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ABSTRACT 

Companies routinely experience difficulties in collecting debt incurred 
by their customers. As an alternative to the reactive techniques typically 
employed to increase a company’s ability to collect debt, preventative 
techniques could be employed to predict the payment behaviour of 
regular customers. Such a preventative technique, in the form of a 
machine-learning model embedded within a decision-support system, is 
proposed in this paper with a view to assisting companies in prioritising 
debt collection resources to address invoices that are most likely to be 
paid late. The system is capable of predicting payment behaviour 
outcomes linked to invoices as anticipating payment receipts during one 

of three intervals: 1ꟷ30 days late, 31ꟷ60 days late, or at least 61 days 

late. The underlying model of the decision support system is identified 
by selecting a suitable algorithm from among a pool of candidate 
machine-learning algorithms. This selection process requires the 
adoption of a sound methodological approach. A machine-learning 
development roadmap is proposed for this purpose, and applied in a 
practical, illustrative case study involving real industry invoice data. 

 OPSOMMING  

Maatskappye ondervind dikwels probleme met die invordering van skuld 
wat deur hul kliënte aangegaan word. As ’n alternatief tot reaktiewe 
tegnieke wat tradisioneel toegepas word om ’n maatskappy se vermoë 
om skuld in te vorder, te verhoog, kan voorkomende tegnieke 
aangewend word om die betalingsgedrag van gereëlde kliënte te 
voorspel. So ’n voorkomende tegniek, in die vorm van ’n 
masjienleermodel wat in ’n besluitsteunstelsel ingebed is, word in 
hierdie artikel voorgestel met die doel om maatskappye te help om 
skuldinvorderingshulpbronne te prioritiseer na fakture wat waarskynlik 
laat betaal sal word. Die stelsel is in staat om die betalingsgedrag-
uitkomste wat aan fakture gekoppel is, te voorspel as verwagte betalings 
gedurende een van drie intervalle: 1ꟷ30 dae laat, 31ꟷ60 dae laat, of 
minstens 61 dae laat. Die onderliggende model van die 
besluitsteunstelsel word geïdentifiseer deur ’n algoritme wat die beste 
presteer uit ’n poel van kandidaat-masjienleeralgoritmes. Hierdie 
seleksieproses vereis die daarstelling van ’n sinvolle metodologiese 
benadering. ’n Masjienleer-ontwikkelingspadkaart word vir hierdie doel 
voorgestel en in ’n praktiese, illustratiewe gevallestudie toegepas wat 
op werklike industrie-faktuurdata berus. 
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1. INTRODUCTION 

The problem of predicting when regular customers will pay invoices issued to them (if at all) is known as 
the invoice payment prediction problem (IPPP). Instead of attempting to solve this difficult problem, 
organisations have traditionally opted rather to apply a suite of reactive measures to customers who seem 
to be paying their invoices late. Examples of these measures include granting discounts or drafting special 
payment agreements, employing external debt collectors, instituting debit orders, and employing 
administrative personnel to follow up on outstanding payments. These measures are all reactive techniques, 
and have achieved varying levels of success [1]. 

A preventative technique that is growing in utility across a wide variety of industries involves the use of 
data analytics that are aimed at identifying potentially delinquent customers early on during the invoicing 
cycle. Data analytics is an exploratory analytic approach that can be described as a systemic process based 
on discovering hidden patterns in large data sets by means of analytical model building. While the use of 
data analytics and its associated algorithms is well-established, methodologies for automating the 
construction of data analytic models are rather novel. This approach, known as ‘machine learning’, resides 
in the realm of artificial intelligence, and is based on the notion that computerised systems can learn from 
data with minimal human intervention [2]. The use of machine learning has progressed dramatically in 
recent years owing a significant increase in the amount of data typically available to enterprises [3]. The 
insight gained from machine-learning models can either be used to predict future data or to assist in 
decision-making. Machine-learning models are now widely used in several fields related to invoice payment 
prediction, such as credit risk management, tax collection, and credit card fraud detection. 

Machine-learning models also promise to be more effective than traditional statistical methods in predicting 
delinquent behaviour. Khandani [4], for instance, compared the effectiveness of machine-learning models 
with that of traditional linear statistical models (such as the logit model [5]) in forecasting consumer credit. 
He found that machine-learning models can outperform traditional statistical techniques by between 6% 
and 25% in terms of total losses. Machine-learning algorithms prove particularly effective when an economy 
is subjected to an exogenous shock, thanks to their ability to mine appropriate non-linear relationships 
between variables over a period of stress [6]. This makes the use of machine learning in the context of a 
post-pandemic-stricken South Africa particularly attractive. 

There is a relatively small body of work in the literature related specifically to invoice payment predictions 
that involve the use of machine-learning algorithms. Zeng et al. [7], for example, used supervised machine-
learning algorithms to predict payment outcomes for invoices issued by four firms, of which two were 
Fortune 500 companies. The algorithmic approaches that were adopted were the method of logistic 
regression, decision trees, a naive Bayes classifier, and the method of boosting stumps. The best-performing 
algorithm was found to be decision trees, which achieved an average prediction accuracy of 79.5%. These 
predictive models were, however, all applied to companies instead of individuals. 

Our aim in this paper is to put forward a novel, pre-delinquency decision support system (DSS) that is aimed 
at aiding the management of an organisation in decisions related to the resolution of the IPPP. The working 
of the DSS is based on the application of an appropriate machine-learning algorithm that is applied to past 
invoice payment data. The machine-learning algorithm takes, as its input, data related to suitable features 
associated with regular customer profiles, their payment histories, and credit information about them, and 
provides as output a measure of the likelihood of such a customer missing a payment by a pre-specified 
date. The DSS is designed, verified, and validated according to accepted guidelines from the literature, 
and is able to facilitate a data-driven approach towards proactively identifying those customers of an 
organisation who are at risk of defaulting. 

The paper is organised as follows. Section 2 contains a brief discussion of elements in the literature related 
to the IPPP. Next, our general modelling approach and the proposed IPPP DSS are presented in Section 3.  
Thereafter, we demonstrate and evaluate the working of a computerised instantiation of the DSS in    
Section 4 in the context of a special case study involving real invoice data. The paper closes with a brief 
conclusion in Section 5. 
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2. RELATED LITERATURE 

Traditionally, the IPPP has been addressed by means of statistical methods, such as the proportional hazards 
method [8] ꟷ an approach from the realm of survival analysis. Survival analysis is a statistical theory for 
analysing the expected duration of time to an event of interest, such as failure in a mechanical system or 
the death of a biological organism. The theory is suitable for use when it is beneficial to predict when an 
event will occur, rather than whether or not it will occur ꟷ such as in the IPPP. 

In his PhD thesis, Smirnov [9] compared the effectiveness of traditional survival analytic methods with a 
novel supervised machine-learning algorithm for predicting delinquent invoices, based on data gathered 
from a credit management service provider in Estonia. The main survival analytic method considered was 
the Cox proportional hazards model, selected for its simplicity and popularity. The results thus obtained 
were juxtaposed against those returned by a supervised machine-learning algorithm called survival random 
forests. Smirnov found that the machine-learning model performed better in ranking payment times. 

