
South African Journal of Industrial Engineering May 2023 Vol 34(1), pp 155-167

155

AN ANALYSIS OF DEVOPS’ IMPACT ON INFORMATION TECHNOLOGY ORGANISATIONS: A CASE STUDY

A. Mudadi1* & H.H. Lotriet1

ARTICLE INFO

Article details
Submitted by authors 17 Jul 2022
Accepted for publication 9 Apr 2023
Available online 26 May 2023

Contact details
∗ Corresponding author

austinmdd@gmail.com

Author affiliations
1 Department of Information

Systems, University of South
Africa, South Africa

ORCID® identifiers
A. Mudadi
https://orcid.org/0009-0004-2104-865X

H.H. Lotriet
https://orcid.org/0000-0002-0353-5073

DOI
http://dx.doi.org//10.7166/34-1-2759

ABSTRACT

DevOps is a software development philosophy that involves the working
together of development, operations, and other software development
departments in order to accomplish common business objectives.
However, very little has been done to establish the organisational impact
of DevOps on information technology organisations; so an understanding
of this phenomenon remains incomplete among practitioners and
academic researchers. In this paper a framework for an appropriate
DevOps restructuring approach is presented, based on the literature and
on a single case study of a large multinational company with its
headquarters in South Africa. The paper contributes to a better
understanding of the organisational implications of the implementation
of DevOps.

 OPSOMMING

DevOps is 'n sagteware-ontwikkelingsfilosofie wat die samewerking van
ontwikkelings-, bedryfs- en ander sagtewareontwikkelings-
departemente behels om algemene besigheidsdoelwitte te bereik. Baie
min is egter gedoen om die organisatoriese impak van DevOps op
inligtingstegnologie-organisasies vas te stel; so 'n begrip van hierdie
verskynsel bly onvolledig onder praktisyns en akademiese navorsers. In
hierdie artikel word 'n raamwerk vir 'n toepaslike DevOps-
herstruktureringsbenadering aangebied, gebaseer op die literatuur en op
'n enkele gevallestudie van 'n groot multinasionale maatskappy met sy
hoofkwartier in Suid-Afrika. Die artikel dra by tot 'n beter begrip van die
organisatoriese implikasies van die implementering van DevOps.

1. INTRODUCTION

DevOps is derived from the merging of two terms: development and operations. It is a practice in which
different software development stakeholders work together with the main objective of continually
delivering high-quality software to customers, using the most efficient systems [33]. Software of
uncompromising quality and with high and uninterrupted speed facilitates rapid feedback loops that allow
continuous product improvement and enable an organisation to gain a competitive edge in the market [47].
However, there is a pressing need in both the practitioner and the academic research communities to
comprehend fully the restructuring process that an organisation needs to go through to implement DevOps
successfully [26].

This paper contributes to meeting this need for knowledge by collating the existing literature on
restructuring organisations during DevOps implementation, and combining this with a single case study of
the restructuring processes during DevOps implementation in a large multinational company headquartered
in South Africa. The paper thus provides a framework for DevOps restructuring that is appropriate for
information technology organisations and that could inform decision-making during the process of migration
to DevOps.

156

The rest of the paper is structured as follows: (1) A literature review section is presented; (2) the research
methodology is discussed; (3) the findings of the study and a discussion of these are presented; and (4)
some conclusions are drawn.

2. LITERATURE REVIEW

2.1. Restructuring required for DevOps implementation

2.1.1. Culture

When implementing DevOps, development and operations staff need to collaborate closely on a daily basis
until their roles converge. This means that the development staff end up being able to do operations such
as software deployment and system stabilisation in production, while the operations team become skilled
in software development and associated activities [16]. Job rotation for developers and operators is an
effective way of achieving a cross-functional team that can perform tasks for different departments [13].
An organisation needs to support this teamwork by recognising both operations and development
departments as one department by giving them the same incentives and goals [20]. It is important that all
team members have the freedom to make decisions and are empowered to share their thoughts and ideas
without fear of being victimised [12], [45].

2.1.2. Automation

When implementing DevOps, the entire software system should be automated, including the deployment
pipeline, testing, monitoring, and measurement [15]. Automation aims to minimise human involvement,
which is slow and error-prone [18].

Automated deployment pipeline

An automated deployment pipeline is used for the fast, continuous, and efficient movement of high-quality
software from the developers’ computers to cloud-based test or production environments [30]. An
organisation can deploy software to production many times a day once its deployment pipeline is
implemented [17]. The deployment pipeline can be achieved by using tools such as the Microsoft Azure
DevOps tool [23] or Jenkins [34], depending on the organisational requirements [38]. Decisions related to
the implementation of a deployment pipeline need to consider the functionality of an organisation’s current
system [12].

