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ABSTRACT 

Electric vehicles (EVs) offer ideal opportunities to reduce the negative 
effects of transport. Demographic changes have led to an increase in the 
demand for home healthcare services and the transporting of healthcare 
staff. This paper is an attempt to introduce and address the multi-period 
electric home healthcare routeing and scheduling problem with nonlinear 
charging (E-HHCRSP-NL) to handle decisions such as allocating the EVs used 
by healthcare staff for clients based on their characteristics, determining 
the EV routes, tracking their charge state, and choosing the most 
convenient charging locations. The problem is solved using a newly 
developed hybrid evolutionary variable neighbourhood search algorithm 
(HE-VNS). The computational results of the newly created instances 
indicate the effectiveness of the proposed approach. 

OPSOMMING 

Elektries aangedrewe voertuie bied verskeie ideale geleenthede om die 
negatiewe gevolge van vervoer te verminder. Demografiese veranderinge 
het gelei tot ŉ toename in die vraag vir tuisversorging en die vervoer van 
gesondheidswerkers. Hierdie artikel poog om die multiperiode 
tuisversorging roetebepaling- en skeduleringsprobleem met nie-lineêre 
batterylaai aan te spreek. Die besluite wat geneem word sluit onder andere 
die allokering van elektries aangedrewe voertuie aan gesondheidswerkers, 
die bepaling van roetes, die monitor van die voertuie se laaitoestand en 
die kies van die gerieflikste batterylaai liggings. Die probleem is opgelos 
met die gebruik van ŉ nuwe hibriede-evolusionêre-veranderlike-buurt-
soekalgoritme. Die resultate toon die effektiwiteit van die voorgestelde 
benadering. 

 

1 INTRODUCTION 

Home healthcare (HHC) can be defined as the provision of a wide range of healthcare services to patients 
at their homes rather than in hospitals. An aging population, increasing incidences of diseases and 
disabilities, and patients’ preferences for independent living are the key drivers that have led to the need 
for HHC services. This market was worth $220.67 billion in 2016, and is expected to reach $517.23 billion 
by 2025 [1]. Thus decision-makers look for alternative ways to decrease healthcare-related costs and to 
improve the quality of care. The cost of HHC services is more affordable than those associated with in-
patient residential facilities and long-term care hospitals. Moreover, these services help patients to recover 
more easily, regain their independence, and improve the quality of their lives as a whole. However, it is 
estimated that the 23 organisation for economic co-operation and development (OECD) countries will have 
a shortage of 2.5 million nurses by 2030 [2]. In 2018, HHC workers travelled about eight billion miles, with 
an average travelled daily distance of almost 11 miles [3] to visit six to eight clients, and a driving time 
that took up nearly 25 per cent of the working time every day [4]. 
 
The transportation sector is one of the crucial parts of any economy, with an infrastructure that is directly 
related to competitiveness and growth [5]. Efficient transportation can decrease costs and unintended 
consequences in different sectors [6]. Its energy consumption leads to greater environmental degradation; 
and so traffic congestion, air and noise pollution, and greenhouse gas (GHG) emissions are mainly attributed 
to transportation activities. The use of electric vehicles (EVs) can help to reduce these side effects [7] with 
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numerous benefits over conventional vehicles, such as lower running costs, cheaper maintenance, and 
safety improvements. For a sustainable system, economic, environmental, and social pillars should be 
considered in this framework. Transportation using EVs is one of the possible solutions [8]. 
 
The present article addresses this task by introducing a new challenge — a multi-period electric home 
healthcare routeing and scheduling problem with nonlinear charging (E-HHCRSP-NL). This problem considers 
decisions such as the allocation of the EVs (nurses) to clients by considering their features and 
characteristics within a predetermined time slot; the determination of the route each EV has to cover each 
day within the planning horizon; and the determination of the charge state and charging spots for each EV. 
The developed model differs from the HHC literature in the following aspects: first, the sustainability 
concept is not ignored; in other words, healthcare staff drives EVs to perform all the assigned jobs. Thus 
using EVs for HHC helps to reduce the environmental impact of transportation. Existing models covered the 
linear charging function and/or full charging strategy. Second, as opposed to the current literature, our 
model considers a nonlinear charging function and partial charging strategy.  