As mentioned in the introduction, a relatively small body of work exists in the literature on machine-
learning approaches to solving instances of the IPPP. There are, however, a small number of influential 
case studies, of which three are reviewed briefly in the remainder of this section in order to leverage the 
insight gained from those studies into the type of machine-learning models that would be suitable for the 
IPPP. 

Zeng et al. [7] used invoice records collected from four firms to predict when a newly-created invoice 
would be paid. The invoices were classified as belonging to one of five classes: On time, 1ꟷ30 days late, 
31ꟷ60 days late, 61ꟷ90 days late, and more than 90 days late. These five classes are often used in payment 
collection applications, and each class is typically associated with a customised collection strategy. 
Payment features were generated in order to capture the transaction history of each customer (such as the 
percentage of invoices previously paid late), and to reflect the current status of the customer’s accounts 
(such as the sum of base amounts over all invoices currently outstanding). These aggregated features were 
included to provide sufficient information for the model to use, resulting in an increase in prediction 
accuracy of between 9% and 27%. The classification algorithms considered were decision trees, a naive 
Bayes classifier, logistic regression, boosting decision stumps, and the PART algorithm [10]. The best-
performing algorithm was found to be decision trees, achieving a prediction accuracy of 79%. 

In another study, Appel et al. [11] used data collected from a multinational bank in Latin America to search 
for innovative ways to identify overdue accounts receivable proactively so that its managers and executives 
could prioritise resources assigned to the collection of payments. The problem was interpreted as a 
dichotomous classification problem for which a model was required to predict the likelihood of an invoice 
payment being on time or late. Five classification algorithms were trained and tested on the data – namely, 
a naive Bayes classifier, logistic regression, the k-nearest neighbour algorithm [2], random forests [12], and 
gradient boosted decision trees [10]. Owing to the nature of the underlying time-series data, the statistical 
distribution of features fluctuated ꟷ a phenomenon known as concept drift. A parameter called window 
size was therefore introduced to denote the amount of training time to be used by the model with a view 
to giving more weight to recent payment behaviour. A suitable value for this parameter was determined 
empirically by evaluating each model’s performance for different values of this parameter. The best results 
were obtained when adopting a window size of three periods, and the best-performing models were found 
to be gradient-boosted decision trees and random forests, achieving prediction accuracies of 77% and 76% 
respectively. These machine-learning models were then used to rank predicted overdue payments by 
multiplying the predicted probability of late payment by the invoice amount. 

Perko [13] analysed invoice data shared by large Slovenian companies with a view to predicting the 
probability of companies paying invoices in under 30 days. The author argued that a commonly used metric 
for determining the long-term capability of a company to comply with financial obligations, called the 
probability of default, was insufficient to support operational-level management decisions. Multiple data-
mining classification algorithms, such as neural networks [14], support vector machines [15], classification 
trees [10], logistic regression [16], and CN2 [5] (a rule induction algorithm) were evaluated for model 
accuracy. The models were first trained and tested on historical invoice data, and then trained again on an 
enhanced data set containing companies’ invoice collection behavioural patterns. Upon introducing and 
identifying behavioural patterns, these could be used to predict the behaviour of companies in the future. 
The models identified various rules that were then used to evaluate a debtor’s likelihood of conforming to 
a particular behavioural pattern. These included patterns such as whether or not the debtor was in default, 
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and whether or not the debtor was paying old debts. The best-performing algorithm was found to be a 
neural network, with a classification accuracy of 92.4%. The introduction of behavioural patterns increased 
the model’s predictive accuracy by an average of 3%. 

3. DECISION SUPPORT SYSTEM 

A general methodological approach to addressing the IPPP is proposed in this section. The approach involves 
generating invoice payment predictions by invoking an appropriate machine-learning model. We also 
describe how these predictions could be presented to a user via a DSS in which the machine-learning model 
is embedded. The machine-learning component of this (theoretical) DSS is described in §3.1, and this is 
followed by a discussion in §3.2 of how the component functions in the broader DSS. 

3.1. Machine-learning development roadmap 

The machine-learning methodology embedded in our DSS was broadly inspired by the well-known cross-
industry standard process for data mining (CRISP-DM) framework proposed by Wirth and Jochen [17], which 
has since become the de facto industry standard for carrying out data-mining projects. The framework 
served as the basis for our design of a roadmap to guide analysts in developing an effective and efficient 
tool for solving instances of the IPPP. The roadmap is illustrated graphically in Figure 3.1.  

 

Figure 3.1: The machine learning roadmap adopted in our DSS, based on the 

 CRISP-DM process framework for data-mining projects 

Step 1.0 in the roadmap involves formulating an instance of the IPPP by gaining an understanding of the 
business question underlying the problem instance in terms of an appropriate data set. This also includes 
restructuring the data set so that it is possible to address the aforementioned business question by the 
application of suitable machine-learning models. Step 2.0 involves engineering historical features in order 
to leverage previous regular customer behaviour during the subsequent analysis. Thereafter, the data set 
is partitioned into suitable training, test, and hold-out sets in Step 3.0. This is followed in Step 4.0 by 
applying necessary data pre-processing techniques in order to address potential data quality problems. Step 
5.0 of the roadmap, baseline algorithmic evaluation, involves training and testing a selection of machine-
learning candidate models on all features contained in the initial data set (which excludes the engineered 
features). The returned algorithmic performances are taken as a baseline against which candidate models 
may later be compared. The next step, Step 6.0, involves subjecting the entire data set to a feature 
selection process with the objective of arriving at an optimal subset of predictive features in Step 7.0. The 
following step (Step 8.0) is devoted to tuning the hyper-parameters of a suite of candidate machine-learning 
models under consideration with a view to optimising their prediction accuracy. The aforementioned phases 
of pre-processing and analysis are often performed iteratively during any data-mining project, and the 
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context of the IPPP is no exception. That is, if the candidate models’ performances are not deemed 
satisfactory, the analyst has to revert to appropriate previous steps. The penultimate step of the roadmap, 
Step 9.0, involves conducting a feature importance analysis in which the objective is to ascertain the 
weights that predictive features carry with respect to the outcome of the target feature (i.e., the time 
period during which invoice payment is expected). The machine-learning roadmap concludes in Step 10.0 
with an absorption of a final machine-learning model into the DSS by selecting the best performing model 
from the set of candidate models. 

3.2. DSS derived from the machine-learning development roadmap 

The roadmap of the previous section allows for the consideration of a variety of machine-learning models 
by which to carry out the learning process described above. Such implementations, however, are typically 
of value and accessible only to those who possess sufficient technical skills related to accounts receivable 
and/or machine-learning modelling. This section is therefore devoted to a detailed description of a 
(theoretical) DSS based on the roadmap of the previous section, which is aimed at rendering the predictive 
power of machine learning that is available to relevant stakeholders of the IPPP. 

