
South African Journal of Industrial Engineering December 2017 Vol 28(4), pp 133-149 

133 

 

A TWO-STAGE SOLUTION APPROACH FOR THE LARGE-SCALE HOME HEALTHCARE ROUTEING 

AND SCHEDULING PROBLEM 

M. Erdem1,2 & S. Bulkan2 

 

ARTICLE INFO 

Article details 
Submitted by authors 31 Mar 2017 
Accepted for publication 25 Oct 2017 
Available online 13 Dec 2017 
 

 
Contact details 
* Corresponding author 
 mehmet.erdem@atilim.edu.tr 
 

 
Author affiliations 
1 Department of Industrial 

Engineering, Faculty of 
Engineering, Atılım University, 
Turkey 

 
2 Department of Industrial 

Engineering, Faculty of 
Engineering, Marmara University, 
Turkey 

 

 
DOI 
http://dx.doi.org/10.7166/28-4-1754 
 

ABSTRACT 

The purpose of this study is to introduce a two-stage solution 
approach for a large-scale home healthcare routeing and scheduling 
problem (HHCRSP). In the first part of the two-stage solution 
approach, a cluster-assign algorithm is employed, based on the 
home location and the time to obtain feasible clusters. In the 
second stage, using these clusters, route construction heuristics 
start to create schedules and routes, taking the side constraints of 
the model into consideration. Using the novelty of this two-stage 
solution approach, higher diversification is achieved with a series of 
newly-developed cross movement strategies. The computational 
results show that our solution approach offers certain advantages, 
such as an increase in the efficient use of human resources, and a 
decrease in the working time of nurses.  

OPSOMMING 

Die doel van hierdie studie is om ŉ tweeledige oplossingsbenadering 
vir grootskaalse tuissorg roetebeplanning en skedulering voor te stel 
vir gesondheidsorg. In die eerste deel van die benadering word ŉ 
groepering-algoritme, gebaseer op die ligging van die tuiste en die 
tyd om vatbare groepe te vorm, toegepas. Tydens die tweede stap 
van die benadering word die groepe gebruik saam met 
roetebeplanning-heuristiek om skedules en roetes te skep terwyl die 
randvoor-waardes van die model in ag geneem word. Die tweeledige 
benadering bewerkstellig hoër diversifikasie met ŉ reeks nuut 
ontwikkelde kruisbeweging strategieë. Die gesimuleerde resultate 
toon dat die voorgestelde oplossingsbenadering sekere voordele 
inhou, onder andere die ŉ verhoging in die effektiewe aanwending 
van menslikehulpbronne en ŉ afname in die werktyd van 
verpleegsters. 

 

1 INTRODUCTION 

Health can be briefly defined as the general physical, mental, and social conditions of being well 
and free from disease [1]. Although there are different and contradictory definitions of health in 
the literature [2, 3], the general importance of health cannot be ignored. Today, as the population 
gets older, there is an even greater demand for public healthcare. The World Health Organization 
(WHO) predicts that the allocation of human resources will be a crucial challenge for the healthcare 
industry in the next ten years as the population ages. Moreover, the growth rate in healthcare 
expenses exceeds that of the gross domestic product (GDP) in many countries; thus this issue is 
crucial for the financial sustainability of healthcare systems. In the US, healthcare spending was 
17.5 per cent of GDP ($3 trillion) [4] in 2014, and is predicted to reach 19.3 per cent of GDP (about 
$4.5 trillion) in 2019. In France, healthcare expenditure is expected to reach €70 billion in 2020 [5]. 
Many countries are thus looking for ways to improve their fiscal support of healthcare. Furthermore, 
with labour costs representing nearly half of a hospital’s operating costs, executives struggle to 
manage their healthcare workforce efficiently [6]. 
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The home healthcare routeing and scheduling problem (HHCRSP) comprises the aspects of two well-
known problems: routeing and rostering. The HHCRSP gives patients the opportunity to be nursed at 
home, which is preferable to visiting clinics or hospitals. Furthermore, home care increases the level 
of service quality and becomes more cost-efficient. On the other hand, designing schedules is 
difficult due to factors such as patients’ or nurses’ preferences, policies, time intervals, and travel 
time according to transportation modes [7]. 
 
In this paper, we attempt to address and solve this large-scale HHCRSP. The main motivation of this 
work is to develop a solution approach to be used to create appropriate solutions while taking all 
restrictions, preferences, regulations, etc. into consideration. Our two-stage solution approach is 
based on the ‘cluster first and schedule route second’ procedure. In the first stage, a cluster-assign 
procedure is developed, based on the two-step cluster (TSC) algorithm; and in the second stage, the 
variable neighbourhood descend (VND) algorithm with a series of newly developed strategies is 
implemented for systematic exploration. Moreover, it is free from a parameter selection/tuning 
phase; the proposed schedule-route construction heuristics do not necessarily cover all the jobs at 
the beginning of the second stage; and a series of newly developed cross movement neighbourhood 
structures provide for higher diversification for the large-scale HHCRSP. Synchronisation is also 
considered within the proposed model. A two-stage solution approach considers not only the 
preferences of the nurses and clients, but also those of the healthcare institutions. 
 
This paper is organised as follows. In Section 2, a literature review on the HHCRSP and, in Section 
3, the definition of the problem and the model are presented. The proposed solution approach 
appears in Section 4. The results of the large-scale HHCRSP and comparisons are reported in Section 
5. The paper is concluded and future research is discussed in the last section. 

2 LITERATURE REVIEW 

In this section we review some of the works that tackle the short-term HHCRSP. Cheng and Rich [8] 
present a mixed integer programming (MIP) model and heuristic approach to deal with the HHCRSP 
as a multiple vehicle routeing problem with time windows (VRPTW). Full-time and part-time home 
carers are distinguished, and the lunch break is also considered within the time windows. The 
authors consider minimising the cost of home carers as an objective. A two-step heuristic approach 
is proposed. In the first step, a randomised greedy heuristic finds an initial solution. During the next 
step, the solution is improved using a local search algorithm. The approach is tested using randomly-
generated small test examples (four home carers and 10 patients) and larger (up to 300 home carers 
and 900 patients). 
 
Eveborn, Flisberg and Rönnqvist [9] propose a decision support system (DSS) to solve daily schedules 
for an organisation in Sweden. They use a set-partitioning problem (SPP) model and improve it by 
using a repeated matching heuristic approach. The objective function consists of the cost related to 
the travelling time, and the constraints are time windows for visits or breaks for meals, and the 
competence level of the staff. Their model is evaluated with small test examples (21 home carers 
and 123 tasks). 
 
