a relatively simple system, the deluge of data typically available in recent years has encouraged 
practitioners to develop and harness more powerful methods. 

One such example is the system developed by Carrasco et al. [4], employing the well-known XGBoost 
algorithm (among others) for anomaly detection in the sensor data of a steel production plant. Another 
case is that of Hsieh et al. [5], where an LSTM-based (long short-term memory) autoencoder was used to 
flag anomalies in real time on a production line. It is evident that more powerful models are better suited 
to modelling complicated multivariate time series data accurately, thus motivating the need to research 
more powerful algorithms and techniques for scaling the models to big data. 

3. ANOMALY DETECTION IN TIME SERIES 

The two cases cited above are but a small sample of the predictive maintenance solutions that use anomaly 
detection techniques. It would appear that the reformulation of predictive maintenance challenges as time 
series anomaly detection problems is popular and effective in practice. Before reviewing methods for 
anomaly detection in time series, it would be instructive to identify the most significant challenges 
experienced in the field, as well as the various types of anomaly one might encounter. 

3.1. Challenges in time series anomaly detection 

The problem of anomaly detection poses a handful of interesting and unique challenges. Careful 
consideration of these is necessary in order to understand the rationale behind the experimental design 
adopted in this paper, as well as the requirements of anomaly detection algorithms in general. 

3.1.1. Inconsistent definition of an anomaly 

The first and perhaps most obvious challenge is merely defining what an anomaly is. Despite its apparent 
simplicity, this is a deceivingly complex question. Many attempts have been made to define anomalies, 
with one of the better propositions being “an observation which deviates so much from other observations 
as to arouse suspicions that it was generated by a different mechanism” [6]. Although this definition is 
sensible, it harbours within it a serious problem — by how much must an observation deviate from the norm 
in order to arouse suspicion? 

3.1.2. The precision-recall trade-off 

A closely-related issue is the precision-recall trade-off [7]. Naturally, the minimum threshold by which an 
observation must deviate directly affects the number of observations that are flagged as anomalies. A 
simple way to detect all anomalies with absolute certainty would be to flag every single observation, but 
this is not very helpful from a practical perspective. Conversely, excessive caution might result in many 
undetected anomalies. As a result, a balance must be struck between producing false positives (incorrectly 
flagging a normal observation as an anomaly) and producing false negatives (failing to identify an anomaly 
correctly). The precision-recall trade-off has serious implications for anomaly detection, and should thus 
be considered carefully when setting anomaly score thresholds and designing anomaly detection systems. 

3.1.3. The dearth of labels 

Since one rarely works with a reliable definition of an anomaly, one would hope that a plethora of labelled 
examples would be obtainable. Unfortunately, this is rarely the case — especially in the field of predictive 
maintenance. Problems involving labelled anomalies are few and far between, since actual failures 
(anomalies) are relatively scarce, and gathering labels is usually a difficult and expensive process.  

Although labels remain elusive, there is a silver lining. Since the presence of a true anomaly in a production 
plant would become painfully obvious after it had occurred, it may safely be deduced that past data are 
free of anomalies if nothing has broken down. This means that, in practice, one would typically have access 
to a training set consisting only of normal observations. As a result, anomaly detection is framed as a semi-
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supervised problem in this paper, as opposed to an unsupervised problem (in which case the training data 
could contain anomalies, but one would simply not know). This deduction makes matters slightly easier. 

3.1.4. Lack of high-quality benchmark data sets 

Reliable and representative benchmark suites are essential when evaluating and comparing models and 
algorithms. While numerous benchmark data sets have been compiled for time series anomaly detection, 
such as the popular NASA [8] and Numenta [9] benchmarks, Wu and Keogh [1] highlight four ways in which 
these benchmarks are typically flawed. 

First, there is the issue of triviality. Too many of the anomalies contained in the data sets can be identified 
by invoking simple descriptive statistics or other basic techniques, without even having to look at the 
training data. Second, unrealistic anomaly density in certain cases may blur the line between anomaly 
detection and classification, and may also skew performance metrics. Third, in certain instances the ground 
truth is mislabelled. This casts significant doubt on claimed minor improvements in papers using these data 
sets. Finally, a run-to-failure bias often exists, meaning that anomalies tend to appear near the end of the 
time series, since data after a failure simply might not exist. 