1.1 Related work  

The HHCRSP is an extension of two well-known NP-hard problems; the vehicle routeing problem with time 
windows (VRPTW), and the nurse rostering problem (NRP). The HHCRSP covers a set of assignments as well 
as temporal and geographic constraints. The presence of nurses’ characteristics and of clients’ 
requirements and preferences increases the complexity of the problem. Also, the different range of 
requests should be carried out by well-qualified nurses, whose allocation increases the satisfaction of 
clients. Furthermore, gender, language, pet ownership, etc. are defined as the characteristics or 
preferences to be taken into account for an appropriate assignment; otherwise incompatibilities may occur. 
Clients tend to seek services from the same care worker; this is known as loyalty. A minimum number of 
different workers should therefore be allocated to the same client during the planning horizon. As in the 
classical VRPTW, each client and nurse has their own time frame. Nurses can serve clients within 
predetermined time windows, depending on the types of the contracts. Throughout the planning horizon, 
the requests of clients are defined as the frequency of visits — e.g., once-a-week visits or every-other-day 
visits. In other words, a service that is requested every day corresponds to seven visits during one week. 
Nurses are not allowed to work every day, and so the maximum weekly working times have to be determined 
and implemented. Some jobs require the presence of more than one worker to be performed. In such cases, 
healthcare workers should start their jobs simultaneously. All existing publications in the literature have 
so far considered mainly the travel costs but ignored the ecological and social criteria. Therefore new 
transportation technologies, such as EVs or zero-or low-emission vehicles, should be incorporated into the 
planning to achieve a more sustainable transportation model. For a detailed review related to HHC, see 
[9].  
 
To tackle the multi-period problem, a series of exact and metaheuristic solution procedures is applied. A 
branch-price-and-cut algorithm [10, 11] is implemented for the exact solution procedure. Metaheuristics 
can be classified into two groups: single solution-based and hybrid-based. Tabu search [12], adaptive large 
neighbourhood search [13], and variable neighbourhood search (VNS) [10] are also employed. 
 
In order to deal with the negative effects of transportation, zero-or low-emission vehicles have received 
growing interest in recent years. Erdoğan and Miller-Hooks [14] developed the green vehicle routeing 
problem (GVRP), in which vehicles run with alternative fuels such as biodiesel, ethanol, and natural gas. 
Schneider et al. [15] proposed the electric VRPTW (E-VRPTW), which is an extension of the GVRP. For 
interested readers, related studies for the GVRP and E-VRPTW can be found in [16-19]. Although the use of 
EVs has good potential, two major difficulties should be solved to eliminate their technical limitations: 
their limited driving ranges and their long charging times. In the literature, the proposed E-VRP (or E-
VRPTW) models focus on energy consumption, charging technologies, capacity of the EVs, and location of 
charging stations. Most of these papers consider energy consumption in relation to the distance travelled 
[14, 15]. On the other hand, some of the papers assume that energy consumption is not constant and 
depends on many factors [20, 21]. The battery charging strategy is a crucial challenge to determine where, 
when, and how EVs will recharge. In the literature, authors assume either full or partial charging strategies. 
In the first strategy, the battery is fully recharged with a linear charging function when an EV visits a 
charging station [20, 22]. Battery swapping is also taken into account, in which case the charging time is a 
constant [14, 18, 23, 24]. For the partial charging strategy, the duration of the charging time is based on 
the battery levels when an EV arrives at a charging station and then leaves it. In other words, the battery 
level is defined as a decision variable. While most models propose a partial charging strategy with a linear 
charging function [19, 25-27], a partial charging strategy with a nonlinear function approximation was also 
recently considered [28].  
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1.2 Contribution of this article 

We combine two streams of research, one on EVRPTW and the other on HHCRSP, and introduce a new 
problem: the multi-period electric home healthcare routeing and scheduling problem with nonlinear 
charging (E-HHCRSP-NL). The aim of our study is to develop a mathematical model and a solution approach 
based on a hybrid evolutionary variable neighbourhood search algorithm (HE-VNS) for the E-HHCRSP-NL. 
The contributions of this article can be summarised as follows:  

 It develops a mathematical model of the multi-period problem. Nonlinear charging and a partial 
charging strategy are also integrated into the mixed integer programming (MIP) model we present.  

 We introduce a new set of instances for this new problem.  

 An effective HE-VNS is proposed to solve the problem. The proposed new algorithm involves the 
evolutionary process as opposed to the periodic HHC problems in the literature. Our algorithm is a 
novel approach, since there has not been any study that employs such an evolutionary VNS for solving 
any variant of the HHCRSP. The computational experiments indicate that the proposed approach can 
solve small instances optimally. A sensitivity analysis is also carried out to assess the impact of the 
number of charging stations and the effects of fleet mix. 

 
The remainder of this article is organised as follows. In Section 2, the MIP formulation is introduced in 
detail. Section 3 describes the HE-VNS algorithm to solve the problem. Section 4 provides computational 
experiments for the new benchmark instances. Finally, conclusions and a short summary of our work are 
given in Section 5. 

2 PROBLEM DESCRIPTION AND MODEL 

In this section we introduce the multi-period E-HHCRSP-NL, and then present a mathematical model 
formulation. 