3.2.1. Proposed functionalities of the decision support system 

A process model of our proposed DSS architecture is elucidated in the form of a data flow diagram in  
Figure 3.2. The figure contains a graphical representation of the inputs, processes, and outputs of the 
system, based on the development roadmap described in §3.1. 

 

Figure 3.2: DSS architecture represented in data flow diagram format 

The DSS adheres to four desirable functional requirements: (1) It is able to auto-clean a given data set;  
(2) it is capable of visualising relationships between selected variables in the data set; (3) it has the ability 
to predict the outcome of newly created invoices; and (4) it is able to display these predictions. The 
remainder of the discussion in this section is devoted to an elaboration of the various functionalities that 
we propose for inclusion in the DSS with the objective of meeting its functional requirements. 
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Upon launching the system, we recommend that five communication tabs be made available to the user to 
navigate between the pages of the DSS in order to facilitate simple navigation. The first tab should prompt 
the user to upload data on new invoices issued. Once loaded, the system should automatically construct 
historical features pertaining to the data set. Thereafter, pre-processing of the data set should follow. The 
user should be notified when the two processes are complete. Functionality should also be provided to 
allow the user to initiate the processes of training and testing machine-learning models. 

A second tab should enable the user to visualise the relationships between the aforementioned features in 
two separate plot areas. The first should contain a scatter-plot matrix of two or more data features selected 
by the user in which each point is represented on a Cartesian plane, with its colour representing one of the 
target variable classes. The purpose of such a plot area is to enable the user to obtain a high-level overview 
of the inherent relationships that are present in the data set. The second plot area should allow the user 
to visualise any two selected features against each other in a similar manner, but with the added 
functionality of being able to plot the distributions of each individual variable by invoking various types of 
visualisations. These visualisation options might include boxplots, histograms, rug plots, and violin plots. 

The third tab should contain similar plot areas, but this time to illustrate the payment history of customers, 
which is also employed as the training set of the machine-learning models. The first plot area should contain 
a line plot of the average number of days invoices were paid late out of all the customers, from the earliest 
date in the data set to the current date. The second plot should depict the number of days a payment was 
paid late for a specific account selected by the user. 

We propose that the fourth tab consist of two main components: a stacked bar chart and a table. The bar 
chart should summarise the predictions made by any particular machine-learning model per target variable 
category. More detail could be provided per prediction for the invoices in the table, such as general 
information per account, the predicted target class (i.e., the anticipated period of payment receipt), and 
the probabilities of the invoice belonging to each of the target classes. The user should also be afforded 
the ability to alter and sort the predicted outputs, which might help to prioritise debt collection resources. 
Finally, the user should be afforded the ability to download the full table in case further analysis is 
necessary on another platform. 

The fifth and final tab should contain a bar graph depicting the feature importance measures returned by 
the machine-learning models. Moreover, a web-application should ideally be chosen as the platform for 
development so that multiple users are able to access the DSS service remotely. 

3.2.2. Proposed verification of any instantiation of the DSS 

The objective of verifying a computerised DSS instantiation is to test whether the system has been 
implemented correctly. The system development should be documented by means of commented sections 
within the implementation code in case future programmers should be interested in improving upon or 
extending the functionality of the DSS instantiation. This also facilitates the process of removing syntax 
errors and compiling errors throughout system development. 

Because logical errors are not easily identified, we propose that a structured approach to testing for such 
errors be followed, such as the approach suggested by Kendall and Kendall [18]. This approach has four 
steps. The first, program testing with test data, involves developing each component of the DSS 
instantiation independently and evaluating its functionalities in the context of synthetic data. Moreover, 
the outputs of each individual component of the instantiation should be compared in isolation with the 
output provided during each step of the machine-learning development roadmap of §3.1, ensuring that the 
outputs correspond (this should include the feature-engineering process, the data-cleaning process, and 
the model-training process). The synthetic data used during this step should also serve the purpose of 
testing the implemented system’s response to violations of the minimum and maximum allowable values 
that the data can assume. 

The second verification step of Kendall and Kendall [18], link testing with test data, should be applied next 
to verify all communication between the various phases and processes depicted in the data flow diagram 
of Figure 3.2. This could be achieved by evaluating whether each input provided by the user correctly 
translates into a change in downstream processes. This includes, for example, uploading hypothetical 
invoice instances and evaluating whether they result in the correct test set for a machine-learning algorithm 
after first having been subjected to the feature-engineering and data-cleaning processes. 
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The working of the entire DSS instantiation should then be subjected to careful testing during the third 
verification step, full systems testing with test data. The main objective of this step is to evaluate whether 
the outputs have been visualised correctly via the user interface of the implemented system.  

Last, full systems testing with live data should be conducted in tandem with system validation on a hold-
out set. The hold-out set presents the DSS instantiation with real data so as to assess whether its outputs 
accurately represent the parameters of the underlying real-world system. 

4. DEMONSTRATIVE CASE STUDY 

In this section, the actual use and applicability of a particular computer implementation of the DSS 
proposed in the previous section are demonstrated in the form of a case study based on real-world invoice 
data provided by Curro Holdings Ltd (hereafter referred to merely as ‘Curro’), a provider of primary and 
secondary schooling in South Africa. The case study opens in §4.1 with a brief background discussion of 
Curro and the context of the data set it provided. A deeper analysis of the data is then conducted in §4.2, 
based on steps 1ꟷ4 of the development roadmap proposed in §3.1. Steps 5ꟷ10 of the roadmap are followed 
thereafter in §4.3 during a discussion of the processes that were adopted to evaluate a variety of machine-
learning candidate models with a view to building an appropriate machine-learning model that was tailored 
to the particular IPPP instances experienced at Curro. The final section of the case study, §4.4, is devoted 
to an evaluation and validation of the model-driven DSS, based on a hold-out data subset. 

4.1. Background to the case study 

Curro, the industry partner on which this case study is based, was established in 1998 as a for-profit 
organisation that designs, constructs, and manages independent schools for children from the age of three 
months to Grade 12. The company’s vision is “… to make independent school education accessible to more 
learners throughout Southern Africa” [19]. Since its inception, the company has enjoyed impressive growth 
ꟷ from having only five campuses and around 3 000 learners in 2010 to boasting 62 698 learners in 2019, 
spread across 76 campuses (175 schools) [19]. Curro offers numerous school brands to a variety of 
customers, as summarised in Table 4.1. 