3.1.5. Inconsistent use of performance metrics 

Unlike, for instance, an image classification task, time series anomaly detection lacks standard, agreed-
upon benchmark data sets and metrics [1] (although efforts have recently been made to rectify this problem 
[10]). This makes it difficult to devise a competition akin to the ImageNet project, where different models 
were easily benchmarked and compared for their prediction accuracy. Most authors evaluate anomaly 
detection models by some combination of precision, recall, F1 score, AUROC (area under the receiver 
operating characteristic curve), and AUPRC (area under the precision-recall curve) [7]. When comparing 
algorithms from different papers, however, it is not clear which of these metrics should take precedence.   

Keogh et al. [10] sought to alleviate this problem (as well as the concerns raised in Section 3.1.4 about the 
quality of benchmark data sets) by introducing a data set in which each problem instance only has a single 
anomaly. The rationale is that removing the dilemma of selecting an appropriate threshold (as discussed in 
Sections 3.1.1 and 3.1.2) allows for models to be compared solely based on their ability to find the region 
where an anomaly is most likely. This evaluation framework is appealing not only for its intuitive and 
interpretable nature, but also because it limits the number of additional algorithmic parameters that 
require tuning, making it easier to achieve the ideal of ceteris paribus when comparing algorithms. 

It should be noted, however, that this evaluation framework is not without its drawbacks. One is that it 
does not account for how well the score of an anomaly is separated from the scores of the normal instances. 
While two models might both accurately identify the most anomalous instance, the model that 
differentiates anomalies more clearly from normal observations would perform better in practice, since it 
would be more forgiving when setting the anomaly threshold. The benchmarking framework proposed by 
Keogh et al. [10] nevertheless appears to be the most sensible of the options available in the literature. 

3.1.6. Anomalies have to be detected in real time 

In predictive maintenance, time is of the essence. Detecting anomalies months after they have occurred 
does nothing to prevent breakdowns. As a result, it is imperative that anomalies be identified as soon as 
possible so that their veracity may be ascertained and maintenance may be carried out if necessary. 

This constraint has at least two practical implications when designing a predictive maintenance system. 
First, the model should be able to make inferences based on new data as they are processed in real time. 
In other words, the model has to be efficient enough and the hardware has to be powerful enough to handle 
the frequency of data. Second, the model should, ideally, be able to learn in an online fashion [2]. That is, 
it should be updated as new data are ingested, as opposed to being forced to retrain entirely afresh [5]. 

Most algorithms are not designed (at least initially) with streaming data in mind. Fortunately, however, it 
is usually a straightforward process to adapt the majority of existing algorithms to such a use case context 
using, for instance, streaming windows. 
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3.1.7. Inherited challenges from time series analysis and forecasting 

Some of the challenges in time series analysis and forecasting are relevant in anomaly detection as well. 
For instance, many algorithms require the time series to be stationary (i.e., the data must have a constant 
mean, variance, and autocovariance) [11]. Another potential issue is that real-world time series data may 
exhibit gaps in the data at irregular intervals. In practice, both phenomena mean that careful consideration 
must be given to how the time series data are pre-processed. 

3.2. A taxonomy of anomaly types in time series 

Numerous attempts have been made to categorise the different kinds of anomaly that can be found in time 
series. These taxonomies of anomalies are remarkably useful: not only can they be employed to select the 
most appropriate algorithm for the problem, based on the most prevalent types of anomaly, but they can 
also improve the interpretability of results and aid in the development of synthetic benchmark data sets. 

One such taxonomy was used by Braei and Wagner [12] and Choi et al. [13], among others. Their main 
anomaly categories are point anomalies (a data point or sequence that deviates suddenly from the norm), 
contextual anomalies (a data point or sequence that does not deviate from the normal range but, relative 
to the surrounding data, an unusual pattern or shape is observed), and collective anomalies (individual 
values within this type may seem trouble-free, but collectively they arouse suspicion). 

Lai et al. [14] considered the above taxonomy to be limited, as it does not fully account for the temporal 
correlation that exists in time series data, and proffered the revised taxonomy illustrated graphically in 
Figure 1. 

 

Figure 1: The revised taxonomy of anomaly types by Lai et al. [14] 

Point-wise anomalies (i.e., anomalies characterised by anomalous individual time points) are further 
partitioned into global and contextual anomalies. Conversely, pattern-wise anomalies are anomalous sub-
sequences, and they are categorised further as shapelet, seasonal, or trend anomalies. These types of 
anomaly are illustrated graphically in Figure 2. 
 