Automated system monitoring

Automated system monitoring is a post-software deployment activity [37]. It is done by placing monitoring
tools in environments such as production and testing to observe and record the day-to-day functionality of
applications [31] and to ensure that software is delivered to the customer within agreed times and with
the expected functionality [17]. If abnormal incidents occur in the system, automatic notifications are sent
to the DevOps teams to take the necessary action [48]. Monitoring enables a DevOps team to get feedback
about a software system’s performance, which supports informed decision-making about product
improvements [44], [1]. System monitoring helps to understand a software application’s resource utilisation
demands, and so makes it possible to implement the appropriate random access memory (RAM) and
computer processing units (CPU) that are required for servers to maintain application stability [22]. All
DevOps team members should be responsible for monitoring, as this would promote a sense of shared
responsibility and teamwork that improves agility [28]. Historical monitoring logs can be analysed to enable
developers to predict the chances of the success of upcoming software releases [5]. Choosing and setting
up suitable monitoring tools often requires expert knowledge to avoid the risk of missing important
functionalities [3].

Automated system measurement

Measurement is a process of getting system data that shows how the system functions in real time using
metrics [32]. For DevOps process metrics, technology metrics, service metrics [7], and maturity models are
used. These enable an assessment of the extent of DevOps transformation in an organisation and decision-
making about areas that need improvement [26].

157

System measuring should focus on carefully selected key business areas and not on people, because human
beings are able to manipulate activities in relation to measurement objectives [44].

2.2. Difficulties encountered during DevOps restructuring

2.2.1. Cultural challenges

The alliance between the development and operations teams might be jeopardised by unwillingness on
either side to do extra work, especially if DevOps is perceived as a way to overuse members or to make
them less competent [43]. In some organisations, developers or operators might already feel overworked
and that they cannot afford to take on an extra responsibility [4]. In other situations, operations personnel
could feel that development work is not part of their contract agreement [21]. Developers might dislike
doing an operator’s job, since it is not their expertise; and so they might not support the decision to
collaborate [16]. Some senior employees might resist any form of change because they prefer their old and
trusted approaches [23]. Building a DevOps team might not be possible in some organisations where laws
and contract obligations do not allow developers to access production environments or operations staff to
access development environments; so it is important to review these impediments first [36]. In some
organisations where teams are located far away from each other, communication is mainly electronic, and
synchronous collaboration might be difficult, and might impact negatively on efficiency and productivity
[44]. To minimise this problem, teams should have frequent face-to-face meetings to enable team members
to discuss work-related issues and to become familiar with one other [14]. The integration of development
and operations teams is complicated, the process might take years to achieve [39].

A high level of dedication is required from each team member to build a DevOps culture successfully [17].
Having both developers and operators reporting to one manager might reduce work-related conflicts [20].
[29] noted that to mitigate challenges that result from development and operations teamwork it is
important to communicate with employees to encourage a positive mindset and to invest in employee skills
improvement training courses. [39] argues that a good management team is essential for an organisation
to implement DevOps successfully, especially when a cultural transformation is required. [23] concluded
that, for development and operations cooperation to reach its full potential, it is important that an
organisation’s top management recognise and support it.

2.2.2. Automation challenges

Automation is the use of tools or technology to accomplish tasks [29], Automation might, however, result
in numerous complex difficulties in implementing DevOps.

Automated deployment pipeline challenges

Resistance to change: Managers who resist change can be big impediments to technological transformation
[29]. Customers might not like the idea of having software delivered to them daily, and therefore an
agreement must be in place before the deployment pipeline is functional [42]. Some customers complain
that they do not see the new features that are claimed to be deployed every day using the deployment
pipeline; therefore, an effective communication strategy should be prioritised to avoid misunderstandings
[9]. In some organisations, production deployment cannot be done until all stakeholders have approved it,
and this can have negative effects on the frequency and speed of production deployment [27].

Choosing the right tools: Choosing tools for the deployment pipeline is complex, and has a material impact
on the success of DevOps adoption [4].

Continuous integration: Continuous integration in the deployment pipeline can become time-consuming
and difficult when the code changes from different developers fail to work together and require a team
effort to be corrected [24].

Resistance to use microservices: Although organisations are encouraged to change their software
architecture from monolithic to microservices to enable deployment pipeline functionality, many
organisations would resist such a change of architecture without proof of the benefits [43]. Some
organisations prefer to develop new systems using microservices and to ensure that legacy systems remain
operational in their existing state. However, developers often complain that the maintenance of legacy

158

systems distracts them from implementing new systems effectively [21]. Employees who are not familiar
with microservices often find their features difficult to use. Thus there is need to simplify microservices
adoption by using the fewest and most viable requirements [26]. Different components of software in
microservices might behave differently, creating difficulties in ensuring that the application functions as
expected across the entire system [8].

Test environment deployment: It is important to replicate the production environment in a test
environment to ensure smooth deployments. However, the process of ensuring that production and test
servers have the same configurations and features can be difficult because of the high costs involved and
the strict production access controls and restrictions that some organisations impose [42]. Manual quality
checks are often still used to determine software’s readiness to be deployed to test or production servers.
This is because, in most cases, efficient automatic rollback is not available if software with a bug is
deployed [42].