2.1 Problem definition 

Let J be a set of nodes representing the jobs, N a set of EVs (i.e., nurses), F a set of charging stations, and 
(hk, h'k) nodes denoting the home location (depot) for EV k. While hk refers to the starting depot node for 
EV k, h'k means the ending depot node for the same vehicle. Let V be the union of J and F', which is a set 
of dummy charging stations denoting the multiple visits of F. The multi-period E-HHCRSP-NL is defined on 

a complete and directed graph  ,
,

k kh h
G V A

 , where  
kh k

V V h    and  
kh k

V V h
   . Let 

 ,
( , ) : , ,

k kh h
A i j i j V i j

    be a set of arcs connecting the nodes. In addition, let C be a set of clients, each 

of whom can be visited multiple times during a day. Thus let T be a set of days, and the requested jobs are 
scheduled considering the different types of client schemes. In other words, the service frequency is 
determined by every-day visits, twice-a-week visits, every-other-day visits, and once-a-week visits. For 
example, a client demands a specific job — e.g., checking blood pressure, insulin shot — and it is necessary 
to visit that client every day. Each daily visit is defined as a single job. Moreover, a daily request from a 
client generates seven visits during a week. Thus the parameter θig represents service requests. θig=1 if a 
job i is required on day g; otherwise, zero. 
 
The travel time between any two nodes i and j is represented by sij. Time windows are represented by

 [ , ]i i , and the service time of job i on day g is defined by dig. In order to perform various types of jobs, 

a certain order or coordination is needed. Multiple EVs should thus visit the same client at the same time. 
Therefore a set of synchronised jobs, P, is defined. In order to perform a job, an EV has an equal or higher 
qualification level. The hierarchical qualification levels are represented by EVs and jobs — q'k and qi — 
respectively. Similarly, the characteristics of EVs and jobs are represented by m'k and mi respectively. 
Gender, pet ownership and allergy, and smoking habits are defined as the characteristics that are 
considered while allocating the appropriate assignment. Loyalty, or the number of different EVs 
treating/visiting client l, is determined by the parameter δl. For each EV, a maximum of two consecutive 
work days is allowed, and the integer constant τk is used for this purpose.  
 
The charging function is concave [29-31], which can be approximated employing a piecewise linear function 
[28, 32]. Similar to Montoya, Guéret, Mendoza, and Villegas [28], we employ a similar function for the EVs, 
as represented in Figure 1. In this plot, parameters Ωiek and Ψiek refer to the charge level and the charging 
time for the break point e of charging station i for EV k, where B is the set of breakpoints of the piecewise 
linear approximation. The maximum energy capacity and the consumption rate of EV k are denoted as Yk 
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and rk respectively. The energy consumption of vehicles is related to the distance between any two nodes. 
It is assumed that vehicles start routeing with a fully charged battery. 
 

Time

Battery level

ψi0k

Ωi0k

ψi1k ψi2k ψi3k

Ωi1k

Ωi2k

Yk=Ωi3k

 

Figure 1: Piecewise linear approximation [28, 47] 

To formulate the E-HHCRSP-NL, we introduce the following decision variables. Let xijng be equal to 1 if EV 
k moves directly from node i to node j on day g, and 0 otherwise. Let λlkg be equal to 1 if EV k visits client 
l on day g, and 0 otherwise. Let µkg be equal to 1 if EV k works on day g, and 0 otherwise. Let ting be the 
scheduling variable indicating the starting time at node i on route k on day g. The non-negative variables 
yikg and zikg track the battery level of EV k at node i on day g, and the battery level when EV k departs from 
charging station i on day g respectively. Let Δikg be the time spent at charging station i of EV k on day g. 
The charge duration Δikg depends on the remaining battery level and the length of staying time at the 
charging station. Thus the non-negative variables Фikg and Гikg are defined to calculate Δikg. While variable 
Фikg is the battery charging time when EV k departs from charging station i on day g, Гikg is the battery 
charging time when EV k arrives at charging station i on day g. Variables σiekg and ξiekg are the coefficient 
of the break point e in the piecewise linear approximation, when EV k arrives at and departs from the 
station i on day g. Finally, let ςiekg and wiekg be 1 if the charge level of EV k is between Ωie,k-1 and Ωiek, when 
EV k arrives at and departs from station i on day g. The notations used in the following mathematical model 
are summarised in Table 1. 

Table 1: Notations of the model 

Notation Definition 

Indices and 
sets 

 

C Set of clients 
J Set of jobs 
N Set of EVs 
P Set of synchronised jobs 
T Set of days 
B Set of breakpoints of the piecewise linear approximation  
F Set of charging stations 
F' Set of dummy charging stations denoting the multiple visits of F 

V J F    Set of nodes including the jobs and dummy charging stations 

 
k kh

hV V    Set of nodes including the home location (starting node) of EV k 

 
kh k

hV V
    Set of nodes including the home location (ending node) of EV k 

  
Parameters  

hk, h'k Home locations (start and end depot nodes) of EV k  
αi, βi The time window (lower and upper bound) for node i 
dig Service-time at node i on day g  
sij Travel time between node i and node j  
rk Energy consumption rate of EV k  
Yk Maximum energy capacity of EV k 
q'k, qi Qualification level of EV k and job i, respectively 
m'k, mi Characteristics of EV k and job i, respectively 
θig Frequency of visit, 1 if job i is requested on day g; otherwise, zero. 
δl The loyalty for client l 
τk Integer constant, maximum two consecutive working days for EV k 
Ωiek Charge level for the break point of charging station i for EV k 
Ψiek Charging time for the break point of charging station i for EV k 
M Big integer number 
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Notation Definition 

Variables  

xijng 
Binary routing variable that equals 1 if EV k travels between two nodes i and j on day g, and otherwise 
0. 