Bertels and Fahle [10] develop a model to minimise transportation costs while maximising the 
satisfaction level of home carers and patients. The patients’ preferences for certain visits, the 
working time limitations for home carers, and their competence level are considered as constraints. 
In order to solve single-day problem instances (20-50 nurses and 111-326 tasks), the authors apply a 
combination of exact approaches (linear programming (LP) and constraint programming (CP)) and 
metaheuristic approaches (simulated annealing (SA) and tabu search (TS)). The initial solutions are 
constructed by combining the exact methods, and then the metaheuristics start to improve the 
solutions. Akjiratikarl, Yenradee and Drake [11] present particle swarm optimisation (PSO) and local 
improvement procedures to solve five instances (12 nurses, 50 patients, and more than 100 visits). 
Bredström and Rönnqvist [12] introduce a mathematical programming model that employs additional 
synchronisation and precedence constraints. They apply a local branching heuristic approach to solve 
small to medium size test instances. 
 
Rasmussen, Justesen, Dohn and Larsen [13] model the HHCRSP as a SPP with additional constraints, 
and the problem is generalised as a VRPTW. The branch-and-price (BP) algorithm is proposed as an 
exact solution approach. The objective function consists of the total travelling cost, uncovered 
visits, and the preferences of the home carers. The constraints include time windows and a 
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generalised precedence employed to model the different types of temporal dependencies. In order 
to decrease the dimension of the problem and reduce the run time, a visit-based clustering 
arrangement is devised, depending on the preferences. However, the use of cluster analysis based 
on preferences is less effective than the geographical location-based clustering. 
 
Castillo-Salazar, Landa-Silva and Qu [14] introduce a literature survey of workforce rostering and 
routeing problems. They investigate the characteristics of problem-solution approaches. The authors 
propose a model that is based on the same model as in the work done by Bredström and Rönnqvist 
[12]. 
 
Trautsamwieser and Hirsch [15] propose a variable neighbourhood search (VNS) approach to 
optimising the daily scheduling of Austrian Red Cross (ARC) home carers. Their real-world examples 
cover urban areas (13 nurses, 140 clients, and 140 tasks) and suburban (75 nurses, 420 clients, and 
up to 512 tasks) areas. The objective is to minimise the travelling and waiting time, and to cover 
the preferences of clients and nurses. The constraints are working time and breaks. Their proposed 
method is able to solve small generated examples (four nurses and 20 tasks) optimally. Hiermann, 
Prandtstetter, Rendl, Puchinger and Raidl [7] present a multi-modal HHCRSP model (driving a car, 
using public transport) to allocate nurses to the clients of an Austrian HHC provider. Moreover, while 
Trautsamwieser and Hirsch [15] use time-dependent travelling time, Hiermann et al. [7] use 
stochastic travelling time estimations. In both of the mathematical models stated above, no 
synchronisation constraints exist. The objective of Hiermann et al. [7] is to minimise the deviation 
of different constraints; however, computational comparison with this work is a challenging issue 
[16]. As in the Trautsamwieser and Hirsch [15] work, Hiermann et al. [7] propose a two-step heuristic 
solution. Firstly, the initial solutions are generated randomly or via CP. Secondly, these generated 
solutions are improved by employing different heuristics such as VNS, memetic algorithm (MA), 
scatter search (SS), and simulated annealing hyper-heuristic (SAHH). In local search procedures, a 
VND is embedded in VNS, and the neighbourhood structure comprises three movements: swapping 
nurses, swapping jobs, and repositioning jobs. Moreover, the authors employ a dynamic 
neighbourhood change/reordering (in VND) based on the improvement of the objective function 
value.  
 
In a more recent study, Fikar and Hirsch [17] developed a solution procedure for daily schedules by 
using a dial-a-ride-problem (DARP). In this work, more flexibility is offered by walking to the clients’ 
homes. The objective is to minimise driving-working time; and the constraints are time windows, 
qualification level, interdependencies, and the capacity of vehicles. They offer a two-stage solution 
approach that is initialised by building a walking route using the SPP, and then optimising a 
generated solution via a TS heuristic. The proposed solution procedure is evaluated with a real-life 
set of data provided by the ARC. 
 
Only small instances (four nurses and 20 clients [15], nine nurses and 45 clients [18]) can be solved 
optimally; hence, to deal with larger instances, a heuristic approach is required in this framework. 
 
Our solution approach starts with the cluster-assign procedure based on time and location; this leads 
to improvements in the objectives, and does not sacrifice optimality — as happens with Rasmussen 
et al. [13]. To our knowledge, this procedure is the first in the field of HHC to consider the location 
of clients and nurses; more than ten different working time intervals; the preferred starting time of 
jobs; and the distance between a pair of clusters. Furthermore, within this procedure, the TSC 
algorithm can yield the number of clusters automatically. This makes our cluster-assign procedure 
free from parameter- tuning processes. Rasmussen et al. [13] developed a model in which each 
client demands one job. On the other hand, Hiermann et al. [7] define only the formulation of the 
problem. In our proposed multi-modal mathematical model, clients can demand more than one job 
with different competence levels, different durations, and different time intervals. Although the 
developed model does not involve the term ‘the number of nurses’, as mentioned before, the 
proposed approach covers both construction and improvement strategies to reduce the number of 
nurses. Instead of directly defining a term in the mathematical model, we tackle this issue by using 
a series of newly-developed neighbourhood strategies. 
 
The proposed solution approach has the following differences from, or improvements on, the work 
of Hiermann et al. [7]: 
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 The first stage of our proposed solution approach starts with a clustering algorithm, and then 
the assignment is carried out by considering the location, time intervals, and travelling 
distance. 

 At the beginning of the second stage, we generate the initial solutions by using three different 
construction strategies: deterministic, random, and semi-random. Construction strategies do 
not necessarily cover all the jobs. 

 A series of newly-developed neighbourhood strategies proposes a higher diversification ability, 
while the work of Hiermann et al.  [7] only employs three neighbourhood strategies. 

 We employ the VND algorithm, which has two parameters: the order of neighbourhood 
structure, and the maximum number of iterations in the second stage. However, Hiermann et 
al. [7] used different heuristics that have more than two parameters, making it necessary to 
apply parameter tuning processes that result in increasing the run time. 