Maintenance: For a deployment pipeline to operate with the required degree of efficiency and
effectiveness, it needs to be maintained by employees with a variety of related skills and experience. This
is often not the case, as many organisations have a shortage of required expertise [41], [30].

Different production environments: In organisations with multiple production environments,
implementing an automated deployment pipeline is often complicated because of the different
configurations and access requirements of these environments [43].

Software bugs: Having a fully functional and automated deployment pipeline does not guarantee the fast
deployment of software features to production. In some instances, deployment can be delayed because of
bugs caused by software integration activities [25].

Compliance requirements: In some cases, having an automated deployment pipeline that is operational
can be a violation of governmental software regulation policies. So it is necessary to know the compliance
requirements before implementation [42]. [30] added that a fully functional deployment pipeline can be
highly problematic because it involves a significant change to the way software is managed. If software
improvements include making changes to the database, implementing a deployment pipeline becomes
extremely difficult.

Security: [46] warns that many organisations might implement a deployment pipeline that is susceptible
to security attacks by hackers and malware because of a limited understanding of security configurations.
Thus there is need to consider using virtual machines where possible, and consulting security experts.

Automated testing challenges: Automated testing does not guarantee flawless software because new
errors caused by test cases can remain undetected. Therefore, it is necessary to use a variety of testing
methods to mitigate this [6]. If an organisation has multiple environments that are not compatible with one
another, automated testing becomes less effective [36]. Some organisations view automated testing as a
nonviable option, as it involves high costs and low returns [42]. Some organisations end up with deployment
pipelines that do not have performance testing techniques because they are too expensive and time
consuming to establish, while other organisations have inadequate test coverage of their systems, thus
allowing software flaws to find their way into production [3]. Testing results are sometimes not clear
indicators of the causes of test success or failure, leaving developers confused about further testing steps
[24].

Automated system monitoring challenges: It is hard to determine the part of the application that needs
monitoring, as most monitoring activities are initiated after a software failure in a certain area of the
application [30]. In some scenarios, where an organisation does huge daily software releases, analysing
monitoring logs to identify problems might be labour-intensive and time-consuming, and it would need to
be done with a sense of urgency [32]. The size of monitoring logs can grow rapidly and use up available
storage space and memory, resulting in a need to upgrade the existing servers [42]. Unfortunately, there
are still no monitoring tools that can predict application defects before they cause downtime [31].

Automated system measurement challenges: There is no specific way to identify the units of a system
that needs to be measured, nor is there a standard way to measure whether an organisation has successfully
implemented DevOps [29]. System measurement information that supports metrics selection is still very
limited. As a result, many organisations use metrics that are based primarily on availability rather than

159

effectiveness [35]. Most of the tools that are used to measure system performance are not compatible with
the tools used for the deployment pipeline, and so they remain unused [2]. Organisations also need to
consider the impact of metrics on employee morale [26].

3. RESEARCH METHODOLOGY

3.1. Research philosophy

This research study assumed a qualitative epistemological stance, as its findings would be a result of field
research based on the contributions from the setting in which the study took place [10]. The study employed
both subjectivism and constructionism, as the researcher engaged with the participants to get their
perceptions of how they changed their organisation for DevOps, and to learn how they understood DevOps,
based on how they implemented it [10].

3.2. Selected research method

For this project a case study was selected as being the most appropriate method. A case study is a thorough
investigation of a fact using real-life scenarios to establish a detailed relationship between the phenomenon
and its surroundings [50]. Case study research explores a phenomenon without changing its natural setup
in order to achieve a deeper and more accurate comprehension of the events, based on the interpretations
and meanings given by the participants [11].

A case study approach is suitable when the aim of the study is to answer ‘why’ and ‘how’ questions, and
when there is need for a richness of description in the research questions [38]. According to [49], the case
study approach can be used when there are no clear boundaries between the phenomenon and the context.
A suitable data collection plan must be achieved with the guidance of a case study protocol. A single case
study is when a researcher investigates a phenomenon in a single unit of analysis [49]. To answer the
research questions, a single case study was done in a large multinational organisation that practices DevOps.

3.3. Selected case study

The multinational company selected for the case study offers banking services in Africa and internationally,
and is one of the largest financial services providers in Africa. Information technology (IT) is the backbone
of their business, as they use software technology to provide services to their customers. The organisation
ranks IT spending as one of their biggest expenses, which demonstrates their commitment to ensuring that
their digital transformation meets international standards and uses the best technology. The employees
who participated in this research are actively involved in the DevOps transformation of the company, and
are based in South Africa. They manage different departments as key decision-makers who direct both the
development and the operations of the organisation’s IT infrastructure.