Table 4.1: The various school brands of Curro 

Average 
monthly fee 

Proportion 
of learners 

 
School brand 

 
Description 

  Curro Academy Primary and secondary 

≤ R 3 300 27% Meridian Primary and secondary 

  Curro DigiEd Online school for Grades 8ꟷ12 

  Curro Castles Nursery 

R 3 000 ꟷ R 5 000 39% Curro Private Colleges Grades 10ꟷ12 with a focus on IT, 
finance, and accounting 

  Curro Schools Primary and secondary 

≥ R 5 000 34% Curro Select Primary and secondary schools 
previously acquired by Curro 

  Curro Assisted-learning Specialised primary and secondary 

Curro’s growth has, however, not been without challenges. As a for-profit organisation, Curro’s financial 
success depends on the size of its client base, which consists of parents paying school fees. Unfortunately, 
the recent economic downturn in South Africa has seen an increase in the rate of unemployment, from 
24.69% in 2010 to 28.48% in 2020. Moreover, the impact of the Covid-19 pandemic has placed strain on 
South African families on multiple fronts ꟷ not just financially. Multiple lockdowns during 2020 forced 
children to stay at home and attempt to learn remotely, which was a significant challenge, especially for 
children in low- to medium-income households who might not enjoy an ideal learning environment at home. 
The challenges of 2020 have forced parents to make tough decisions about whether or not to discontinue 
their children’s education. All these phenomena have culminated in a situation in which many parents have 
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been either unable or unwilling to pay their children’s school fees on time. If a customer of Curro (i.e., a 
parent) fails to pay off debt over an extended period, the debt is written off as bad debt. Curro’s bad debt 
as a percentage of revenue has increased significantly of late, as may be seen in Figure 4.1. 

The data set provided to the authors by Curro contains entries from two of its eight brands – namely, the 
Curro Schools brand1 and the Curro Academy brand. These brands function independently, differ in both 
their target markets and monthly school fees, and are therefore considered likely also to exhibit different 
customer payment behaviours. For this reason, machine-learning analyses were conducted separately for 
each school brand. 

The data set contained 1 068 620 invoice entries from the period from January 2016 to April 2021. It 
comprised twenty descriptive features and a single multi-class target feature exhibiting a payment-on-time 
category (0 days late) and three late-payment categories, distributed as shown in Figure 4.2. The 
descriptive features constituted ten categorical features and ten continuous features. These features 
represent financial and limited demographic information in respect of each account holder. The names and 
brief descriptions of all of the features in the training set are tabulated in Appendix A at the end of this 
article. 

An important distinction has to be made between invoices generally issued by companies and invoices issued 
by Curro. In the more general case, invoices differ in the amounts owed by customers, while in the case of 
Curro, a standardised invoice is issued to all customers at a given school. This means that families with 
varying financial capabilities are required to pay the same amount towards school fees. 

 

Figure 4.1: Bad debt as a percentage of revenue for Curro [19] 

Owing to the large volume of data available to Curro on a customer level, a machine-learning model may 
profitably be used to predict individual customer invoice payment behaviour. By identifying invoices likely 
to become delinquent at the time of issue, this knowledge could be used to adopt a focused approach to 
the collection of debt. If, for example, a high probability of delinquency is predicted for a particular 
invoice, the time to collection can be reduced by pro-actively attempting to collect on that invoice. Such 
an ability is anticipated to be especially valuable in situations where resources for collection activities are 
limited. Ultimately, a predictive model might well lead to an increase in Curro’s financial stability and to 
improved customer payment behaviour ꟷ an outcome that would be advantageous to Curro, its parents, 
and its learners. 

 
1 Also colloquially referred to merely as ‘Curro’. While this brand name should not be confused with the 

name of the entire company, it will be clear from the context when the word Curro refers to the brand or 

to the entire company. 
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Figure 4.2: Historical payment interval distribution (in terms of days paid late) in the Curro data set 

4.2. Customised DSS instantiation 

A computerised instantiation of the DSS proposed in Section 3 was developed for Curro in Python, along 
with a graphical user interface designed according to the functionality guidelines of §3.2.1. Python was 
chosen for this purpose because it is now regarded as the de facto language for machine-learning 
applications [20], surpassing other languages such as R and Java [21]. Moreover, the software environment’s 
thriving online community provides a wealth of knowledge that can be consulted and referenced during any 
data-mining project. The specific software environment selected was Dash, a user interface library for 
creating web applications that is commonly used during data science projects [22]. Our DSS instantiation 
allows users to interact with graphs by providing functionalities such as the ability to download figures, 
display data points when the cursor hovers over a graph, and update outputs based on user-specified inputs. 
We used this instantiation to perform the data set analysis and machine-learning model evaluation. 

4.3. Data set analysis 

In order to obtain a suitable machine-learning model capable of predicting customer behaviour in the DSS, 
the Curro data set first had to be analysed, understood, and transformed into an appropriate format. The 
subsections contained in this section correspond with steps 1ꟷ4 of the machine-learning development 
roadmap proposed in §3.1. 

4.3.1. Formulation and restructuring 

The formulation and restructuring step of the roadmap entailed converting the structure of the input data 
set from a report into one that was suitable for machine-learning analyses. Thereafter, the data could be 
explored and the learning problem formulated. 

Upon conducting an initial investigation into the data provided by Curro, numerous anomalies were 
detected that rendered the structure of the data incompatible with the application of a machine-learning 
algorithm aimed at predicting when future invoices would be paid. The main cause of these anomalies was 
that the data were provided in a format commonly known as an accounts receivable report [23]. Such a 
report format is adopted by companies to ascertain the financial health of their customers by categorising 
customer invoices based on the length of time they are outstanding. The format typically involves columns 
representing intervals of 30 days, and shows the amount payable over these intervals [21]. For example, if 
an invoice is not paid within 30 days, the amount owed is moved to the column corresponding to the next 
interval, resulting in an increase in the total amount payable, as illustrated in Table 4.2. 
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Table 4.2: An example of determining the payment data associated with a late invoice. 

 
Month 

 Payment 
date 

Debit 
amount 

 
Payments 

 
Balance 

 
Current 

 
30 Days 

 
60 Days 

01/2016  NA a 0 a a   

02/2016  NA a 0 2a a a  

03/2016  10/03/2016 a b 3aꟷb a a aꟷb 

Consequently, the next entry, or invoice, contains information about the outcome of the previous entry ꟷ 
a property that violates the requirement of machine-learning algorithms that all observations should be 
independent of one another. Thus a number of changes were made to the overall structure of the data. 

The first irregularity detedted was that the payment dates of the invoices issued were not contained in the 
associated columns of that row. A search algorithm therefore had to be designed to determine the payment 
date of each invoice. In the event of a payment, the amount paid was subtracted from the oldest 
outstanding invoice, as illustrated in the third entry of Table 4.2. The algorithm was required to exhibit 
different behaviours in three fundamentally distinct cases (as described in more detail in Appendix B): 

• (Case I) An invoice is paid late, 

• (Case II) An invoice is paid in advance, and 

• (Case III) An invoice is paid during the required month 

Another anomaly detected was that multiple transactions were often issued in respect of the same account 
for a given month. This was mainly because parents had accounts for more than one learner or received 
credit for an offered discount. These transactions were combined for each month in a given account so as 
to result in a combined net invoice. 