 

Figure 2: An illustration (borrowed from Darban et al. [15]) of the taxonomy of  
anomaly types suggested by Lai et al. [13] 
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4. APPROACHES TO TIME SERIES ANOMALY DETECTION 

Anomaly detection in time series data requires a different approach from that which applies to non-time 
series data, since a temporal relationship exists between the data points, which means that the order of 
the data matters. Numerous categorisations of time series anomaly detection algorithms have been devised, 
including those found in survey papers by Markou and Singh [16], Munir et al. [17], Braei and Wagner [12], 
Cook et al. [18], Shaukat et al. [19], Wang et al. [20], Choi et al. [13], Schmidl et al. [21], Darban et al. 
[15], and Rewicki et al. [22]. In the proposed taxonomy that follows, the goal was to update and blend the 
best and most insightful surveys in the literature into a single diagram, shown in Figure 3, that illustrates 
the lay of the land in time series anomaly detection at the time of writing.  

Time series anomaly detection lies at the intersection of several different fields, including time series 
analysis/forecasting, anomaly detection, machine learning, and deep learning. This means that repurposing 
and adapting techniques from adjacent fields is commonplace. For instance, embedding time series as 
vectors (such as in the Time2Vec [23] and ts2vec [24] models) unlocks a host of other algorithms that were 
previously only suitable for tabular data. Many machine-learning and deep-learning techniques have also 
been adapted similarly. 

For the sake of brevity, our discussion of the algorithms here is limited to the main ideas behind each of 
them. The broad categorisation we have adopted bears some resemblance to the ones proposed by Braei 
and Wagner [12], Schmidl et al. [21], and Choi et al. [13]. Methods are partitioned into the classes of 
traditional approaches, machine-learning approaches, and deep-learning approaches. While the distinction 
between these categories may be fuzzy in the case of certain algorithms, these broad categories are 
nevertheless useful in orientating oneself within the labyrinth that is time series anomaly detection.  

4.1. Traditional approaches 

We define ‘traditional’ approaches loosely as algorithms that use well-known statistical, forecasting, or 
data-mining techniques. These approaches are typically (but not necessarily) computationally less 
demanding than machine-learning and deep-learning approaches.  

4.1.1. Forecasting 

The exponential smoothing and autoregressive integrated moving average (ARIMA) families of algorithms 
may be considered examples of a forecasting-based approach to anomaly detection. In other words, the 
predictive model forecasts the next time step, based on past data, and then the residual (the prediction 
error obtained by calculating the difference between the prediction and the observed value) is analysed to 
determine whether the data point is anomalous. The severity of the discrepancy between the predicted 
and observed values can be used to rank points by how anomalous they are perceived to be. 

Exponential smoothing is a time series forecasting technique that predicts future values by affording more 
weight to recent observations and exponentially decreasing the weight as observations age. It was originally 
proposed and developed by Brown [25], [26] during the 1950s. The original algorithms and their variants 
remain among the most popular and effective forecasting approaches to this day. The work of Aboode [27] 
is a relatively recent example of a time series anomaly detection algorithm employing exponential 
smoothing. 

ARIMA models were formally introduced by Box and Jenkins in 1970 [28], although their roots can be traced 
back to even earlier work. ARIMA models consist of an autoregressive component (representing the 
relationship between the current observation and lagged observations) and a moving average component 
(consisting of a weighted average of lagged prediction errors), while the ‘integrated’ component indicates 
that the differences between a time step and the previous time step are used. ARIMA and its variants are 
also among the most popular time series forecasting models. 

Further discussion of both exponential smoothing and ARIMA can be found in the comprehensive forecasting 
textbook by Hyndman and Athanasopoulos [11]. Both approaches are relatively straightforward to apply in 
practice owing to a plethora of publicly-available implementations. It is acknowledged that other 
forecasting techniques also exist, such as the relatively simple MedianMethod [29]. 
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Figure 3: Proposed taxonomy of time series anomaly detection techniques 
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4.1.2. Signal processing 

Many prominent techniques in signal processing are also applicable to time series anomaly detection. For 
instance, the pivotal fast Fourier transform (FFT) [30] was applied to time series anomaly detection by 
Rasheed et al. [31], while the discrete wavelet transform (DWT) was employed by Thill et al. [32]. 

4.1.3. Matrix profile 

‘Matrix profile’ refers to a novel data structure and its associated algorithms that are used to extract 
knowledge from time series data. It was pioneered by Keogh and Mueen [33], and adapted for anomaly 
detection by Lu et al. [34] and Nakamura et al. [35]. In essence, the process involves efficiently computing 
a matrix profile data structure (which consists of a distance profile and a profile index), and then extracting 
the top discords (anomalies) from that data structure. 