3.4. Data collection

Online interviews were conducted with four senior employees of the organisation who are key decision-
makers in their departments, in order to understand the approach to organisational restructuring during
DevOps implementation. The interviews were guided by these questions:

1. How did you restructure your organisation during DevOps implementation?

2. Are there any other changes related to DevOps transformation that occurred?

3. What challenges did you encounter during DevOps transformation?

4. What can you say are the possible solutions to the challenges?

3.5. Data analysis

The researcher first listed all key points raised during the interviews and grouped them per research
question. NVivo qualitative data analysis software was used to code these grouped key points. Finally, the
findings from the analysis were classified according to DevOps restructuring approaches, the challenges,
related solutions, and the effectiveness of DevOps tools.

160

4. FINDINGS AND DISCUSSION

4.1. Restructuring approaches and changes during DevOps implementation

The respondents mentioned various approaches that could be followed to achieve DevOps adoption and,
associated with these, indicated the changes that took place during the implementation. The aim of these
were to minimise negative effects while maximising positive outcomes for the business. Each of the
suggested approaches and changes is briefly discussed.

Cross-functional teams

“You build it, you run it” (Respondent 4). The interviewee added that teaming and proper tooling are an
important part of DevOps transformation. Both developers and operators need to collaborate to accelerate
software development and deployment. Respondent 1 also emphasised the need to have teams that are
cross-functional to help improve software delivery. This corresponds with arguments in the literature on
the need to have cross-functional teams when implementing DevOps [16].

Understanding your current business and its vision and mission

“A good understanding of the goals and aspirations of the future [is] a critical factor when wanting to
implement DevOps” (Respondent 2). According to respondent 1 it is imperative that, before any DevOps
changes can be made, the organisation should understand its own business and short- and long-term
objectives. Respondent 4 added that adopting DevOps should be justified by the desired future position of
the organisation. This links to the literature that emphasises the importance of an organisation
understanding its current system [12].

Assessment of current technology usage and culture setup

“[The] culture of the organisation is important to understand in terms of the shared values and behaviours
of the employees” (Respondent 3). Respondent 2 commented that an organisation must take note of the
tools in current use and their effectiveness and efficiency in delivering the desired outcomes. Respondent
1 added: “DevOps is about sharing, be it tools, responsibility or work, so a good understanding of the
current culture will enable the company to focus on areas of improvement during restructuring”.
Respondent 4 suggested that working as a team is important to achieve goals. The literature emphasises
continuous technology assessment to ensure high quality [44].

Obtain information about the skills structure of the organisation

“Sometimes you have to work with the human resources department to identify skills gap[s] and find ways
to solve the problem” (Respondent 2). Respondent 1 indicated that it is important to know the existing
types of skills and experience that an organisation must take advantage of during the gradual
transformation to DevOps, while simultaneously reskilling and sourcing external skills. Respondents 1, 2,
and 3 emphasised that, as an organisation implements DevOps, the need for multi-skilled employees who
can work in different departments – whether development, testing, or operations – becomes a fundamental
requirement. The literature does not explicitly state the need to involve the human resources department
to source more skills, but the need to hire employees is pointed out [40].

Do a DevOps impact assessment to find out how it will add value to the organisation

“When you implement DevOps, you want to be confident that it is the right thing to do” (Respondent 1).
Respondents 1 and 2 pointed out that an organisation does not want to feel that DevOps was a wrong choice
after implementation. Therefore, it is important to know the market in which the business operates,
especially in relation to customer behaviour and demands. A conviction that the product on offer needs to
be continuously improved and rapidly delivered is an indication that DevOps implementation might be
appropriate. This point was not stated as clearly in the literature as it was by the respondents.

161

Be knowledgeable about the state of your business’s operating model

“Most businesses have legacy systems that are characterised by monolithic architecture and have on-
premise data centres” (Respondent 1). He added: “You have to let go a lot of legacy things and embrace
experimentation and improvement”. Respondent 1 also explained that the legacy systems are normally
known as traditional operating models. The focus of these models is to maintain the stability and efficiency
of the system while ensuring that each employee is assigned to a specific responsibility. Departments are
siloed, with very limited collaboration in the organisation or with customers.

Respondents 1, 2, and 3 added that, when implementing DevOps, an organisation normally has to transform
from the traditional model to a multi-model, and finally to a platform model. A multi-model is a gradual
shift from the traditional model when an organisation begins to implement some DevOps practices, while
a platform model is when the organisation has fully implemented all DevOps practices without any legacy
systems still in operation.

The literature only indicates the need to shift to micro-services and the cloud for DevOps [8]. The
respondents therefore provided more detail on organisational change during DevOps implementation.

Market the DevOps idea in the organisation to change the employees’ mindset

“There is need to market the idea of DevOps to the organisation to convince the employees that it is the
right thing to do” (Respondent 2). Respondents 1 and 3 emphasised the importance of continuous sharing
of information with employees about DevOps practices such as automation, close collaboration, multi-
skilling, and the associated benefits. If employees are to collaborate, they need to be convinced about the
benefits of DevOps to the organisation and to individual employees. This supports the view in the literature
that influencing role players’ mindsets to participate positively in change is a critical first step [29].