Once the data had been restructured as described above, and the payment dates for each respective invoice 
had been calculated, the number of days a payment was late could be calculated by subtracting the invoice 
date from the payment date. This was achieved by binning these variables into bins that aligned with the 
intervals of the accounts receivable report, leading to the type of analysis that then had to be performed 
being classified as a multi-class classification problem. An analysis was carried out to ascertain the 
distribution of the payments for each interval, as shown in Figure 4.2. An interval value of 0 days indicated 
that the invoice was paid in advance (Case II), and accounted for 45.19% of the total number of invoices 
issued. Training a prediction algorithm on these data entries was trivial, since a simple subtraction would 
suffice when the invoice was issued to determine whether it had been paid in advance. As a result, all of 
these entries were removed from the data set. 

4.3.2. Historical feature engineering 

As explained in Section 2, similar studies in the literature have shown that the introduction of features 
capturing historical behaviour resulted in an increase in prediction accuracy of between 9% and 27%. Such 
an application might prove to be especially useful in the Curro training set, considering that, on average, 
there were 29 invoices per account in the data set, resulting in an abundance of historical information. The 
obvious constraint is that such an application is not viable for the first invoice of an account, since there is 
no historical information available for that invoice. These features were, therefore, only created for 
invoices for which previous information was available. The first entry of each account was subsequently 
removed from the analysis. Table 4.3 contains information about the features that were generated. These 
features were loosely based on features considered in the studies described in Section 2. 

 

 

 

 



136 

Table 4.3: Historical features generated 

No Feature Description 

1 AveDaysLate Average days late of all invoices 

2 NumInvOnTime Number of total invoices that were paid on time 

3 NumInvLate Number of total invoices that were paid late 

4 RatioOnTime Ratio of total invoices paid on time 

5 DayPayInMonth Average day in the month a payment is made 

6 NumPaymentsPerMonth Number of payments made per month 

7 DaysSinceLastPayment Number of days since previous payment 

8 AnyInvoicesLate Binary feature: 1 if a previous invoice is outstanding, or 0 otherwise 

9 GlobalTrend Average increase/decrease in number of days an invoice was paid late 
during the previous month 

Features 1ꟷ4 were generated with the objective of capturing general outcomes related to previous 
invoices. Moreover, features 5 and 6 were generated to represent the timings of payments made by the 
account holder. The purpose of features 7 and 8 was to capture recent customer behaviour. Last, the 
purpose of feature 9 was to capture global trends in invoice payments during previous months. 

The calculation of features varied according to how many invoices were included and the weighting of each 
invoice. When calculating AveDaysLate, for example, the value was simply calculated as the mean value 
over all previous invoices. Such a calculation is, however, unresponsive to recent changes in payment 
behaviour. If too much weight is allocated to recent behaviour, on the other hand, then the value might 
respond to noise. 

A suitable method of calculating historical values was determined empirically by evaluating the 
classification accuracy achieved by a simple random forest model in respect of three different calculation 
methods. First, the mean over all previous invoices was calculated. Second, the mean over a fixed number 
of previous invoices was calculated. This specified length, or window size, ranged from two to five. Last, 
the features were calculated as the weighted average of the previous ten invoices. The weights were 
assigned according to factors specified a priori. For example, if the value were to be 1.2, then each value 
would contribute 1.2 times as much to the metric as the next invoice further away from the calculation 
instant. 

Of these permutations, the exponential weighting method yielded the best prediction accuracy. Weight 
factors in the range [1,2] were considered and tested empirically in discrete steps for their ability to 
promote prediction accuracy. A factor value of 1.5 was found to perform best. 

4.3.3. Data set partitioning 

There are various ways in which data sets have traditionally been partitioned by means of sampling [2]. 
Traditional techniques could not, however, be implemented in the context of the Curro data set, since the 
time-series nature of the data set created the risk of a data leakage. 

Therefore, the data set was partitioned according to time. The selected training set corresponded to 
invoices from 2016 to 2019, representing 56% of the data set, while the selected test set corresponded to 
all invoices for 2020, or 32% of the data set. The set used for the tuning of hyper-parameters was all invoices 
issued during October 2020, represented by the slice denoted a in Figure 4.3, which elucidates the average 
number of days late of all accounts over time. A separate hold-out set corresponded with invoices issued 
during November 2020, represented by the slice b in Figure 4.3. The purpose of this hold-out set was to 
facilitate unbiased testing and verification of the DSS instantiation. Invoices issued in 2021 did not form 
part of the analysis, since the corresponding payment outcomes did not reflect yet in the data set. 
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Figure 4.3: The average number of days late as a function of time for the data sets provided by Curro 

The process of testing a variety of machine-learning models resembled a simulation of the actual 
functioning of the DSS. The models were required to make predictions for all newly created invoices at the 
beginning of a month, and were trained on all invoices prior to that. In order to obtain an accurate measure 
of the models’ performances, predictions were made for each month of the calendar year 2020. That is, 
the models were trained on the 2016 to 2019 data, and were required to make predictions for January 
2020. Thereafter, the models were re-trained on all data spanning the period from 2016 to January 2020, 
and were required to make predictions for February 2020, and so forth. The mean performance over all 
twelve prediction months was then taken as the performance measure associated with a model. 

The seasonal nature of the data justified predicting only one month into the future, as illustrated in Figure 
4.3. If retrained on a monthly basis, the model is expected to be able to develop the capability of 
responding to changes in customer behaviour ꟷ especially in the presence of a significant external shock, 
such as the disruption caused by the Covid-19 pandemic in 2020. Such frequent retaining is natural (in the 
sense that it coincides with the frequency of issuing invoices) and should not impact the user of the DSS 
instantiation negatively, because training can easily take place overnight at the end of each month so that 
the system is ready for updated use once new invoices are issued (retraining of only a single machine-
learning algorithm is required). 

4.3.4. Data pre-processing 

A data quality report formed the basis for addressing data quality issues early on in the data-mining process 
[2]. The report tables were scrutinised to gain a deeper insight into the nature of the data and subsequently 
to identify quality concerns. 

Each feature was inspected with a view to identifying errors. The first problem to be identified was that 
the payment date searching algorithm could not find the payment dates for 9% of the entries. This anomaly 
was found to represent errors, since the rules of the accounts receivable report had been violated. The 
relevant entries were subsequently removed. 

A second issue related to the distribution of the Age feature, the OldestLearnerAge and FirstLearnerStart 
features, and the ActualAmt feature. These errors were eliminated either by the method of mean 
imputation or by removing all instances containing values larger than or smaller than sensible threshold 
values. 

It also became apparent from the data quality report that two features were associated with large 
proportions of missing values, and these features were subsequently removed. The features were 
ParentalRelationship and IncomeBracket, exhibiting missing value percentages of 57.5% and 99.5% 
respectively.  

Upon inspection of the minima, maxima, and standard deviations of the continuous features in the data 
quality report, it also became evident that outliers were present in the data set. All outliers were addressed 
by performing clamp transformation. 
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From Figure 4.2 it may be concluded that the data sets exhibited class imbalance. Various sampling methods 
were employed to address this imbalance in an effort to identify the best sampling method: random under-
sampling, random oversampling, SMOTE, and Tomek links [24, 25]. A focus was placed on under-sampling 
techniques, since the number of data entries allowed for such an application. The best method was 
determined empirically by identifying which method resulted in the best performance for a simple random 
forest algorithm. The best method of sampling was identified as Tomek links with a resulting class 
distribution of 50%, 26%, 24% for the Curro brand, and 43%, 29%, 28% for the Curro Academy brand. 