 Synchronisation is also considered in our proposed model. 

 We focus on large-scale problems in the field of HHC. 

 Although Hiermann et al. [7] defined the time windows as soft constraints, in our case a nurse 
is not allowed to start a job before the time window, and must start a job within the time 
window. 

3 PROBLEM FORMULATION 

In this section, a mathematical model and its components representing the HHCRSP will be 
formulated. The notations for the mathematical model are summarised in Table 1.  

Table 1: Notation of the model 

Notation Definition 

Sets  

J={1,…,J} Set of jobs 

N={1,…,N} Set of nurses 

JAn=J ⋃ {sln,eln} Set of all possible jobs for the nurse n 

P Set of synchronised jobs 

Parameters  

sln,eln Artificial jobs represent starting and ending locations of nurse n 

nan, nbn Starting and ending working time of nurse n 

jai, jbi Starting and ending time of job i 

pti Preferred starting time of the job i  

sijn Nurse n’s travelling time from job i to job j by using her/his car 

s'ijn 
Nurse n’s travelling time from job i to job j by using public 
transportation 

di Duration of job i 

jqi, nqn Competence level of job i and nurse n, respectively 

nrn Characteristics of nurse n 

jri Characteristics of job i (for each client) 

TRn The mode of transportation of nurse n 

M Big number 

Variables  

cijn 
Nurse n’s time costs travelling from job i to job j including the 
duration of job i and idle time  

xijn 
Binary decision variable, 1 if nurse n moves to job j after carrying out 
job i; 0 otherwise 

uxi Binary decision variable, 1 if a job is uncovered; 0 otherwise 

tin Nurse n’s starting time of the job i  

on Overtime work of a nurse n 

tn Nurse n’s completion time of the last assigned job 

zi The deviation time from the preferred starting time of the job i 

vin Nurse n’s arriving time to the job i  

ein Nurse n’s idle time of the job i  

yij 
Binary decision variable, 1 if synchronised jobs (i,j) are uncovered; 0 
otherwise 
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The set of nurses and jobs are denoted by  1,...,N N  and  1,...,J J respectively. JAn is the 

set of all possible jobs for the nurse n. In order to perform some of the jobs, proper coordination 
may be required. Hence, P is defined as the set of synchronised jobs. The home location of nurses 
is the starting and ending point of their routes. Thus we introduce two artificial jobs for each nurse. 
These artificial jobs are {sln, eln}, which represent the starting and ending home locations of nurse 

n. The working time interval of each nurse is defined by the working time window [ , ]n nna nb , where 

nurses cannot begin jobs before nai and should finish the assigned job(s) before nbi. If any nurse 
starts the service before the end of working hours, s/he can continue to work. The clients may 

demand more than one job represented in the set. For each job i J , a time window is defined by 

[ , ]i ija jb , where jai and jbi correspond to the starting and ending time of the job i respectively. In 

addition, for each job i, the preferred starting time [ , ]i i ipt ja jb  and the duration (service time) 

of the job di are determined. The time window of the artificial jobs equals the working time windows 

[ , ] [ , ] [ , ]
n n n nsl sl el el n nna nb na nb na nb  , and the duration and preferred starting time of the artificial 

jobs are set at zero. 
 
The travelling time between two jobs is based on the parameters of either sijn (car) or s’ijn (public 
transport). Moreover, the travelling time between job sln and job j and the travelling time between 
job j and job eln are defined as zero for the nurse set. The mode of transportation (car or public 
transport) of each nurse n is defined by TRn. If any nurse prefers to use public transport, then TRn is 
one; otherwise, it becomes zero. Each nurse must use her/his own modality, and there is no switch 
while travelling between jobs. There are five different competence levels, defined from one to five, 
representing the qualifications of the nurses (nqn). In order to perform a job, it is necessary to satisfy 
the required level of competence. Nurses can only carry out a job as long as they have a higher or 
equal level. Furthermore, nurses and clients have some features such as gender, smoking habits, 
and pet ownership. These features must be considered when creating schedules.  
 
The time cost (cijn) consists of travelling time (sijn or s’ijn) based on the transportation mode; the 
duration of job i (di); and idle time (ein) of nurse n if s/he arrives before jai. For the mathematical 

model, the following decision variables are defined: the binary routeing variables   0,1ijnx ; the 

binary coverage variables  0,1iux  ; and the scheduling variables int , 
n

t , and 
n

o . If nurse n travels 

to job j after handling job i, a binary variable ijnx  is one; otherwise it is zero. The binary coverage 

variable is one if job i is uncovered within the solution; otherwise it is zero. The scheduling variable 

int  is nurse n’s starting time for job i. vin is defined as nurse n’s arriving time for job i. Nurse n’s 

completion time of the last assigned job and her/his overtime work are denoted as 
n

t , and 
n

o  

respectively. 
 
The general formulation of the HHCSRP is equal to the uncapacitated multi-depot VRPTW [12]. Some 
of the modifications that cover the topics, such as synchronisation, uncovered visits [13], 
multimodality, and preferences [7], are added to our proposed model. 
 
The objective function is to minimise the total time costs, uncovered visits, overtime work, and 
deviation from the preferred time of the job (constraint (1)). The objective function terms are 
prioritised by assigning time weights (w1 and w2), which are J (the number of jobs) and J/2 
respectively. Constraint (2) means that visits are either covered or left unassigned; and similarly 
constraints (3) and (4) are defined to calculate uncovered synchronised visit constraints (M is 
considered a big number). Nurses can only perform the job if the competence level is satisfied by 
constraint (5). Constraints (6) and (7) ensure that the nurses start and finish their jobs from their 
own home. Constraint (8) is introduced to maintain the flow. The time windows must be respected 
(constraints (9) and (10)), and travelling times are considered via constraint (11). The 
synchronisation is introduced by constraint (12). Constraint (13) guarantees that a synchronised job 
can be performed by different nurses. The overtime work of the nurses is calculated via constraint 
(14). Constraint (15) ensures the characteristics of nurse-client match. Constraints (16) and (17) 
express a piecewise linear function of the deviation from the starting time of the activity. Constraint 
(18) determines the arriving times of nurses according to the starting time of the previous jobs, the 
travelling times based on the transportation mode, and the duration of the jobs. The idle times of 
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nurses are computed via constraints (19) and (20). Similarly, time cost (constraint (21)) is defined 
as the summation of durations, the travelling times based on transportation mode, and idle times. 
Constraint (22) is a non-negativity constraint. Constraints (23) to (27) set the domains of the decision 
variables.  
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    0                                             ,ine n N i J  (20) 