Design DevOps maturity model based on DevOps best practices

“DevOps maturity assessment has got six functions; we look at continuous planning, continuous
development, continuous testing, continuous deployment, continuous monitoring, and continuous logging”
(Respondent 1). He added that it is important that, before or during DevOps implementation, an
organisation develop a DevOps maturity model to measure progress at every stage, and so improve.
According to respondents 1, 2, and 4, the DevOps maturity model consists of DevOps expectations at each
stage of the DevOps implementation. Since adopting DevOps is a process, different stages of the process
should have checklists of the activities to be achieved with DevOps continuous practices such as
automation, integration, deployment, delivery, monitoring, best use of toolsets, close collaboration, and
learning and improvement. In addition to the checklist, the organisation needs to devise a strategy of how
each step is to be achieved. Setting up different expectations at each stage of implementation would act
as a guideline to motivate and push the team to achieve the desired results. This confirms the view in the
literature that DevOps maturity models are important to measure DevOps implementation progress [14].

Identify the pilot project with which to start testing DevOps practices

“It is important that, when you implement DevOps for the first time, you do not start it on a big project;
rather start it on a small project that is easy to manage” (Respondent 1). Respondents 3 and 4 added that
it is necessary that different departments start collaborating on the pilot project, sharing ideas on how
best to automate and increase the efficiency of the pilot project. This could be used as a first experiment
to change the technology and the culture. It is imperative, therefore, that successes and failures be noted
as lessons learnt for further projects. The literature does not mention identifying a pilot project.

Experimentation and learning fast

Respondent 2 commented: “People should be willing to learn, experiment, and fail fast”. Respondent 4
added that experimenting during development is important for creativity. Experimenting is one of the
requirements for a DevOps culture [40].

162

Use DevOps metrics to measure your progress and keep on improving (a change related to DevOps
transformation)

Respondent 2 emphasised: “It is important that you measure the improvements of DevOps to understand
your successes and failures”. Respondent 1 added that it is important to go beyond the quality assurance
(QA) department’s scope of work by measuring the system’s performance in real time. Respondents 2, 3,
and 4 commented that the ability to measure the functionality of the software in production provides
insights into the usefulness of the software, and enhances the decision-making process for fixes and
improvements. The literature also highlights the need to use tools that measure software performance and
provide continuous feedback [47].

Ensure system security is part of every stage of the DevOps implementation (a change related to DevOps
transformation)

“Everything that we do must have a security application” (Respondent 1). Respondent 2 commented that
there is need to ensure that the system is highly secured during DevOps transformation to protect it against
unauthorised users and hackers. Every time the system is improved, the security needs to be reviewed and
adjusted accordingly to ensure that it remains relevant and effective.[46] notes that security must be part
of every DevOps process.

Use of dashboards (a change related to DevOps transformation)

“Teams could go to DevOps dashboards and see how they are performing against the targets that they
have set themselves” was the point raised by respondent 4 to explain the use of dashboards. According to
the interviewee, the dashboards helped to enforce transparency in the organisation, as employees could
see the loads that had been successfully processed and those that had failed. The need for dashboards is
also noted in the literature [19].

 Stage 4
Measure to improve Stage 3

Implement in phases Stage 2
Analyze

Use DevOps metrics to
measure successes and
failures.

Keep on improving.

Keep on learning and
experimenting.

Stage 1
Gather information

Identify pilot project to
start DevOps with.

Use your DevOps
maturity model to
identify technology and
culture changes.

Get lessons from pilot
project and implement
DevOps on a bigger
project.

Gradually implement
on other projects.

Do a DevOps impact
assessment to
determine viability.

Analyze your business
operating model.

Design DevOps maturity
model.

Market the benefits of
DevOps in your
organisation.

Understand your
business, its vision and
mission.

Gather information
about your
organisation’s
technology, culture and
skills.

Figure 1: DevOps restructuring summary suggested by respondents

163

4.2. Restructuring challenges and solutions

A further theme that was explored in the case study related to restructuring challenges and the potential
solutions to them, as suggested by the participants. Table 1 summarises these challenges and the
participants’ suggested solutions.