Several features were also included in the data set that exhibited irregular cardinalities. For example, a 
cardinality of 1 associated with the SchoolCountry feature rendered it redundant, and so the feature was 
removed. The Occupation feature similarly exhibited an extreme cardinality value of 6 378. Because there 
is not a method for transforming this feature to a sensible continuous feature, it was removed from the 
data sets. Moreover, the cardinality value of 10 for the ParentalRelationship feature raised concerns over 
the discriminating information it provided. A total of 57.5% of the entries were missing, which further 
diminished the useful information it represented. The feature was therefore also removed. 

Several other pre-processing methods were also applied to the data sets. First, all categorical variables 
that were not ordinal, and that contained two or more categories, were continuised by applying the method 
of one-hot encoding [26]. The only feature that met the requirements for this type of transformation was 
the SchoolRegion feature. The data were further normalised for the models that required this type of 
transformation. Two normalisation techniques, standardisation and robust scaling, were applied [25, 27]. 
The best normalisation technique was determined empirically for each of the machine-learning models. 

4.4. Machine-learning model evaluation 

Once the data had been pre-processed, the training and evaluation of a suite of machine-learning candidate 
models could take place. The subsections contained in this section correspond with steps 5ꟷ10 in the 
development roadmap of §3.1. 

4.4.1. Baseline algorithmic evaluation 

A total of six classifiers were first trained on the standard data sets (excluding the engineered features) in 
order to establish baseline algorithmic performances. These classifiers were a random forest model, a 
decision tree model, the k-nearest neighbour algorithm, logistic regression, a naive Bayes classifier, and a 
dense neural network. The performance measure that was considered when evaluating each of these 
algorithms was the well-known area under the receiver operating characteristic curve, abbreviated here as 
AUC. This measure forms part of the widely popular machine learning library for data-mining projects 
written in Python, called scikit learn. This measure exhibits flexibility in respect of accommodating multi-
class classification, and provides robust performance measures in the case of class imbalance. For the 
purposes of this case study, the average (unweighted) AUC was computed for all possible pairwise 
combinations of classes, as recommended by Pedregosa et al. [28]. 

4.4.2. Feature selection 

The data sets were subsequently enriched with the historical features that had been engineered. 
Thereafter, feature selection was performed on all of the data sets in an attempt to arrive at an appropriate 
number of features. For feature selection, two filter methods, one wrapper method, and one embedded 
method were used during training. The two filter methods were Spearman correlation [5] and mutual 
information [29]. The wrapper method employed was sequential forward selection, with a random forest 
model [30] adopted for evaluation purposes. Finally, the embedded method employed was Lasso (L1) 
regression [26]. The results are tabulated in Table 4.4, with the features sorted from most commonly chosen 
to least commonly chosen. Features were included for further analysis if they were present in the results 
returned by at least three out of the four selection methods. Features 1ꟷ9 in Table 4.5 were, therefore, 
selected. 
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Table 4.4: Features most chosen by the various feature selection methods, ordered from most 

commonly chosen to least commonly chosen 

  
Feature 

 
Spearman 

Mutual 
information 

Lasso (L1) 
regression 

Sequential fwd 
selection 

1 AveDaysLate 0.55 X X X 

2 RatioOnTime 0.54 X X X 

3 PreviousBalance 0.54 X X X 

4 DausSinceLastPayment 0.44 X X X 

5 CreditScore 0.29 X X X 

6 DayPayInMonth 0.10 X X X 

7 AnyInvoicesLate 0.47 X X  

8 GlobalTrend 0.08  X X 

9 NumPaymentsPerMonth 0.05 X X  

10 AccountID  X  X 

11 ActualAmt  X  X 

12 Month    X 

4.4.3. Enriched algorithmic evaluation 

The respective models were re-trained and tested with respect to the selected subset of features 
determined during feature selection. Table 4.5 contains a comparison between the AUC scores achieved by 
the baseline models and the AUC scores achieved by the enriched models. From the table it is evident that 
the feature selection and feature engineering processes resulted in an increase in prediction accuracy for 
all models – most notably for the naive Bayes classifier, the k-nearest neighbour algorithm, and the dense 
neural network. 

Table 4.5: Machine-learning candidate model AUC results 

 Curro Curro Academy  

Model Baseline Enriched Baseline Enriched Improvement 

Random forest 78.71% 81.65% 79.79% 83.00% 3.08% 

Decision tree 64.14% 66.80% 65.60% 67.07% 2.06% 

k-Nearest neighbour algorithm 69.76% 74.97% 69.45% 75.64% 5.70% 

Logistic regression 73.93% 77.79% 75.62% 81.30% 4.77% 

Naive Bayes classifier 69.65% 78.53% 69.97% 79.99% 9.45% 

Neural Network 74.52% 80.79% 75.92% 82.09% 6.22% 

     5.22% 

4.4.4. Hyper-parameter tuning 

Most machine-learning models contain parameters that have to be specified a priori and that influence 
model prediction accuracy. This type of model parameter is called a hyper-parameter, and is typically 
tuned empirically, since there is no analytic method for calculating appropriate values for hyper-
parameters [31]. The hyper-parameter tuning process followed for the different machine-learning models 
involved use of the widely adopted method of grid search. This method entails considering all distinct 
hyperparameter value combinations in a pre-defined and discrete search space. Ranges for the various 
hyper-parameters were derived from guidelines in the literature, upon which small, medium, and large 
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values were selected for consideration within these ranges. The method can become prohibitively 
expensive, however, if there are many hyper-parameters. For this reason, the test set employed during 
hyper-parameter tuning only contained one month of invoice data, instead of aggregating the performances 
for the entire 2020 calendar year. It is acknowledged that other hyper-parameter tuning approaches could 
have been implemented instead, such as Latin hypercube sampling, a sensitivity analysis, or Bayesian 
evidence-based tuning. The hyper-parameters relevant to each algorithm, as well as the best performing 
combination of hyper-parameters for each Curro brand, may be found in Appendix C. 

4.4.5. Feature importance 

A variable importance analysis was performed in respect of the best-performing machine-learning models 
identified in the previous section. The objective was to identify features that were deemed to be most 
predictive of invoice payment behaviour. In the previous section, the random forest model was identified 
as exhibiting the best performance in prediction accuracy, and so this model is mainly evaluated in this 
section. For the sake of brevity, only the tuned random forest model employed for the Curro Academy 
brand is considered (the models for the two brands differed only marginally). 

The structure of the first three levels of one of the trees produced by the random forest model is illustrated 
graphically in Figure 4.4. 