λlkg Binary decision variable, 1 if EV k visits client l on day g; otherwise 0.  
µkg Binary decision variable, 1 if EV k works on day g; otherwise 0. 
ting Scheduling variable, represents starting time at node i on route k on day g  
yikg Battery level of EV k in visit i on day g 
zikg Battery level when EV k departs from charging station i on day g 
Δikg Time spent at charging station i of EV k on day g 
Фikg Battery charging time when EV k departs from and arrives at charging station i on day g 
Гikg Battery charging time when EV k arrives at charging station i on day g 

σiekg 
The coefficient of the break point e in the piecewise linear approximation when EV k arrives at station 
i on day g 

ξiekg 
The coefficient of the break point e in the piecewise linear approximation when EV k departs from 
station i on day g 

ςiekg 
Binary variable, 1 if the charge level of EV k is between Ωie,k-1 and Ωiek   {0}k B  when EV k arrives at 

station i on day g 

wiekg 
Binary variable, 1 if the charge level of EV k is between Ωie,k-1 and Ωiek   {0}k B  when EV k departs 

from station i on day g 

2.2 Example 

A numerical example of the medium-term E-HHCRSP-NL is shown in Figure 2, which represents a solution 
to an instance with 10 jobs (a synchronous job), three EVs (two different types), and two stations. While 
the squares represent the homes, the circles are jobs and stations. Routeing and charging decisions are 
illustrated in this example. Each line shows different days. The starting and ending node of each route is 
the same depot (home location). In order to perform synchronous Job 2, EVs 1 and 2 start simultaneously. 
Four types of client schemes are defined as the visiting patterns or healthcare service frequency. These 
are as follows: every-day visits (i.e., Job 1), every-other-day visits (i.e., Job 6), twice-a-week visits (i.e., 
Job 2), and once-a-week visits (i.e., Job 3). As stated before, an EV is not allowed to work more than two 
consecutive days. For instance, EV 1 works on Days 1-2, and after two work days, EV 1 has to rest. 
Considering that Job 1 is requested by Client 1, this job is performed by three different EVs, and the loyalty 
is calculated as 2 for Client 1 throughout the planning horizon. The battery states of the vehicles are 
represented as the percentage values. On Day 1, Jobs 1, 2, and 4 are assigned to EV 1 (type 1). EV 1 arrives 
at the charging station with a 25 per cent charge level and leaves from the station with an 85 per cent 
partially charged battery. The charging function is presented in Figure 3; it maps the battery levels z111 and 
y111 to the charging times Г111 and Ф111 to compute the charge duration Δ111 (=Г111-Ф111) from the piecewise 
linear charging function. On Day 1, EV 2 does not need to visit any station. On Day 3, EV 2 departs from 
Station 2 with a fully charged battery. The same vehicle visits Station 2 twice during its route. In other 
words, an EV can visit a station multiple times. 
The MIP model follows: 
 

 

    

 . 
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Figure 2: An example of a feasible solution 
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Figure 3: Computation of the charging duration 
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Objective function (1) seeks to minimise the total travel time. Constraint (2) ensures that each job is taken 
care of on the predetermined days. Constraint (3) means that a charging station does not need to be a part 
of a solution. The flow conservation is guaranteed by constraint (4). The hierarchical qualification levels 
are defined for the EVs (nurses), and jobs 1 to 5 are taken into account by employing constraint (5). In 
order to perform a job, each EV has an equal or higher qualification level. Constraint (6) considers the 
number of different EVs visiting client l during the planning horizon. The loyalty is bounded by constraint 
(7). The characteristics of the EVs and the job specifications are considered by constraints (8). The working 
days of EVs are computed by constraint (9). Each EV is allowed to work no more than a maximum of two 
consecutive working days (constraint 10), in which case the next day is defined as off-duty. All nodes should 
be visited within the predetermined time window (constraint 11). The starting times at nodes are 
considered via constraints (12) and (13). Constraint (14) guarantees that two different EVs start synchronous 
jobs simultaneously. The state of charge is tracked by constraints (15) and (16). Constraint (17) states that 
the battery charge level of EVs cannot exceed the maximum battery capacity when departing from the 
charging station. It is obvious that the charging time is based on the energy (charge) level, which is defined 
by a piecewise linear approximation. When an EV arrives at a charging station, constraints (18) to (24) 
consider the charge level and charging time; and when it departs from the station, constraints (25) to (31) 
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determine the charging level and time. The duration of charging is defined by constraint (32). Constraints 
(33) to (36) set the domains of the decision variables. Finally, (37) and (38) are non-negativity constraints. 