4.2. Machine-learning approaches 

In this section, we briefly review some of the most prominent machine-learning approaches to time series 
anomaly detection. In contrast with the statistical approaches discussed above, which are based on a set 
of assumptions about the underlying data-generating process, machine-learning models aim to learn 
patterns directly from the data. While statistical models often contain easily interpretable parameters, 
machine-learning models are frequently black boxes. They usually tend to be computationally more 
expensive, but also have the potential to model highly complex data successfully. 

4.2.1. Forecasting 

Traditional machine-learning algorithms, such as random forest [36] (a celebrated algorithm incorporating 
an ensemble of decision trees that is available in the ubiquitous Scikit-learn library [37]) and XGBoost [38] 
(an ensemble learning technique according to which incorrectly classified instances are weighted more 
heavily), have been adapted for time series regression. This means that they may also be harnessed for 
time series anomaly detection, in a similar way to other forecasting-based approaches [4], [21]. 

4.2.2. Clustering 

Broadly speaking, clustering-based approaches group together points or sub-sequences based on some 
measure of similarity, and then find anomalies based on how close new observations are to these clusters. 
There are numerous clustering approaches to time series anomaly detection. Yairi et al. [39] employed k-
means, a well-known expectation-maximisation algorithm that partitions data into clusters by minimising 
the sum of the squared distances between points and their cluster centroids. Similarly, Çelik et al. [40] 
used density-based spatial clustering of applications with noise (typically referred to as DBSCAN), which is 
a non-parametric algorithm that groups points that are closely packed together [41]. 

4.2.3. Outlier detection 

Certain algorithms have been designed specifically to detect outliers and anomalies. One example is the 
local outlier factor (LOF), developed by Breunig et al. [42] and harnessed by Oehmcke et al. [43], which is 
another algorithm that identifies anomalies based on the notion of density. Yet another popular choice is 
the one-class support vector machine (SVM) proposed by Schölkopf et al. [44], and employed for time series 
anomaly detection by Ma et al. [45], among others. This is an extension of the original SVM developed by 
Vapnik et al. [46] to detect anomalies. 

4.2.4. Isolation forest 

Isolation forest is a well-known anomaly detection algorithm proposed by Liu et al. [47], [48]. The algorithm 
is based on the sensible notion that anomalies are data points that are few and different — meaning that 
they are susceptible to isolation. The intuitive idea behind isolation forest is that, if one repeatedly and 
randomly partitioned a data space into smaller subspaces, an anomaly would be susceptible to being 
isolated sooner. These partitioning divides are generated stochastically by selecting an arbitrary data 
feature and then sampling a value between the minimum and the maximum of that feature. An ensemble 
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of trees is constructed in this manner, after which the average path length of a data point across all of the 
trees is used to determine an anomaly score. 

Numerous variants on, and extensions to, the original isolation forest algorithm have been proposed [49], 
[50]. The most recent, and perhaps most promising, is deep isolation forest [51], which harnesses casually-
initialised (i.e. non-optimised) deep neural networks to generate an ensemble of representations of the 
data. This means that simple axis-parallel cuts in the transformed data space may be equivalent to more 
sophisticated cuts in the original data space. 

4.3. Deep-learning approaches 

Deep-learning approaches are characterised by their use of neural networks, which have recently become 
ubiquitous thanks to simultaneous advances in hardware, algorithms, and data availability [7]. The bulk of 
recent research in time series anomaly detection has focused on this subfield [15]. This is unsurprising, 
since it is natural to hope that the recent breakthroughs achieved by neural networks in natural language 
processing and computer vision are transferable to anomaly detection.  

Many of the approaches in this category have been designed with multivariate time series in mind. Despite 
this, they can usually be adapted or even applied directly to univariate time series as well. Although one 
may assume that the complexity of these models might be overkill for univariate problems [1], [22], our 
numerical experiments that follow are aimed at assessing the veracity of this assumption. 

4.3.1. Reconstruction 

As the name suggests, reconstruction-based models are characterised by their use of reconstruction errors. 
In broad terms, these models are trained to map normal data to an efficient representation in latent spaces, 
with the aim of minimising the error when transforming the representation back to the original space [13], 
[15]. 

The first subcategory contains autoencoders, which were originally proposed by Kramer [52] as a non-linear 
generalisation of principal component analysis. They consist of an encoder network and a decoder network. 
The former maps the input data to a lower-dimensional latent space, and the latter reconstructs the original 
input from the latent representation. Autoencoders are primarily used for dimensionality reduction, but 
numerous variants have demonstrated good performance in time series anomaly detection tasks [53]. 