Table 1: Summary of restructuring challenges and proposed solutions

Restructuring challenge Related suggested solution

Manual intervention Automate the entire workflow to minimise human involvement

Legacy change management
processes

 Ensure that there is accountability and a realistic turnaround time
for every approval process

 Automate some of the approval processes

High DevOps success rate
concentrated on pilot
projects while limited across
all projects

 Set realistic, achievable, and timeous goals, and track them and
share findings

 Subscribe to uniform and best standards of development and
deployment to ensure stability and repeatability

 Create a DevOps manifesto based on past failures and successes, and
learn from it to improve

 Ensure that there are fast feedback loops in the deployment pipeline
to fail fast and recover fast

Unwillingness to learn new
skills and processes

 Effective communication to convince employees about the benefits
to them of the changes

 Ask human resources department to help fill the skills gap

Employees located far away
from each other

 Use online video conferences
 Organise team-building sessions to meet and talk

Indecision when it comes to
which part of the business
to outsource during
restructuring

 Communicate and thoroughly consult with all business stakeholders
to help make a good decision

Automating waste, creating
automation before fixing
bottlenecks and critical
infrastructure points

 The first step is to identify bottlenecks and points of weakness, and
then to use automation where possible to solve them

Changing management
employees

 Embrace new ideas from new employees, but ensure that the ideas
are meant to improve the workflow in line with the vision of the
organisation

Outdated testing practices Make testing and quality assurance everybody’s responsibility; let
developers also test and testers also develop

Not taking IT governance
seriously

 Establish governance to set required standards that control IT
processes, and make everyone accountable

Lack of shared ownership
and accountability because
of silos

 Continuously assess your operational processes such as access
management, incident management, request management, and
problem management so that you can improve their agility and
transparency

Use of different
technologies and different
configurations in the same
environment

 Standardise infrastructure technology to be identical and to
subscribe to the best practices

Continue next page

164

Table 1: Summary of restructuring challenges and proposed solutions (cont.)

Restructuring challenge Related suggested solution

Achieving a high-maturity
DevOps is a process, not an
event

 Be patient, as a high-velocity organisation cannot be achieved
overnight, and stick to basics

 Create an environment that promotes continuous learning and
improvement

Lack of operational maturity Increase collaboration between different departments
 Promote cross-skilling, and market the benefits of doing that to the

employees

Silo mentality Create cross-functional teams
 Encourage the required behaviour by giving incentives and rewards

Lack of executive
management support

 Take initiatives from the bottom to implement and ensure that
everybody understands DevOps

 Use metrics to measure successes, and then use positive outcomes
to justify to the executive the need for DevOps and so obtain their
support

5. LIMITATIONS AND FUTURE RESEARCH

Although the unit of analysis operates in many countries, the findings are based on a case study conducted
in the South African context, and thus they might not be representative of other contexts. The research
was only focused on the impact that DevOps has on IT organisations; however, it is also important for
research to be conducted to understand the ways in which DevOps affect the customers of these
organisations.

Based on these limitations, future research into the organisational aspects of DevOps could focus on diverse
contexts with different market environments. The scope of the research would need to be expanded to
include the impact of DevOps adoption on customers who are affected.

6. CONCLUSIONS

This analysis of the impact of DevOps implementation on IT organisations has made it clear that the main
changes that take place in organisations during DevOps implementation relate to their culture and
technology. The cultural aspect, which involves changing employees’ mindsets, is the first critical step in
DevOps transformation; otherwise the changes in technology will not bring the expected success.

Both the literature review and the field research have shown that the impact of DevOps on IT organisations
occurs in three forms. The first is workflow optimisation, which involves changes in the organisation to
ensure that DevOps practices lead to increased productivity. The second is fast feedback loops. The entire
organisation restructures itself to enable effective communication to be a priority in every action and in
every process. The main benefits are the ability to fail and recover quickly and to meet customer
requirements. The third form is the establishment of a culture of continuous learning and experimentation.
Key to leadership in DevOps is having employees who have a passion for, and are willing to keep on learning
about, new technology and to experiment with existing technology. This results in technological innovation,
which is one of the primary drivers of organisational growth and increased market share.

The focus of the paper was on the influence that DevOps implementation has on IT organisations. The
literature review and the field research have contributed to understanding the key factors that are part of
the organisational evolution during DevOps implementation.

This research experience showed that DevOps brings about important technological and cultural changes
that could help IT organisations to become innovative and competitive. The future of digital transformation
is indeed DevOps; and the more that IT organisations embrace this software development methodology,
the more the future of technology will be exciting and life-changing.

165

REFERENCES

[1] Akshaya, H., Vidya, J., & Veena, K. 2015. A basic introduction to DevOps tools. International
Journal of Computer Science & Information Technologies, 6(3), pp 2349-2353.

[2] Bezemer, C., Eismann, C., Ferme, V., Grohmann, J., Heinrich, R., Jamshidi, P., & Willnecker,
F. 2019. How is performance addressed in DevOps? In Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering, pp 45-50.

[3] Brunnert, A., Van Hoorn, A., Willnecker, F., Danciu, A., Hasselbring, W., Heger, C., & Koziolek,
A. 2015. Performance-oriented DevOps: A research agenda. arXiv preprint arXiv: 1508.04752, pp 1-
46.

[4] Bucena, I., & Kirikova, M. 2017. Simplifying the DevOps adoption process. In B. Johansson (ed), BIR
Workshops, pp 1-15. Aachen: CEUR Workshop Proceedings.