       ' (1 ) +     , ,ijn i ijn n ijn n inc d s TR s TR e n N i j J  (21) 

  0                                             no n N  (22) 

     0,1                                       ,  ,ijnx n N i j JA  (23) 

   u 0,1                                        ix i JA  (24) 

{0,1}                                        ( , )ijy i j PÎ " Î  (25) 

    ,                                          ,  n int t i JA n NN  (26) 

                                              iz i JAÎ " Î¡  (27) 

4 SOLUTION APPROACH  

In order to deal with the large-scale HHCRSP, a two-stage solution approach is developed, based on 
the ‘cluster-first route-second’ approach (Figure 1). Each component of the framework will be 
presented in this section in turn. 
 

 

Figure 1: A two-stage solution approach 

4.1 The cluster-assign procedure (Stage 1) 

‘Cluster analysis’ or ‘clustering’ is the process of grouping a given set of data into classes. The aim 
of this process is to consider similar items within the same group and those that are dissimilar to 
the ones in the other groups [19]. It can also be used to decrease the size of the problem. In our 
case, the cluster-assign procedure is developed for this perspective.  
 

 Apply the two-step cluster (TSC) algorithm depending on the geospatial data, and construct 
the clusters for the nurse (cnurse) and job (cjob) sets automatically. 

 Calculate the minimum number of cluster sets (min {cnurse, cjob}) and re-construct the maximum 
number of cluster sets for the equalisation of each cluster (cnurse=cjob) via TSC. 

 Compute the appropriate time interval between the clusters of jobs and the clusters of nurses, 
considering the average working time interval (for the clusters of nurses) and the average 
preferred time (for the clusters of jobs). 

 Compute the travelling time between each cluster. 

 Assign the clusters of jobs to the clusters of nurses for an appropriate time interval and 
travelling time. 

4.1.1 Two-step cluster analysis 

In the proposed solution approach, TSC analysis is chosen to identify groups of homes in a city 
according to location. TSC was proposed by Chiu, Fang, Chen, Wang and Jeris [20] as a method that 
can be handled with large-scale data, and without considering categorical and continuous variables. 
Furthermore, one of the benefits of the TSC is to assign the number of clusters automatically. The 
TSC algorithm consists of two steps: pre-clustering and clustering. In the first step, each case of the 
data set is scanned, and then a decision is made about whether the case is to merge with the 
previously created clusters, or whether to construct a new cluster based on the distance criterion. 
In this step, the cluster feature (CF) tree is constructed to hold the summary statistics of the pre-
clusters. This also helps to identify the pre-clusters. One of the advantages of the first step is to 
reduce the dimension of the initial data by constructing a new data matrix that has fewer cases [20, 
21]. In the second step of the algorithm, each pre-cluster is considered as an entity, and an 
agglomerative hierarchical clustering method is applied to the pre-clusters. This method uses a 
bottom-up strategy, and begins with each of the sub-clusters obtained in the first step. The 

Stage 1: Cluster-assign Stage 2: Schedule-route

Nurses Clients Clusters Initial solution Improved solution
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algorithm then merges the two closest clusters into a single cluster until all clusters are members 
of the same cluster [22]. The number of clusters is automatically determined in the second step by 
considering the lowest Bayesian information criterion (BIC) and the highest ratio of distance measure 
[20, 21]. After creating the cluster, the next step is to generate the schedules via a metaheuristic 
approach. 

4.2 The schedule-route procedure (Stage 2) 

The next stage is the generation of the initial solution. Improving the obtained solution will be 
discussed later (Figure 1). 

4.2.1 Variable neighbourhood search  

A VNS is a metaheuristic approach developed by Mladenovic and Hansen [23]. VNS is based on the 
concept of systematic neighbourhood change that is proposed not only to find a local minimum, but 
also to avoid being stuck in the area of local minima. VNS advances by using a descent method to 
reach a local minimum. VND [24] is a version of the VNS method that is employed for improvement. 
The difference between VNS and VND is the deterministic neighbourhood change: VND does not 
cover the shaking step, whereas the basic VNS method does. The general scheme of VNS offers 
simplicity, robustness, and user-friendliness [24]. VND has two parts: the generation of the initial 
schedule, and the neighbourhood structure, as explained below. 
 
i. Generation of initial schedule  
Our solution approach starts with an heuristic that selects jobs in some of the predetermined orders 
until a solution has been obtained. Jobs are assigned to nurses (routes) based on some criteria by 
satisfying a set of constraints such as time windows, competence level, etc. [25]. The proposed 
construction heuristics do not necessarily cover all the jobs at the beginning. 
 
In order to generate an initial schedule, three different approaches are developed in the proposed 
method. Construction strategy (CS) 1 starts with the smallest index-employee and tries to assign the 
smallest index-job to this employee if the set of constraints is satisfied. It can be said that CS 1 
generates solutions deterministically. CS 2 is the second strategy, and randomly assigns selected 
jobs to randomly selected nurses. In this way, it can be viewed as a random-solution generation 
heuristic. The last strategy is CS 3, which can be considered a hybrid of the first two strategies. It 
starts with the smallest index-nurse and assigns randomly selected jobs to it. 
 
ii. Neighbourhood structures  
Different neighbourhood structures are developed to improve the solution constructed in the 
initialisation phase. These can be classified into three groups: cross, vertical, and horizontal, 
according to the structure of the HHCRSP (Figure 2). The neighbourhoods are ordered from the 
smallest to the largest, based on the number of the neighbourhoods [26]. The order of this structure 
numbers each strategy numerically from 1 to 9. The best solutions are generated by this order of 
neighbourhoods in the initial runs. 
 