Advances in deep learning have led to the development of more sophisticated autoencoder variants, such 
as variational autoencoders (VAEs) which leverage probabilistic modelling and can generate new samples 
from the learned latent space [54]. VAEs have found use in numerous practical time series anomaly 
detection studies, such as that of Su et al. [55]. 

Developed by Goodfellow et al. [56], generative adversarial networks (GANs) combine autoencoders with 
adversarial training. They consist of two networks: a generator and a discriminator. The generator 
generates synthetic data that resemble real data, while the discriminator is tasked with distinguishing 
between genuine and fake data. During adversarial training, the competitive dynamic results in the 
improvement of both networks. GANs have been harnessed for anomaly detection by Zhou et al. [57], Li et 
al. [58], and Choi et al. [59]. 

4.3.2. Forecasting 

As before, forecasting-based models analyse the residual error after predictions have been made. Numerous 
deep-learning approaches to time series forecasting exist. 

Recurrent neural networks (RNNs) are a type of neural network designed for application to sequences such 
as time series. They are characterised by recurrent connections, where the output from a previous step is 
fed into the next step. As a result, past steps affect future steps, resulting in the model developing a 
semblance of memory. The notion of memory in models has evolved further with the introduction of LSTM 
networks by Hochreiter and Schmidhuber [60] in their landmark 1997 paper. Many models have built upon 
their work, such as those proposed by Hundman et al. [8], Ding et al. [61], and Shen et al. [62]. 
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Many of the recent leaps in both computer vision and natural language processing can be attributed to the 
transformer architecture, which was introduced in a seminal paper entitled ‘Attention is all you need’ by 
Vaswani et al. [63]. While transformers are designed to process sequential data, just like RNNs, they feature 
a handful of advantages, including the adoption of self-attention (meaning that the model can weight 
different parts of the input, based on their significance) and increased suitability for parallelisation. 
Transformers have been harnessed for time series anomaly detection by Song et al. [64], Meng et al. [65], 
and Chen et al. [66], among others. 

Graph neural networks (GNNs) are an extension of the normal neural network architecture to data that can 
be represented in a network structure consisting of nodes and edges. Anomaly detection approaches that 
use GNNs include those by Zhao et al. [67], Deng and Hooi [68], and Chen et al. [66]. 

Finally, hierarchical temporal memory (HTM) is a type of model inspired by the structure and function of 
the neocortex of the human brain, and is mostly used for anomaly detection in streaming data. Models that 
use the HTM architecture include those proposed by Ding et al. [69] and Wu et al. [70]. 

4.3.3. Dissimilarity 

Dissimilarity-based models use Euclidean, Minkowski, or Mahalanobis distances to measure how far values 
derived by the model differ from the cluster of accumulated data [13]. The main algorithm in this subclass 
is the temporal convolutional network (TCN), which adapts the convolutional neural network (CNN) 
specifically for sequential data. TCNs leverage the power of convolutional operations to capture and model 
the temporal relationships in the input sequences. Examples of work that used TCNs for time series anomaly 
detection are Cheng et al. [71] and Liu et al. [72]. 

5. EXPERIMENTAL DESIGN 

In this section, we provide details about the experimental setup of our comparative study, as well as the 
rationale behind the choices that we made.  

5.1. Benchmark data sets 

In the light of the issues highlighted by Wu and Keogh [1], all algorithms in our comparative study were 
benchmarked solely on the data set made available by Keogh et al. [10]. This data set comprises 250 natural 
and synthetic time series with one anomaly in each, thus removing the ‘threshold question’ entirely. The 
anomalies that were inserted in the time series were meant to be representative in both difficulty and 
location (i.e., avoiding the run-to-failure bias).  

5.2. Performance metrics 

In line with the rationale behind the data set and the scoring function outlined by Keogh et al. [10], the 
score for each time series in the data set is binary (i.e., the anomaly is either correctly or incorrectly 
identified), which is then converted into a percentage for the entire benchmark. As suggested by Keogh et 
al. [10], a small amount of tolerance before and after the anomaly is built into the scoring function. Since 
we focused on the predictive maintenance use case (in which real-time detection is of paramount 
importance), we also report the total computational time for each model.  