3 DESCRIPTION OF THE HYBRID EVOLUTIONARY VARIABLE NEIGHBOURHOOD SEARCH ALGORITHM 

This section presents a detailed description of our hybrid evolutionary variable neighbourhood search 
algorithm, called HE-VNS, for the periodic HHCRSP-NL. The VNS algorithm was first proposed by Mladenović 
and Hansen [33], and is widely used as a local search methodology due to its simplicity, efficiency, 
robustness, and user-friendliness. Other successful applications have also been found in scheduling [34] and 
vehicle routeing [35-40]. The principle of a systematic change of neighbourhood is the backbone of the VNS 
algorithm, which is used not only to find a local optimum, but also to escape from being stuck in the valleys 
that involve local minima [41]. While the local search corresponds to the deterministic phase, escaping 
from the local minima refers to the stochastic phase [33]. The solution quality of the VNS algorithm is based 
on a single solution, which is a drawback because it restricts the exploration of a larger search space. On 
the other hand, the HE-VNS algorithm presented in this paper searches in a given population of potential 
solutions — as in the population-based meta-heuristics. In other words, our algorithm enhances the VNS by 
means of an evolutionary strategy [42, 43]. In this way, the HE-VNS explores a population of candidate 
solutions. Here, VNS is initialised by different solutions at each iteration, leading to a higher diversification 
power, in contrast with the classical VNS. Furthermore, the variable neighbourhood descent (VND) is 
integrated into the proposed algorithm. The VND is the deterministic version of VNS, and the neighbourhood 
structure is ordered to obtain a nested strategy. 
 
The structure of the HE-VNS is represented in the algorithm. The initial population of potential solutions is 
generated in line 1. The fitness of each solution in the population is calculated, and the solutions are sorted 
in an ascending order according to their fitness (line 2). Once solutions have had their fitness evaluated, 
they are selected through a roulette-wheel selection (RWS) method to form the next generation in the 
evolution cycle (line 4). A partially mapped crossover (PMX) operator creates new offspring from the 
selected two parents (line 5). Each new created offspring is sent to intensification (line 7). After this 
procedure, each of the offspring is evaluated for its charging condition (line 8). This procedure is integrated 
to eliminate infeasibility resulting from either insufficient or excessive charging conditions. The fitness of 
each offspring is calculated in line 9. If the new solutions provide improvements, then they are accepted 
and inserted into the population. This replacement is carried out in line 10. During this process, infeasible 
solutions are also accepted as in line 1. When the number of iterations without improvement is met, the 
process is terminated. The population is sorted, and the current best solution is selected (line 12) and sent 
to the VND algorithm (line 13). While the VNS algorithm runs fewer iterations to eliminate premature 
convergence, the VND focuses not only on intensification, but also on infeasibility.  
 

Algorithm : The HE-VNS algorithm 

1: Generate a population using a construction heuristic 
2: Calculate the fitness of each solution and sort them in ascending order  
3: while (until the stopping criteria is met) do 
4:            Select two solutions from a population using the RWS mechanism 
5:            Apply crossover and form two new solutions using PMX 
6:            For each solution 
7:                       Perform the VNS  
8:                       Evaluate the charging condition  
9:            Calculate the fitness 

10: 
           Replacement, if the new solution provides improvement, then accept and insert 
           in the population 

11: end while 
12: Sort population in an ascending order and select the current best solution xbest 
13: Apply the VND algorithm 
14: Return best solution xbest 

 
In order to generate an initial population, we consider a three-stage initialisation procedure. While the 
first stage considers the routeing decisions, the scheduling is considered in the second stage. The 
infeasibility is penalised in the last stage. Inıtially, the requested jobs are classified into days — that is, the 
number of jobs to be performed daily is determined. The algorithm assigns the requested jobs to the EVs 
randomly. Scheduling variables are then determined. Time windows and work day limitations (i.e., a 
maximum of two consecutive days) are also considered in this step. Finally, the violation of constraints is 
penalised in the last stage. A solution does not necessarily satisfy constraints such as qualifications, time 
windows, and battery capacity; these violations are converted into a penalty cost [18].  
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Crossover is carried out between two selected solutions by exchanging the subparts of their chromosomes 
to yield a new generation. This procedure is a crucial component of the evolutionary algorithm, because it 
aids in transferring the information from the parent to create a new generation. We employ a PMX [42] 
that operates as follows. First, two random crossover points are selected. Then the subparts between these 
points are exchanged, and the remaining parts are replaced with partial mapping.  
 
The shaking phase is the stochastic component of the VNS algorithm. When there is no improvement in the 
objective, a new solution is randomly generated in a given neighbourhood. A swap operator is used in this 
phase. A pair of nodes within a single route is exchanged without considering the objective. In order to 
improve the quality of the solutions, a local search technique is applied. The search operation is achieved 
by two operators whose order of neighbourhood is crucial in the VNS and VND, and they are ordered 
according to the size of the neighbourhood [41]. By means of the swap operator, the two randomly chosen 
nodes are first selected and then exchanged. A relocation operator selects one position and one node 
randomly, then the chosen node is moved to position. The randomly selected node can be a job, a depot, 
or a station; it is thus not necessary to define different types of operators for single-route or multi-route 
improvement. 
 