Cross movements: This group covers a series of newly developed neighbourhood structures. The aim 
of the newly developed cross movement strategies is to achieve an improved ability to diversify. 
Once the initial schedule is generated, some of the jobs might be left unassigned, and similarly some 
of the nurses might not be a part of the schedule. Thus, in order to cover all the jobs and to use the 
human resources efficiently, three movements or neighbourhoods are developed (Strategies 3, 2, 
and 4). These are illustrated in Figure 3, where circular and square nodes correspond to the nurses 
and the jobs respectively. Strategy 3 chooses one of the jobs randomly from the uncovered job list, 
and assigns this job to a randomly selected route/nurse. The aim of Strategy 2 is to benefit more 
efficiently from the human resources. When the free nurse list has an element, Strategy 2 starts to 
work. A randomly selected nurse from the free nurse list is exchanged with a randomly selected 
working nurse if there is a reduction in the objective function value. Strategy 4 is employed to 
remove one-job routes. This strategy looks for one-job routes and checks whether or not the element 
(job) of the route can be inserted into randomly selected multi-job routes. If this movement results 
in a reduction in the objective function value, the removal of the one-job route takes place during 
this step. Strategy 4 is developed to cover all of the jobs with the minimum number of nurses. 
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Figure 2: Neighbourhood structure 

 

Figure 3: Cross movements: I-Strategy 3, II-Strategy 2, and III-Strategy 4 

Vertical movements: This group consists of three strategies: Strategy 1, Strategy 5, and Strategy 6, 
as illustrated in Figure 4. Strategy 1 is proposed to swap two randomly selected employees if there 
is an improvement in the objective. Similar to Strategy 1, Strategy 5 is developed to swap these two 
randomly selected jobs. In this vertical movement, the locations of the two are also chosen by 
chance. The last movement in this group is Strategy 6, which employs insertion. 
 
Horizontal movements: This group covers the basic neighbourhood structures: swap and shift. They 
are developed to find the best sequence/location of jobs. These locations are chosen by chance, 
and if there is an improvement, the swap occurs in the schedule during the Strategy 9 process. The 
difference between Strategy 9 and Strategy 8 is the shift mechanism; the working principle is the 
same for this improvement perspective. The last member of the horizontal movements is Strategy 
7; this is the two-job shift version of Strategy 8. These strategies are illustrated in Figure 5. 
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Figure 4: Vertical movements: I-Strategy 1, II-Strategy 5, and III-Strategy 6 

 

Figure 5: Horizontal movements: I-Strategy 9, II-Strategy 8, and III-Strategy 7 

4.3 Test instances 

Initially, the proposed solution approach is tested on the four instances (Days 1, 2, 3, and 4)  provided 
by Hiermann et al. [7]. (The test instances and their detailed explanation can be found at 
https://www.ads.tuwien.ac.at/w/Research/Problem_Instances.) No benchmark data is available, 
so we have generated a series of large-scale instances in accordance with these publicly available 
instances. Moreover, because of the lack of synchronisable jobs, five per cent of the jobs are added 
for each instance. The data instances involve more than 10 different working time windows and 
varied specified time windows for the jobs. The time in these instances is represented by a discrete 
time unit, which is set at 5. Assume that a nurse travels from one customer to another; this then 
takes six time units, which is a total of 30 minutes. The time windows are also computed in a similar 
manner. 

N1 N1J7 J5 J15 J16

N2 N2J4 J3 J6

N2 N2J7 J5 J15 J16

N1 N1J4 J3 J6

N1 N1J3 J5 J15 J16

N2 N2J4 J19 J6

N2 N2J19 J5 J15 J16

N1 N1J4 J3 J6

N1 N1J3 J5 J15 J16

N2 N2J4 J19 J6

N2 N2

J3

J5 J15 J16

N1 N1J4 J19 J6

(I) Strategy 1-Swap of the nurses (II) Strategy 5-Swap of the jobs 

(III) Strategy 6-Insertion of the job 

N1 N1J3 J5 J15 J16

N1 N1J16 J5 J15 J3

N1 N1J3 J5 J15 J16

N1 N1J15 J3 J5 J16

N1 N1J3 J5 J15 J16

N1 N1J15 J16 J3 J5

(I) Strategy 9-Swap of the jobs (II) Strategy 8-Shift of the job

(III) Strategy 7-Shift of the two jobs
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5 COMPUTATIONAL RESULTS 

In this section, the proposed solution approach is run on the four publicly available instances, and 
the results are compared with the solution method used by Hiermann et al. [7]. The proposed 
algorithm is then run on the series of generated large-scale instances. As stated in Cissé, Yalçındağ, 
Kergosien, Şahin, Lenté and Matta [27], there is no benchmark instance in the literature: all the 
published papers have used different models and different instances. In this study, we modified the 
VNS solution approach of Hiermann et al. [7] to solve our instances and compare them with the 
proposed solution approach. 
 
The algorithm is run 10 times for all test instances on an Intel i7-5500U CPU 2.4GHz PC with 8GB 
RAM. The maximum number of iterations is set to 30,000 for each run. In the first stage of the 
proposed method, the cluster-assign procedure runs and forms the clusters. The second stage of the 
proposed method is to generate schedules and routes for each cluster with a VND heuristic, in which 
nine different neighbourhood structures are employed for a higher diversification ability. 
 
The computational comparisons with the work of Hiermann et al. [7] are a challenge [16], since the 
comparisons have been carried out based on our model and considerations for the HHCRSP. In order 
to investigate the efficiency of the proposed VND approach, the computational results will be 
compared with the VNS-VND embedded in the three dynamic neighbourhood strategies proposed by 
Hiermann et al. [7]. Although they generated initial solutions via CP and a random construction 
heuristic, here the VNS-VND algorithm starts with the three proposed construction strategies. The 
performance measures by which the solutions are evaluated are the number of uncovered jobs and 
assigned (or working) nurses, the total time costs, the total overtime work, and the deviation from 
the preferred time. The average computational results and the details of these results are presented 
in Table 2 and Table 3 respectively. The objective function and its components, the number of 
nurses and jobs, the number of working and free nurses, and the number of clusters for each instance 
are represented in rows. The best solution for each instance is shown in bold. 
Although using different neighbourhood structures increases the run time, the proposed approach 
provides better results than the VNS-VND method in terms of objective function value for all 
instances. When the initial solution strategies are considered, CS 3 uses a smaller healthcare 
workforce for each instance. On the other hand, CS 1 and 2 schedule more nurses than CS 3, 
depending on the deterministic and random insertion mechanisms. 
 
When Table 2 is investigated further, it can be said that all the jobs are a part of the schedule. Thus 
the total duration time is fixed, and there is no room for the minimisation of this term. In order to 
minimise the total time costs, we should deal with the travelling time components. The proposed 
solution approach yields reduced total time costs, which means that the assigned nurses take less 
time. This improvement is accomplished because of the reduced total travelling time and idle 
(waiting) time. The VNS-VND approach of Hiermann et al. [7] generates schedules for the HHCRSP 
with more working time than the results presented in this paper. Similarly, the solutions of the VNS-
VND approach propose more overtime work than the proposed method. 
 