 

Figure 4.4: The first three levels in one of the decision trees generated by the random forest model,  

with P denoting the probability of belonging to the predicted class 

The first feature adopted by the random forest model to perform splitting was the AveDaysLate feature.  A 
value for this feature of more than 49.05 was found to increase the probability of an invoice being paid 
late. It is interesting to note that, if the value of the AveDaysLate feature is larger than 84.03, and the 
value of the PreviousBalance feature is larger than 3 001.5, the invoice has a probability of 89.3% of being 
at least 61 days late. This indicates that customers who have a history of paying invoices late and have 
outstanding invoices (larger positive balances) are very likely to pay these invoices more than two months 
after their issue date. Conversely, customers who have a history of paying on time, and have a healthy 
balance, are likely to pay earlier. 

In order to calculate the feature importances for the (multinomial) logistic regression model, the absolute 
coefficients associated with the respective features were normalised. The other three algorithms are not 
inherently capable of providing feature importances. To overcome this limitation, the notion of 
permutation importance was employed. Permutation importance involves randomly shuffling a single 
feature in the data set while leaving the rest of the data set intact, and comparing a model’s prediction 
accuracy with the baseline [32]. If variables that contain predictive information are shuffled, it will lead 
to poorer performance and a higher feature importance value. The normalised results obtained are 
represented in Figure 4.5. 
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It is evident that the first three features – AveDaysLate, RatioOnTime, and PreviousBalance – were deemed 
to be important variables in predicting the outcome of invoice payments by all of the models apart from 
the logistic regression model, which returned a large coefficient for the AnyInvoicesLate feature, possibly 
owing to the linear relationships it assumed between variables, unlike the other models. 

 

Figure 4.5: Feature importance values for the respective machine-learning models 

The features that contributed only marginally towards predictability, on the other hand, were the 
DaysSinceLastPayment, NumPaymentsPerMonth, DayPayInMonth, and GlobalTrend features. In other words, 
when customers last made payments, how often they make payments, when their payments occur during 
the month, and the global trend of payments during the previous month only have a marginal effect on the 
invoice payment outcomes. 

4.4.6. Final absorption of model into the DSS 

The AUC scores of the best-performing configurations of each machine-learning candidate model are 
summarised in Table 4.6. Although the relative differences between the AUC scores decreased between 
the respective models, the best-performing algorithm for both brands was again determined to be the 
random forest model. This model was therefore considered for absorption into the DSS instantiation. The 
option of ensembling machine-learning models was not pursued, since it would be associated with a 
considerable increase in computational burden. 

Table 4.6: AUC scores for the best-performing configuration of each machine-learning candidate 

model 

 
Rank 

 
Machine learning  

 
Curro 

Curro 
Academy 

 
Average 

1 Random forest 83.72% 83.51% 83.61% 

2 Decision tree 81.64% 81.71% 81.67% 

3 k-Neareast neighbour algorithm 80.98% 81.14% 81.06% 

4 Logistic regression 79.71% 82.40% 81.05% 

5 Naive Bayes classifier 78.53% 79.99% 79.26% 

6 Neural network 83.23% 82.83% 83.03% 
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4.5. Embedding the random forest model into the DSS 

Having absorbed the random forest model into the DSS instantiation, the applicability and performance of 
the instantiation as a whole could be evaluated. A brief analysis of how the system performed on the hold-
out set is first elaborated upon. This is followed by a description of the feedback received during an expert 
face validation of the DSS results pertaining to the hold-out set. 

4.5.1. Experimental results on hold-out set 

The hold-out set was employed during a final evaluation of the model-driven DSS instantiation. It also 
formed the basis for obtaining an expert face validation from subject matter experts (SMEs). The AUC 
scores returned by the random forest models were 79.01% for the Curro brand, and 82.5% for the Curro 
Academy brand. 

4.5.2. Expert face validation 

The purpose of system validation is to ensure that an appropriate system has been built that exhibits the 
required level of sophistication and fidelity [33]. Most importantly, it entails evaluating whether the system 
accurately models the underlying real-world system. An important step in system validation, apart from 
experimental validation, is ensuring that the system achieves high face validity. This typically entails the 
involvement of an SME who is consulted to determine whether the system imitates the underlying physical 
system accurately. 

The main SME selected to perform the expert validation was Mr Craig Nel [34], a debt collection consultant 
with more than twenty years of experience in the industry. He was selected as the main SME for this study 
because of his considerable knowledge of the fundamental business question underlying the IPPP. An 
additional SME who also provided valuable input was Ms Monica Rolo [35]. She obtained a master’s degree 
in industrial engineering at Stellenbosch University in 2019 with a thesis topic on unsupervised machine 
learning. In her role as an industrial engineer at Curro, she has worked on numerous data science projects. 

Nel was surprised to note the application of data-driven solutions to debt collection ꟷ something he 
believed to be novel. He noted that the feature importance values returned by the model aligned with the 
anecdotal evidence that was observed. He also confirmed that the probabilities of an invoice belonging to 
each target variable class returned by the DSS instantiation would aid in prioritising intervention strategies 
for invoices that were at the highest risk of defaulting. From a machine-learning perspective, Rolo endorsed 
the steps followed in the machine-learning development roadmap, as well as the six candidate machine-
learning algorithms that were considered. Both SMEs submitted that the distribution of the predicted target 
feature classes, together with their associated probabilities, were representative of a typical batch of 
invoices issued during any month. 

In summary, the SMEs endorsed the underlying assumptions of the DSS instantiation and confirmed that the 
results that were returned accurately represented the underlying real-world system.  

5. CONCLUSION 

In this paper, a DSS was proposed for predicting customer payment behaviour in respect of invoices issued. 
The DSS takes as its input data pertaining to invoices issued for each account of an organisation at the 
beginning of each month, and provides as output the predicted intervals of payment along with the 
respective probabilities of payments occurring in each interval. The DSS then proceeds to engineer features 
that capture the historical behaviour, based on outcomes in relation to previous invoices, saved as a data 
store. The DSS also facilitates the application of the necessary pre-processing steps in order to train and 
test the machine-learning model embedded within it. In addition, the DSS is able to provide visualisations 
of the features contained in the data set, along with the historical trends of payments, with the objective 
of extracting meaningful relationships between them. The DSS provides output in a meaningful way by 
enabling users to sort and filter predictions so that debt collection intervention strategies can be prioritised 
for invoices exhibiting the highest risk of being paid late. Last, the DSS facilitates visualisation of the 
feature importance values returned during the predictions made by the underlying machine-learning model. 
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Moreover, a customised instantiation of the DSS was implemented for Curro on a personal computer, and 
verified. It was demonstrated that the DSS instantiation is able to provide results in the context of a real-
world case study, based on data provided by Curro. The model returned AUC scores of 79.01% for the Curro 
brand and 82.5% for the Curro Academy brand during a case study. The instantiation was judged to hold 
the potential of resulting in a decrease in bad debt for Curro ꟷ a recent and serious phenomenon. The 
notion of applying data-driven decision support to predict customer payment behaviour is a novel solution, 
as confirmed by the limited literature related to similar applications and by the anecdotal evidence 
provided by two SMEs. 