[5] Capizzi, A., Distefano, S., Araújo, L., Mazzara, M., Ahmad, M., & Bobrov, E. 2019. Anomaly
detection in DevOps toolchain. In J. Bruel, M. Mazzara & B. Meuer (eds), International Workshop on
Software Engineering Aspects of Continuous Development and New Paradigms of Software
Production and Deployment, pp 37-51. Cham: Springer Nature.

[6] Caprarelli, A., Nitto, E., & Tamburri, D. 2019. Fallacies and pitfalls on the road to devops: A
longitudinal industrial study. In J. Bruel, M. Mazzara & B. Meuer (eds), International Workshop on
Software Engineering Aspects of Continuous Development and New Paradigms of Software
Production and Deployment, pp 200-210. Cham: Springer Nature.

[7] Cartlidge, A., Hanna, A., Rudd, C., Macfarlane, I., Windebank, J., & Rance, S. 2007. An
introductory overview of ITIL V3. Bracknell: The UK Chapter of the itSMF.

[8] Chen, L. 2018. Microservices: Architecting for continuous delivery and DevOps. In 2018 IEEE
International Conference on Software Architecture (ICSA), pp 39-397.

[9] Claps, G., Svensson, R., & Aurum, A. 2015. On the journey to continuous deployment: Technical
and social challenges along the way. Information and Software Technology, 57, pp 21-31.

[10] Crotty, M. 1998. Foundations of social research: Meaning and perspective in the research process.
London: SAGE.

[11] Crowe, S., Cresswell, K., Robertson, A., Huby, G., Avery, A., & Sheikh, A. 2011. The case study
approach. BMC Medical Research Methodology, 11(1), pp 1-9.

[12] Crowley, C., McQuillan, L., & O'Brien, C. 2018. Understanding DevOps: Exploring the origins,
composition, merits, and perils of a DevOps capability. In Proceedings of the 4th International
Conference on Production Economics and Project Evaluation, pp 29-37.

[13] De França, B., Jeronimo, H., & Travassos, G. 2016. Characterizing DevOps by hearing multiple
voices. In Proceedings of the 30th Brazilian Symposium on Software Engineering, pp 53-62.

[14] Díaz, J., Perez, J., Yague, A., Villegas, A., & De Antona, A. 2019. DevOps in practice: A preliminary
analysis of two multinational companies. In International Conference on Product-Focused Software
Process Improvement, pp 1-8.

[15] Diel, E., Marczak, S., & Cruzes, D. 2016. Communication challenges and strategies in distributed
DevOps. In IEEE 11th International Conference on Global Software Engineering, pp 24-28.

[16] Erich, F., Amrit, C., & Daneva, M. 2017. A qualitative study of DevOps usage in practice. Journal
of Software: Evolution and Process, 29(6), pp 1-47.

[17] Gall, M., & Pigni, F. 2021. Taking DevOps mainstream: A critical review and conceptual framework.
European Journal of Information Systems, 31(5), pp 1-20.

[18] Gill, A., Loumish, A., Riyat, I., & Han, S. 2018. DevOps for information management systems. VINE
Journal of Information and Knowledge Management Systems, 48(1), pp 122-139.

[19] Humble, J., & Farley, D. 2010. Continuous delivery: Reliable software releases through build, test
and deployment automation. Boston, MA: Pearson Education.

[20] Hüttermann, M. 2012. DevOps for developers, 1st ed. New York, NY: Apress.
[21] Jones, S., Noppen, J., & Lettice, F. 2016. Management challenges for DevOps adoption within UK

SMEs. In Proceedings of the 2nd International Workshop on Quality-aware DevOps, pp 7-11.
[22] Karamitsos, I., Albarhami, S., & Apostolopoulos, C. 2020. Applying DevOps practices of continuous

automation for machine learning. Information, 11(7), pp 1-15.
[23] Khan, M., Shaikh, A., & Farhan, W. 2020. Fast delivery, continuously build, testing and deployment

with DevOps pipeline techniques on Cloud. Indian Journal of Science and Technology, 13(5), pp 552-
575.

[24] Laukkanen, E., Itkonen, J., & Lassenius, C. 2017. Problems, causes and solutions when adopting
continuous delivery — A systematic literature review. Information and Software Technology, 82, pp
55-79.

166

[25] Lehtonen, T., Suonsyrja, S., Kilamo, T., & Mikkonen, T. 2015. Defining metrics for continuous
delivery and deployment pipeline. In J. Nummenmaa, O. Sievi-Korte & E. Mäkinen (eds), Proceedings
of the 14th Symposium on Programming Languages and Software Tools (SPLST'15), pp 16-30. Aachen:
CEUR Workshop Proceedings.

[26] Leite, L., Rocha, C., Kon, F., Milojicic, D., & Meirelles, P. 2019. A survey of DevOps concepts and
challenges. ACM Computing Surveys, 52(6), pp 1-35.