The last measure of quality of the results is the preferred time deviation. It can easily be seen that 
our solution approach causes higher time deviations for a number of reasons. First, the initial aim is 
to complete all of the sets of jobs with the minimum number of nurses, causing an increase in the 
deviation of time. That is, the generated schedules assign more jobs to fewer nurses. At first glance, 
this solution approach seems to increase the nurse-to-patient ratio; however, it considers the safety 
issues for the HHC system. This ratio should not exceed 1:8 [28, 29] for hospitals. Moreover, if the 
jobs are regarded as customers, or if we convert the nurse-to-patient ratio to a nurse-to-job ratio, 
this ratio does not exceed 1:8 for the HHC system. Secondly, time windows for the jobs are not 
considered as soft constraints. In other words, the nurses must wait before the opening time window 
of a job, and then continue to work if they start to complete the job before the closing time window. 
 
The results of the proposed approach employ the minimum number of nurses; in fact, it also does 
not send overqualified nurses to the clients. Indeed, the proposed approach — including especially 
CS 3 — is the leading method for assigning the minimum number of nurses. The distribution of 
working nurses for four days according to their competence is illustrated in Table 4. The results 
mean that our approach provides more nurse satisfaction than the VNS-VND approach. 
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Table 2: Comparison results 

  
VNS-VND [7]  

(3 dynamic strategies)    
The proposed method  

(VND-9 strategies) 

 Construction strategy 

Day 1 CS 1 CS 2 CS 3   CS 1 CS 2 CS 3 

Total time costs 9,546.5 9,632.7 9,877.8  8,933.7 8,963 8,977 

Total deviation from preferred 
time 

16,702.2 17,279.5 15,893.7  20,409.6 20,882.7 21,882.1 

Total overtime 73.8 52.6 252.5  28.4 11.2 18.2 

No. of nurses 499 499 499  499 499 499 

No. of free nurses 222.2 219.1 328.2  339.8 343.4 372.4 

No. of working nurses 276.8 279.9 170.8  159,2 155,6 126,6 

No. of jobs 781 781 781  781 781 781 

No. of clusters 4 4 4  4 4 4 

Run time (s) 129.31 136.25 132.54  168.21 173.74 174.87 

Objective function 44,661.8 40,035.9 88,770.3   36,429.1 32,640.1 35,400 

Day 2        

Total time costs 8,381.9 8,442.5 8,804.1  7,851.6 7,848 7,829.2 

Total deviation from preferred 
time 

13,773.3 15,104.4 15,628.9  17,998.6 18,217.3 19,837.2 

Total overtime 62.2 83.6 180.9  4.4 18.7 12.8 

No. of nurses 518 518 518  518 518 518 

No. of free nurses 238.1 249.2 363.8  366.4 365.4 402 

No. of working nurses 279.9 268.8 154.2  151.6 152.6 116 

No. of jobs 703 703 703  703 703 703 

No. of clusters 3 3 3  3 3 3 

Run time (s) 129.98 136.50 135.12  173.17 176.31 178.49 

Objective function 38,265.0 45,199.3 71,286.1   26,989.8 30,908.6 30,981.6 

Day 3               

Total time costs 9,560 9,610.8 9,847  8,950.9 8,991.4 8,967.9 

Total deviation from preferred 
time 

16,991.5 17,430.3 18,003.3  20,983.5 20,341.2 22,516.1 

Total overtime 93.8 73.6 250.8  51.5 49 55.4 

No. of nurses 493 493 518  493 493 493 

No. of free nurses 222.1 221.5 349.5  341.4 328.2 371.4 

No. of working nurses 270.9 271.5 168.5  151.6 164.8 121.6 

No. of jobs 779 779 779  779 779 779 

No. of clusters 4 4 4  4 4 4 

Run time (s) 126.95 133.00 131.56  171.09 175.37 174.93 

Objective function 49,673.2 45,183.5 89,672.5   42,629.2 41,411.1 45,140.1 

Day 4               

Total time costs 9,190.8 9,163.1 9,136.2  8,476 8,518.7 8,528.6 

Total deviation from preferred 
time 

17,277.4 17,355.8 17,378.2  20,505 20,551.3 23,630.7 

Total overtime 86.9 75.5 93.1  36.7 24.7 83.3 

No. of nurses 509 509 509  509 509 509 

No. of free nurses 246.8 238.8 236.5  345.7 351.2 392.1 

No. of working nurses 262.2 270.2 272.5  163.3 157.8 116.9 

No. of jobs 781 781 781  781 781 781 

No. of clusters 4 4 4  4 4 4 

Run time (s) 128.34 145.75 138.27  177.05 180.99 203.55 

Objective function 48,584.3 45,733.7 50,208.4   38,321.2 35,356.2 53,359.2 
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Table 3: Details of computational results 

  
VNS-VND [7]  

(3 dynamic strategies)    
The proposed method  

(VND-9 strategies) 

Day 1 CS1 CS2 CS3   CS1 CS2 CS3 

Objective (Average of ten runs) 44,661.8 40,035.9 88,770.25  36,429.1 32,640.1 35,400 

Objective (Best of ten runs) 32,256 33,121.5 63,317.5  29,940 27,409 31,193.5 

Std deviation 9,283.69 5,145.38 24,201.75  45,58.04 3,280.04 3,306.57 

        
Day 2        
Objective (Average of ten runs) 38,265 45,199.30 71,286.1  26,989.8 30,908.6 30,981.6 

Objective (Best of ten runs) 30,093 28,358 43,127  24,362 25,698 26,819 

Std deviation 7,125.09 12,851.97 19,238.1  20,36.93 7,474.77 5,923.48 

        
Day 3        
Objective (Average of ten runs) 49,673.2 45,183.5 89,672.5  42,629.15 41,411.1 45,140.1 

Objective (Best of ten runs) 41,869.5 38,472.5 76,359.5  33,492 32,957 36,553 

Std deviation 5,355.02 54,48.62 8,997.79  81,19.76 9,151.69 6,546.44 

        

Day 4        
Objective (Average of ten runs) 48,584.25 45,733.65 50,208.35  38,321.15 35,356.15 53,359.15 