In order to satisfy the charging constraint, we employ an integrated operator that involves a station 
insertion and removal neighbourhood structure. When a negative battery state is observed, the nearest 
station is inserted into the route to eliminate the violation of this constraint. Similarly, a station is removed 
from the route if there is no need to visit a station with a high or full battery level. This operator also 
determines the necessary duration of recharge at the station for each EV by calculating the battery level 
at the arrival depot. The charging condition is evaluated after applying the VNS (line 8), and within the 
VND algorithm (line 13). 
 
This algorithm can tackle infeasible solutions during the search. As mentioned before, a penalty cost is 
calculated for each solution, thus guiding the search through both feasible and infeasible regions. Once any 
constraint is satisfied or violated, a penalty factor based on the number of iterations is updated. 

4 COMPUTATIONAL EXPERIMENTS 

In this section we present the computational results of the algorithm for solving a set of newly generated 
benchmarking instances. The algorithm is run on a PC with Intel Core i7-3770K, 3.5 GHz, 16GB RAM. The 
mathematical model presented in Section 2 is solved using CPLEX 12.8. 

4.1 Data and experimental setting 

In order to test the algorithm, a set of new test instances is generated, since there are no existing 
benchmarking instances for the E-HHCRSP-NL. We extend the instances from the single-period HHCRSP work 
of Hiermann, Prandtstetter, Rendl, Puchinger and Raidl [44] and Erdem and Bulkan [45] to generate a series 
of small- and large-scale instances from them to maintain the same ratio of the given features (time 
windows, the characteristics of clients and nurses, the qualification levels of EVs, job specifications). Table 
A.1 in the Appendix represents the small- and large-scale instances generated. Five per cent of all jobs is 
considered synchronous, and is integrated into each of the generated instances. The depots, clients, and 
stations are distributed in an area of 400 km2 around Vienna. The distance between any two locations is 
defined as a time unit, which equals five minutes. The ranges of EVs are regarded as 130 km and 180 km 
respectively [46]. In the same way as in the literature, here the energy consumption rate is multiplied by 
the distance between any two locations. As mentioned earlier, the piecewise linear function is fitted as 
the charging function similar to the work of Montoya, Guéret, Mendoza and Villegas [28] and Uhrig, Weiß, 
Suriyah and Leibfried [47]. It takes four and five hours to fully charge type 1 and type 2 EVs respectively. 
The service times are uniformly distributed in Grand View Research [1] and Bruglieri, Colorni and Luè [30], 
which are equal to the numbers between the interval of 5 and 150 minutes’. The frequency of visits is also 
generated randomly from the four types of client schemes — every-day visits, twice-a-week visits, every-
other-day visits, and once-a-week visits — and are generated randomly while keeping the ratios of 40 per 
cent, 20 per cent, 20 per cent, and 20 per cent respectively. Finally, the loyalty parameter is determined 
as 2 in the 1-8 instances, 3 in the 9-16 instances, and 4 in the remaining instances. In order to tune the 
parameters, a series of computations is carried out; the selected parameters are shown in Table 2. 
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 Table 2: Parameters used in the algorithm 

4.2 Computational results 

The computational experiments are first conducted to assess the performance of the HE-VNS algorithm. 
The small-scale instances with up to 10 EVs and 111 visits are solved with both the HE-VNS and CPLEX. 
Table 3 presents the comparison results given by the HE-VNS and CPLEX. Here, for CPLEX, the name, the 
solution (Obj), and the run-time in seconds are reported. For the HE-VNS, the best solution (Best), the 
percentage deviation from CPLEX solution Dev (%), the average results of ten runs (Avg), and the run-time 
are shown. Finally, the averages of the solutions and of the run-times are given at the end of the table. 
The first eight instances and instance 14 could be solved optimally. It is obvious that the first eight instances 
involve fewer EVs and jobs. The optimal solutions are thus found in less than five minutes. Instances 21, 
23, and 24 could not be solved, and no feasible solutions were generated. The rest of the instances are 
shown in the third column, with an asterisk denoting that the instance was not solved optimally within one 
hour. Concerning the solution quality, the proposed algorithm was able to solve the small-scale instances 
optimally. The average of the best results of the HE-VNS is calculated as 210.1 seconds, with an average 
computational time of 267.5 seconds. 