[27] López-Fernández, D., Diaz, J., Garcia-Martin, J., Pérez, J., & Gonzalez-Prieto, A. 2021. DevOps
team structures: Characterization and implications. IEEE Transactions on Software Engineering,
14(8), pp 1-18.

[28] Luz, W., Pinto, G., & Bonifácio, R. 2018. Building a collaborative culture: A grounded theory of
well succeeded DevOps adoption in practice. In Proceedings of the 12th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, pp 1-10.

[29] Luz, W., Pinto, G., & Bonifácio, R. 2019. Adopting DevOps in the real world: A theory, a model,
and a case study. Journal of Systems and Software, 157, pp 1-35.

[30] Lwakatare, L., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä, V., Itkonen, J., & Lassenius, C.
2019. DevOps in practice: A multiple case study of five companies. Information and Software
Technology, 114, pp 1-18.

[31] Lwakatare, L., Kuvaja, P., & Oivo, M. 2016. An exploratory study of DevOps extending the
dimensions of DevOps with practices. In L. Lavazza, M. Kajko-Mattson, K.M. Ravi, R. Koci & S. Clyde
(eds), ICSEA 2016 The Eleventh International Conference on Software Engineering Advances, pp 91-
341. Rome: IARIA.

[32] Lwakatare, L., Kuvaja, P., & Oivo, M. 2015. Dimensions of DevOps. In International Conference on
Agile Software Development, pp 212-217.

[33] Mangot, D. 2016. Mastering DevOps. Retrieved June 4, 2020 from https://learning.oreilly.com/
videos/masteringdevops/ 9781786468048/9781786468048-video1_3

[34] Mohammad, S. 2016. Continuous integration and automation. International Journal of Creative
Research Thoughts, 4(3), pp 938-944.

[35] Ravichandran, A., Taylor, K., & Waterhouse, P. 2016. DevOps for digital leaders: Reignite business
with a modern DevOps-enabled software factory. New York: CA Press.

[36] Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L., & Männistö, T. 2016. DevOps adoption benefits
and challenges in practice: A case study. In International Conference on Product-Focused Software
Process Improvement, pp 590-597.

[37] Rowse, M., & Cohen, J. 2021. A survey of DevOps in the South African software context. In
Proceedings of the 54th Hawaii International Conference on System Sciences, pp 6785-6794.

[38] Rowley, J. 2002. Using case studies in research. Management Research News, 25(1), pp 16-27.
[39] Rütz, M. 2019. DevOps: A systematic literature review. IT Management Seminar Paper Summer

Term, pp 1-11.
[40] Sánchez-Gordón, M., & Colomo-Palacios, R. 2018. Characterizing DevOps culture: A systematic

literature review. In International Conference on Software Process Improvement and Capability
Determination, pp 1-13.

[41] Senapathi, M., Buchan, J., & Osman, H. 2018. DevOps capabilities, practices, and challenges:
Insights from a case study. In Proceedings of the 22nd International Conference on Evaluation and
Assessment in Software Engineering 2018, pp 1-11.

[42] Shahin, M., & Babar, M. 2020. On the role of software architecture in DevOps transformation: An
industrial case study. In Proceedings of the International Conference on Software and System
Processes, pp 175-184.

[43] Smeds, J., Nybom, K., & Porres, I. 2015. DevOps: a definition and perceived adoption impediments.
In International Conference on Agile Software Development, pp 166-177.

[44] Teixeira, D., Pereira, R., Henriques, T., Silva, M., & Faustino, J. 2020. A systematic literature
review on DevOps capabilities and areas. International Journal of Human Capital and Information
Technology Professionals, 11(3), pp 1-22.

[45] Van Belzen, M., DeKruiff, D., & Trienekens, J. 2019. Success factors of collaboration in the context
of DevOps. International Conference Information System, pp 26-30.

[46] Wilde, N., Eddy, B., Patel, K., Cooper, N., Gamboa, V., Mishra, B., & Shah, K. 2016. Security for
Devops deployment processes: Defenses, risks, research directions. International Journal of
Software Engineering & Applications, 7(6), pp 1-16.

[47] Wurster, L., Colville, R., Haight, C., Tripathi, S., & Rastogi, A. 2013. Emerging technology analysis:
DevOps a culture shift not a technology. pp 1-12. Gartner.

[48] Yarlagadda, R. 2021. DevOps and its practices. International Journal of Creative Research Thoughts,
9(3), pp 2320-2882.

[49] Yin, R.K. 2018. Case study research and applications, 6th ed. Thousand Oaks, CA: SAGE Publications.

167

[50] Zainal, Z. 2007. Case study as a research method. Jurnal Kemanusiaan, 5(1), pp 2-6.

	AN ANALYSIS OF DEVOPS’ IMPACT ON INFORMATION TECHNOLOGY ORGANISATIONS: A CASE STUDY