Objective (Best of ten runs) 41,732 35,956 34,162  27,106 28,353.5 36,688 

Std deviation 6,875 7,095.73 9,627.7   7,297.73 4,661.27 14,492.11 

Table 4: Competence level of working nurses 

    Day 1 Day 2 

 
 All nurses All nurses 

Competence 1 2 3 4 5 1 2 3 4 5 

No. of nurses 4 23 384 37 51 2 27 399 41 49 

 
 Working nurses Working nurses 

VNS-VND 
[7] 

CS 1 0 2.3 221.7 21.8 31 0 4.1 216.6 26.2 33 

CS 2 0.2 2.6 221.3 22 33.8 0 3.9 205.3 25.4 34.2 

CS 3 0 1.5 135 13.9 20.4 0 3.3 119.2 13.4 18.3 

The 
proposed 
method 

CS 1 0 1 124 12.3 21.9 0 0.9 110.9 17.1 22.7 

CS 2 0.1 0.6 119.1 13.4 22.4 0 0.9 111.5 18.1 22.1 

CS 3 0 0.8 93.3 12.3 20.2 0 0.7 83.5 15.4 16.4 

    Day 3 Day 4 

  All nurses All nurses 

Competence 1 2 3 4 5 1 2 3 4 5 

No. of nurses 5 24 382 39 43 5 30 375 43 56 

 
 Working nurses Working nurses 

VNS-VND 
[7] 

CS 1 0 3.9 214 25.6 27.4 0 5.8 199.3 25.3 31.8 

CS 2 0 3.8 214.6 25.9 27.2 0 4.8 207.2 24.5 33.7 

CS 3 0 4.1 127.7 18.3 18.4 0 4.9 207.1 26.4 34.1 

The 
proposed 
method 

CS 1 0 0.6 119.8 15 16.2 0 3.4 123.4 15.7 20.8 

CS 2 0 0.9 128.5 17 18.4 0 1.8 118 14.9 23.1 

CS 3 0 0.4 92.7 12.3 16.2 0 1.9 85 13.7 16.3 

 
In order to investigate the efficiency of the newly developed cross movement structures, more 
computations have been carried out. The algorithm was tested on the Day 1 instance; the results 
are compared in Figure 6. Here, in case the initial construction strategies cannot cover all of the 
jobs, only Strategy 6 will run. It is obvious that the newly developed cross movement strategies offer 
higher diversification and improvement without considering construction heuristics. In a similar way, 
the efficiency of the clustering approach is examined; the results are illustrated in Figure 7. The 
number of different clusters is shown on the horizontal axis, with the lines corresponding to the 
objective function, and the columns represent the run time. Although clustering increases the run 
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time, the objective function begins to improve by applying clustering. The important point here is 
that, to determine the appropriate number of clusters, we assign the number of clusters according 
to the min{cnurse, cjob} in the cluster-assign procedure; for the Day 1 instance, the number of clusters 
is set at four, and this four-cluster formation proposes the minimum objective function values for 
all the construction strategies. The same pattern is followed for the Day 2 instance. As a result, it 
is reasonable to apply clustering in the first stage, and the solution quality is not deteriorated by 
the use of clustering. 

 
Figure 6: Efficiency of the newly developed cross movement strategies on Day 1 instance 

 

 

Figure 7: Efficiency of clustering on Day 1 instance 

Table 5 provides an overview of the generated large-scale instances consisting of different numbers 
of nurses and jobs, and summarises the computational results. Synchronisation is also considered for 
the generated instances. Here, the algorithm covers all the jobs, and the results based on three 
different construction strategies represent the average value of 10 runs. For Instance 1, with the 
initial solution CS 1, the objective function value is calculated to be 16,653.30, the run time is 
132.99 s, and the number of working nurses is 88.8. According to the objective function value, CS 2 
initialisation generally yields better solutions. The algorithm initialised with CS 1 generally runs 
faster than the others. CS 3 constructs solutions with the minimum number of nurses. 
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Table 5: Computational results 

No. of Objective function Time (S) No. of working nurses 

I N J CS 1 CS 2 CS 3 CS 1 CS 2 CS 3 CS 1 C S2 CS 3 

1 250 393 16,653.30 16,590.30 17,750.00 132.99 148.96 134.49 88.80 86.90 70.20 

2 245 388 17,888.65 16,664.90 17,045.75 133.54 148.26 131.41 85.30 81.90 62.70 

3 260 404 17,954.50 17,311.10 17,794.30 134.35 144.70 131.51 86.40 84.10 65.90 

4 260 352 15,339.70 14,481.80 17,332.40 144.40 150.04 146.27 73.50 70.50 52.10 

5 270 357 17,747.30 19,475.80 18,259.70 138.98 143.36 144.00 79.10 77.80 55.10 

6 254 338 15,920.30 14,688.70 15,248.00 140.68 148.86 139.26 70.60 70.70 49.80 

7 247 388 19,912.55 15,563.70 19,342.30 126.42 132.46 130.57 84.60 77.70 60.60 

8 240 383 16,186.10 17,146.70 20,521.00 133.46 139.46 131.13 87.50 80.90 61.80 

9 255 393 24,250.00 22,189.00 21,123.50 154.32 150.39 143.93 77.80 82.20 66.10 

10 255 388 18,544.15 19,485.35 20,287.75 135.07 135.61 137.18 78.70 77.60 56.30 

11 267 400 20,811.45 17,652.70 17,990.95 140.02 141.18 139.80 80.00 82.10 60.10 

12 250 379 16,074.00 20,500.40 19,076.90 130.60 131.93 133.50 76.50 72.50 57.70 

13 549 858 40,060.65 63,176.35 44,336.05 177.78 179.35 183.45 163.10 161.50 137.20 

14 538 855 40,887.60 38,830.50 44,616.20 179.55 179.19 181.51 170.10 170.30 138.80 

15 520 815 39,046.80 35,933.90 36,978.30 175.96 178.23 178.49 166.00 163.90 133.90 

16 500 678 28,787.00 32,563.50 31,365.30 173.51 178.15 177.20 151.30 143.30 102.20 

17 520 707 29,885.20 32,380.10 31,488.40 174.99 195.14 179.51 152.50 153.10 110.50 

18 540 733 31,302.00 30,882.90 30,593.90 187.65 184.38 184.08 151.50 157.30 112.40 