Table 3: Results for the small EHHCRSP-NL instances 

Small 
instance 

CPLEX HE-VNS 

Obj t[s] Best Dev % Avg t[s] 

1 262.0 < 60 262.0 0.00% 262.0 205 
2 197.0 < 60 197.0 0.00% 197.3 217 
3 203.0 < 60 203.0 0.00% 203.0 231 
4 211.0 < 60 211.0 0.00% 212.0 193 
5 282.0 147 282.0 0.00% 282.0 199 
6 242.0 < 60 242.0 0.00% 242.0 195 
7 283.0 < 60 283.0 0.00% 283.0 185 
8 233.0 332 233.0 0.00% 233.0 237 
9 218.0 3600* 215.0 -1.38% 215.0 253 
10 207.0 3600* 194.5 -6.04% 195.8 241 
11 164.0 3600* 163.2 -0.49% 164.0 274 
12 162.0 3600* 154.4 -4.69% 157.0 284 
13 187.0 3600* 184.5 -1.34% 185.7 274 
14 155.0 2677 155.0 0.00% 155.0 261 
15 187.0 3600* 184.0 -1.60% 185.0 260 
16 188.0 3600* 174.0 -7.45% 175.8 257 
17 261.0 3600* 249.0 -4.60% 250.4 318 
18 173.0 3600* 169.0 -2.31% 169.0 326 
19 187.0 3600* 175.5 -6.15% 177.9 336 
20 208.0 3600* 205.0 -1.44% 205.0 291 
21 - 3600* 226.0  228.2 348 
22 281.0 3600* 235.4 -16.23% 237.0 351 
23 - 3600* 221.0  223.1 342 
24 - 3600* 224.0  225.5 342 

Average   210.1  211.0 267.5 

 
Other experiments were carried out on the large-scale instances, with up to 50 EVs and 546 visits to 
evaluate the performance of the algorithm. However, the large-scale instances could not be solved by 
CPLEX. For each instance, Table 4 contains the best solution, the average solution, and the run-time for 
ten runs. The last row indicates the average of the best results and the average solutions. The average of 
the best results in this approach is calculated as 283.5 seconds, with an average computational time of 
427.8 seconds. For the run-times, the HE-VNS yields solutions in a reasonable time. 
 

 

Parameter Best value 

Number of iterations of evolutionary algorithm 20000 
Number of iterations of VNS No improvement of the incumbent solution after 10 iterations 
Number of iterations of VND 5000 
Number of iterations of shaking phase 5 
Initial population 100 
Crossover rate 0.8 
Big integer number (M) 1000 
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Table 4: Results for the large EHHCRSP-NL instances 

Large 
instance 

CPLEX HE-VNS 

Obj t[s] Best Dev % Avg t[s] 

25 - 3600 230.0  231.0 330 
26 - 3600 215.0  220.2 343 
27 - 3600 226.0  226.0 308 
28 - 3600 214.0  217.5 316 
29 - 3600 249.0  253.2 397 
30 - 3600 258.0  259.0 380 
31 - 3600 261.0  265.5 406 
32 - 3600 251.0  251.0 372 
33 - 3600 288.0  292.2 404 
34 - 3600 278.0  278.0 369 
35 - 3600 285.0  288.5 382 
36 - 3600 282.0  283.0 371 
37 - 3600 287.0  288.0 448 
38 - 3600 313.0  317.2 420 
39 - 3600 283.0  290.7 465 
40 - 3600 310.0  311.0 422 
41 - 3600 313.0  318.4 478 
42 - 3600 317.0  317.5 474 
43 - 3600 300.0  308.7 477 
44 - 3600 317.0  317.0 496 
45 - 3600 328.0  332.2 538 
46 - 3600 335.0  335.0 555 
47 - 3600 327.0  334.7 558 
48 - 3600 336.0  337.0 557 

Average   283.5  286.4 427.8 

4.3 Sensitivity analysis 

In this section, the set of EV types is decreased to a single type in order to analyse the effect of fleet mix 
with different EVs. Table 5 indicates the best and average results over ten runs for each EV type. While the 
second column represents the best results for type 1 EVs, the seventh column refers to the best results for 
type 2 EVs. The third and sixth present the average objective values. When Table 5 is investigated further, 
it is observed that employing type 2 EVs provides improvements on average. In other words, the solutions 
with type 2 EVs are not only good as an objective value, but also result in a lower run-time. Since the range 
and the recharge duration of the EVs are considered in the proposed model, the EV type with a greater 
range or more battery capacity contributes more to the results. 
 
The impact of the number of charging stations on the solutions is also investigated on randomly selected 
instances. For each instance, the number of stations is predetermined and fixed. Here the number of 
stations is changed (both increased and decreased). The best solutions and the average results are 
presented in Table 6. When it is investigated further, the results of instance 5 show greater improvement 
than the rest. As the number of stations increases, the quality of solutions initially gets slightly worse, but 
then improves on average. In general, when the number of stations increases, the solution improves, as 
expected. However, in terms of best solutions, on average the vehicles usually stop at the charging station 
less than once. Hiermann et al. [22] concluded that this is due to the use of a fleet mix. In other words, in 
good solutions, the EVs with more battery capacity or a higher range do not need to visit the charging 
station. 
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Table 5: Results for a single EV type 