5.3. Methodology 

Our evaluation methodology was relatively straightforward. A model was trained (if necessary) on the 
training set of each time series in the data set for each algorithm under consideration, and subsequently 
evaluated on the test set of the time series. The number of anomalies correctly identified was tallied over 
the entire benchmark run and then converted into a score for that algorithm. Except where stated 
otherwise, all experiments were conducted by invoking Python implementations (adapted from either the 
original implementations or those developed by Schmidl et al. [21]) without hyperparameter tuning (i.e., 
using recommended defaults wherever applicable) on a personal computer equipped with an Intel Core i9-
12900k CPU and Nvidia RTX 3080 Ti GPU. 
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5.4. Algorithms under consideration 

Since it was impractical to evaluate the myriad algorithms proposed for time series anomaly detection, 
only those deemed most practical were considered. During our selection, we attempted to prioritise 
diversity, speed, and accuracy, based on the surveyed literature. Our sample aimed to be representative 
of those algorithms that may be useful in practice. 

6. RESULTS AND DISCUSSION 

Based on the results summarised in Table 1 and on the discussion on time series anomaly detection 
challenges and approaches, we proffer the following guidelines and remarks: 

• Deep-learning approaches appear to be overkill for simple univariate time series, as confirmed by 
the results and the literature [1], [10], [22]. Many simpler methods seem to be faster (and even 
more accurate). 

• Computational complexity has to be considered carefully when designing a time series anomaly 
detection system. Achieving real-time anomaly detection merely by using more powerful hardware 
might not be feasible in the case of certain algorithms. 

• Algorithms that operate on sub-sequences instead of on individual points seem to perform far 
better, such as in the case of LOF. This makes sense, since operating on individual points neglects 
the temporal relationship between points. 

• From our limited selection of algorithms, the best choice appeared to be sub-sequence LOF, which 
strikes a good balance between accuracy and efficiency. 

• The need for transparent benchmarks and metrics is highlighted once again. Many much-vaunted 
algorithms in the literature seem to fall far short of their lofty claims. 
 

Table 1: Time series anomaly detection test results 

Model name Type Approach Score Time 

Sub-sequence LOF [43] Machine learning Outlier detection 55.2% 37m 56s 

DAMP (out-of-the-box) [34] Traditional Matrix profile 51.2% 4h 16m1 

Merlin++ [35] Traditional Matrix profile 42.4% 14m 30s1 

XGBoost [38] Machine learning Forecasting 33.6% 15m 54s 

k-means [39] Machine learning Clustering 32% 69m 5s 

USAD [53] Deep learning Reconstruction 27.6% 6h 7m1 

DWT-MLEAD [32] Traditional Signal processing 26% 6m 1s 

Sub-sequence isolation forest [47] Machine learning Isolation 20.4% 33m 38s 

LOF [43] Machine learning Outlier detection 14.4% 54m 15s 

MedianMethod [29] Traditional Forecasting 8.8% 41s 

Telemanom [8] Deep learning Forecasting 46.8%2 3h 24m2 

 

1 These results are borrowed from the experiments in papers by Lu et al. [34] and Nakamura et al. [35], 
which used the same data set and scoring function. The hardware used included an Intel Core i7-9700 CPU. 
Although this means that the computation times are not directly comparable, one can easily and reasonably 
accurately estimate the time taken on an Intel Core i9-12900k CPU, given that the latter is 67% to 147% 
faster according to CPU benchmarks. 

2 This result is borrowed from Nakamura et al. [35]. Since the algorithm regularly raised ‘out of memory’ 
errors, only the shortest 62 data sets were evaluated, meaning that the results should be seen as very 
optimistic. 
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7. CONCLUSION AND FUTURE WORK 

In this paper we set out to provide practitioners with a practical guide to anomaly detection in time series. 
After careful consideration of the main challenges in the field, as well as the various types of anomaly one 
might encounter, we provided an accessible taxonomy of anomaly detection approaches, based on the 
approach we employed. A sensibly curated selection of algorithms was evaluated on a benchmark data set, 
with the results indicating that the sub-sequence LOF algorithm is a reasonable choice in practice owing to 
its balance between accuracy (55.2%) and speed.  

In addition, a handful of avenues for future research have been identified. These include, among others, 
extending the current work to multivariate time series and/or streaming data, developing a more robust 
classification of the types of anomaly, quantifying how difficult anomalies of certain types are to detect, 
the use of anomaly types to select appropriate algorithms, and generating better, more representative 
benchmark data sets. Further work is required to fully align the field of time series anomaly detection in 
respect of benchmark data sets and metrics, but we believe that this paper is a step in the right direction. 
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