As in any predictive system, predicting invoice payment behaviour requires knowledge of previous accounts, 
and is therefore geared towards predicting the behaviour of existing customers with known data instead of 
predicting the payment behaviour of new customers. Although the DSS is based on several simplified 
assumptions, a computerised instantiation of the system was still able to predict invoice payment behaviour 
with between 79.01% and 82.5% accuracy. 
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APPENDIX A: DESCRIPTIONS OF ALL FEATURES IN THE TRAINING SET 

AccountID. The account number of the client 

CalenderMonthKey. The date time stamp of the invoice 

Brand. The school brand the account is associated with 

SchoolCountry. The country in which the school is located 

SchoolRegion. The province in which the school is located 

ParentalRelationship. Type of relationship between account holder and learner 

Occupation. Occupation of account holder 

Age. Age of account holder 

Gender. Gender of account holder 

CreditScore. Credit score of account holder 

NumberOfLearnerResponsibleFor. The number of learners for whom the account is responsible 

FirstLearnerStart. How long ago the first learner started school 

OldestLearnerAge. The age of the oldest learner 

ReceivesDiscount. Whether or not an account receives a discount 

PaymentMethod. Whether a payment is made via cash or debit order 

IncomeBracket. The income bracket of the account holder 

InvoiceDate. The date and time stamp of the issue of the invoice 

PaymentDate. The date and time stamp of when a payment was received during the month 

DebitAmt. The amount debited 

CreditAmt. The amount credited 
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ActualAmt. The net amount 

TaxAmt. The tax amount associated with the invoice 

Payments. The payment amount 

Balance. The balance of the account holder 

APPENDIX B: CASES CONSIDERED WHEN DETERMINING THE PAYMENT DATE OF EACH INVOICE 

(Case I) An invoice is paid late. If the value in the Current column is positive, the algorithm iteratively 
searches through each row and identifies when an invoice does not appear in the next interval for the 
following month. In other words, if the payment b is larger than a in the third entry of Table 4.2, this means 
that the invoice issued in January was paid on 10 March 2016. 

(Case II) An invoice is paid in advance. If an invoice was paid during, or before, a given month, the value 

in the Current column would be non-positive ꟷ also implying that all other invoices had been paid. If the 

balance of the previous month is therefore negative, and the sum of the previous month’s balance and the 
debited amount is still non-positive, then the invoice is considered paid, irrespective of whether a payment 
occurred during that month. For example, if y + x ≤ 0 in Table B.1, the invoice has been paid in advance 
and the payment date is set to the invoice date. 

Table B.1: An example of determining the payment data of a late invoice 

 
Month 

Payment 
date 

Debit 
amount 

 
Payments 

 
Balance 

 
Current 

 
30 Days 

01/2017 NA x 0 y y 0 

02/2017 10/02/2017 x z y + x ꟷ z y + x ꟷ z 0 

 

(Case III) An invoice is paid during the required month. If, however, the sum of the previous month’s 
balance and the debited amount is positive, then the invoice was only considered paid when a payment 
was received during that month, resulting in the Current value being non-positive. To relate this back to 
the example above, the inequalities y + x > 0 and y + x ꟷ z ≤ 0 would hold in this case. 

APPENDIX C: ALGORITHMIC HYPER-PARAMETER TUNING 

During the training of the decision tree model, four hyper-parameters were identified for tuning. The first, 
maximal tree depth, determines the maximum number of splits that can occur before a leaf node should 
be formed. A large value typically results in over-fitting the training set, while a small value results in 
under-fitting. The second hyper-parameter specifies the minimum number of instances in a subset that are 
required before a split is made on the subset. A large value typically prevents the model from over-fitting. 
Another hyper-parameter, the minimum number of instances in leaves, prevents a split from occurring at 
an interior node if the resulting node contains fewer instances than the value of the hyper-parameter. A 
large value prevents the model from over-fitting. Last, the function that measures the quality of a split can 
either employ Gini impurity or information gain. 

Five hyper-parameters were tuned in the random forest model. The first was the number of trees in the 
forest. A large number of trees tends to increase prediction accuracy, but also increases the computational 
time. Second, the maximum number of attributes considered at each split can assume a value of between 
five and fifty. Third, the minimum number of instances contained in a node before a split is performed can 
be between two and one thousand. Moreover, the maximum depth of individual trees can assume a number 
between one and fifty. Last, it can be specified whether sampling should be conducted with or without 
replacement; the former is known as bootstrapping. 

Two hyper-parameters appeared in the logistic regression model – namely, the regularisation type and the 
regularisation strength. Regularisation is a technique that is employed to prevent over-fitting, and can also 
be used as a feature selection method. Two widely adopted methods that can be employed are Lasso (L1) 
and Ridge (L2) regularisation. The strength of the regularisation, denoted by C, can assume any value 
between 0.001 and 1 000. 
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The most obvious hyper-parameter that could be altered in the k-nearest neighbour algorithm was the 
value of k. A large number prevents the model from over-fitting the training set, but too large a value can 
lead to under-fitting. Another hyper-parameter was the weight function that was used during prediction, 
which could employ uniform weights or weight points, based on the inverse of the distance between them. 
Last, the distance metric employed could also be changed, which could be either Euclidean distance or 
Manhattan distance. 

No hyper-parameters had to be tuned for the naive Bayes algorithm. The Gaussian naive Bayes algorithm 
was determined to be the most suitable implementation. 

In order to prevent a neural network from over-fitting ꟷ a common phenomenon as the number of epochs 

progresses ꟷ so-called early stopping formed part of the architecture. This mechanism interrupts the 

training error as soon as the validation error reaches its minimum. What is especially useful about this 
mechanism is that a patience parameter is introduced that represents the number of epochs over which 
the model can still be trained with no improvement, after which training is terminated. This was specified 
to be three epochs, based on a preliminary empirical analysis. The maximum number of epochs was 
specified as 50, but the early stopping mechanism usually terminated training after five to fifteen epochs. 
The validation set was taken to be 25% of the training set. 

The number of entries on which training is based before the weights are updated, or the batch size, can be 
adjusted. The number of epochs can also be changed, which is the number of times the entire data set is 
introduced during training. Moreover, the training optimisation algorithm can also be altered. In addition, 
the number of neurons in the hidden layer can be varied. Generally speaking, a larger number of hidden 
neurons causes the network to over-train. The number of hidden layers could also have been altered during 
the parameter tuning process, but since standard multilayer feed-forward neural networks are, in theory, 
capable of approximating any function [36], the value of this hyper-parameter was not varied. The neuron 
activation functions were also tuned before training and testing on a data set. Last, the measure of how 
fast the weights are updated at the end of each batch, known as the learning rate, was varied. This rate 
assumes a value between 0 and 1. A larger value typically results in unstable training, while a smaller value 
holds the risk of the training process only converging towards local optima. 

Another hyper-parameter, known as dropout regularisation, involves incurring a penalty in the training 
objective that is aimed at preventing over-fitting [15]. This was, however, not considered because of the 
adoption of the early stopping mechanism and the denseness of the neural network architecture. 
 