Small 
instance 

Type 1 Type 2 

Best Avg t[s] Best Avg t[s] 

1 275 275.1 240 262 262.6 181 
2 206 206.1 300 186 186.4 200 
3 211 211.5 310 197 198.0 193 
4 221 222.2 268 207 207.9 185 
5 284 285.4 260 282 276.7 198 
6 245 246.4 288 242 242.4 190 
7 293 293.4 313 283 284.0 188 
8 238 239.8 273 231 231.0 200 
9 217 218.4 295 218 218.6 192 
10 195 195.2 282 195 195.9 182 
11 163 163.8 276 164 164.4 189 
12 162 163.2 282 161 161.5 189 
13 186 186.2 342 191 192.8 228 
14 155 155.9 314 156 156.7 239 
15 185 188.6 314 186 186.9 227 
16 182 186.8 345 186 186.0 230 
17 262 267.5 394 278 279.4 297 
18 172 172.0 373 173 173.1 288 
19 187 187.5 382 188 188.7 287 
20 208 210.5 384 209 210.4 301 
21 225 229.1 425 225 225.8 301 
22 237 240.3 388 234 235.5 295 
23 224 225.4 400 220 225.4 290 
24 229 229.5 390 224 226.7 294 

Average 215.08 216.66 326.58 212.42 213.20 231.83 

Table 6: Results for different numbers of stations 

Small 
instance 

Number of stations 

Best Avg 

1 2 3 4 1 2 3 4 

1 262 274 274 274 262.0 274.0 274.0 274.5 

2 197 198 189 188 197.3 198.1 189.3 190.1 

3 203 214 225 209 203.0 214.0 225.4 212.4 

5 282 270 265 259 282.0 270.4 265.0 261.2 

6 242 243 243 243 242.0 243.4 243.2 243.3 

9 215 215 215 215 215.2 215.0 215.4 215.9 

10 194.5 194.5 194.5 195 195.9 195.8 196.2 196.6 

Average 227.93 229.79 229.36 226.14 228.20 230.10 229.79 227.71 

5 CONCLUSION 

This paper introduces a new home healthcare routeing and scheduling problem using EVs. The periodic E-
HHCRSP-NL considers routeing, scheduling, and charging decisions with nonlinear charging. The developed 
model aims to reduce the total travel time while considering a series of constraints, such as time windows, 
synchronisation, the characteristics of EVs (nurses), jobs specifications, competencies, loyalty, and working 
days. It is shown that transportation using EVs can help us to reduce the negative impacts of road 
transportation, thus taking into account the sustainability concept in this work. To solve the problem, we 
proposed a hybrid evolutionary variable neighbourhood search algorithm (HE-VNS). While diversification is 
achieved using an evolutionary strategy, intensification is carried out with the VNS/VND. Our proposed 
algorithm is able to search through both feasible and infeasible regions. Therefore, in small instances, the 
HE-VNS is able to yield optimal solutions. Our algorithm can also find good solutions in a reasonable amount 
of time. A sensitivity analysis is performed on the results to investigate both the effects on the number of 
charging stations and the effect of a fleet mix of different EVs. The results of our computational 
experiments indicate that the EVs with more battery capacity or a higher range do not need to visit the 
charging stations in good solutions. 
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APPENDIX A 

Table A.1: Features of benchmark instances 

Size Instance EVs Clients Jobs Visits Stations 

S
m

a
ll
 

1 2 5 8 34 1 
2 2 5 8 34 1 
3 2 5 8 31 1 
4 2 5 8 34 1 
5 3 6 10 43 1 
6 3 6 10 45 1 
7 3 6 10 49 1 
8 3 6 10 43 1 
9 5 8 15 60 2 
10 5 8 15 59 2 
11 5 8 15 60 2 
12 5 8 15 60 2 
13 6 10 20 79 2 
14 6 10 20 73 2 
15 6 10 20 79 3 
16 6 10 20 76 3 
17 8 12 25 91 3 
18 8 12 25 86 3 
19 8 12 25 88 3 
20 8 12 25 86 3 
21 10 15 30 111 4 
22 10 15 30 105 4 
23 10 15 30 111 4 
24 10 15 30 106 4 

L
a
rg

e
 

25 15 20 45 149 4 

26 15 20 45 146 4 

27 15 20 45 149 4 

28 15 20 45 149 4 

29 20 30 60 185 4 

30 20 30 60 181 4 

31 20 30 60 185 4 

32 20 30 60 179 4 

33 25 30 60 185 4 

34 25 30 60 182 4 

35 25 30 60 190 4 

36 25 30 60 185 4 

37 30 40 85 249 4 

38 30 40 85 254 4 

39 30 40 85 248 4 

40 30 40 85 254 4 

41 40 50 100 394 4 

42 40 50 100 390 4 

43 40 50 100 388 4 

44 40 50 100 397 4 

45 50 75 150 546 4 

46 50 75 150 544 4 

47 50 75 150 541 4 

48 50 75 150 546 4 

 
 
 