19 500 790 41,001.30 35,374.50 50,101.10 170.81 175.50 178.94 160.10 152.80 122.90 

20 520 823 35,470.30 36,133.40 40,928.00 178.98 190.88 223.90 167.90 159.30 127.20 

21 480 759 38,479.70 40,175.20 41,395.30 184.60 187.01 189.14 151.10 150.30 116.60 

22 517 795 37,040.00 37,053.00 45,109.25 176.15 177.75 181.53 155.40 159.80 118.80 

23 530 814 43,926.10 38,488.40 50,559.20 179.07 179.22 193.64 164.80 159.30 120.80 

24 495 757 35,769.90 39,423.35 52,695.40 173.92 178.36 181.18 144.40 147.70 108.80 

25 1000 1564 72,714.00 74,253.70 79,325.80 226.47 248.30 250.00 311.90 312.50 258.10 

26 1020 1575 82,761.50 82,647.40 85,421.00 237.60 241.91 246.41 316.50 309.10 252.10 

27 1017 1573 96,690.20 102,199.45 115,543.65 223.30 238.92 243.81 336.60 318.60 285.90 

28 1030 1396 63,569.40 67,259.40 67,392.80 231.33 245.54 247.91 285.70 284.10 226.60 

29 1025 1407 76,401.95 69,503.30 79,389.10 235.94 253.68 253.46 269.40 275.50 207.20 

30 1030 1401 72,303.40 62,447.40 64,311.00 239.44 258.49 260.90 285.00 275.50 224.00 

31 985 1554 84,906.25 78,445.15 101,058.65 227.88 242.96 247.15 269.60 260.20 231.40 

32 991 1546 86,967.30 83,657.45 124,337.50 228.79 231.82 242.08 291.80 292.90 243.80 

33 990 1549 87,135.00 81,696.40 97,663.50 227.97 244.19 248.90 283.40 269.40 239.30 

34 1020 1564 91,432.20 89,573.80 146,297.10 229.54 248.37 249.09 274.60 263.90 230.90 

35 1015 1552 74,930.65 72,740.70 86,071.75 244.03 265.73 279.91 294.80 285.90 232.10 

36 1020 1548 75,608.60 82,716.60 109,084.90 231.13 245.79 252.49 297.50 291.90 227.10 

37 1490 2341 129,761.40 122,098.00 144,863.50 560.90 558.80 563.30 444.40 460.00 383.50 

38 1471 2316 110,788.65 117,134.35 132,666.45 572.54 565.06 560.83 455.30 454.70 373.70 

39 1500 2362 128,192.60 133,031.20 155,599.80 546.66 575.21 563.87 422.70 473.50 375.00 

40 1510 2447 126,657.20 124,806.10 161,009.40 526.66 566.44 568.32 467.10 479.70 402.80 

41 1580 2709 172,721.30 171,565.50 190,027.80 591.20 637.34 641.81 468.70 468.30 435.30 

Note: I, N, and J indicate instance, nurse, and job respectively.  
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6 CONCLUSION 

The work introduces a two-stage solution approach for a large-scale HHCRSP. The approach 
integrates cluster analysis and heuristics into an optimisation framework. Some of the advantages 
are that it is free from optimal parameter selection in each stage, it creates feasible clusters, and 
has a higher diversification ability covering different strategies.  
 
Our model considers nurses, clients, and healthcare institutions; thus there is no violation of the 
preferences of the clients and nurses. Only the preferred starting time of the jobs deviates. The 
numerical results indicate profitable outcomes. The decrease in the total time helps nurses to arrive 
at the clients’ homes on time because of the reduced travelling time. Minimising the length of the 
schedules also increases the nurses’ satisfaction. Furthermore, choosing an appropriate mode of 
transport and minimising the total travelling time leads to a lower fuel and energy consumption by 
vehicles and nurses. From the perspective of the healthcare institutions, they have the opportunity 
to create schedules with a minimum number of healthcare workers and to decrease personnel costs 
without being understaffed. 
 
For future research, we intend to apply the route-first cluster-second method (based on the giant 
tour), which is the opposite of the approach proposed here. The extension of the daily planning 
horizon to the medium term is another subject for the HHCRSP. Because of the modularity of this 
two-stage solution approach, it can employ different clustering algorithms in the first stage, and 
different metaheuristics can be used for the improvement stage without ignoring the newly 
developed neighbourhood structures. 

REFERENCES 

[1] WHO. 1948. WHO definition of health. http://www.who.int/about/definition/en/print.html  
[accessed 01/06/16]. 

[2] Huber, M. 2015. Health: Definitions A2, in James D. Wright (ed.), International Encyclopedia of the Social 
& Behavioral Sciences (second edition). Oxford: Elsevier. 

[3] Song, M. & Kong, E.-H. 2015. Older adults’ definitions of health: A metasynthesis. International Journal 
of Nursing Studies, 52(6): pp. 1097-1106. 

[4] Leonard, K. 2015. Obamacare, drug prices behind health spending growth.  
http://www.usnews.com/news/articles/2015/12/02/rate-of-spending-on-health-care-is-on-its-way-up-
again [acessed 09/06/16]. 

[5] Mattke, S., Klautzer, L., Mengistu, T., Garnett, J., Hu, J. & Wu, H. 2010. Health and well-being in the 
home: A global analysis of needs, expectations, and priorities for home health care technology. Santa 
Monica: RAND Corporation. 

[6] Maenhout, B. & Vanhoucke, M. 2013. An integrated nurse staffing and scheduling analysis for longer-term 
nursing staff allocation problems. Omega, 41(2): pp. 485-499. 

[7] Hiermann, G., Prandtstetter, M., Rendl, A., Puchinger, J. & Raidl, G. 2015. Metaheuristics for solving a 
multimodal home-healthcare scheduling problem. Central European Journal of Operations Research, 
23(1): pp. 89-113. 

[8] Cheng, E. & Rich, J.L. 1998. A home health care routing and scheduling problem. 
[9] Eveborn, P., Flisberg, P. & Rönnqvist, M. 2006. Laps care: An operational system for staff planning of 

home care. European Journal of Operational Research, 171(3): pp. 962-976. 
[10] Bertels, S. & Fahle, T. 2006. A hybrid setup for a hybrid scenario: Combining heuristics for the home 

health care problem. Computers & Operations Research, 33(10): pp. 2866-2890. 
[11] Akjiratikarl, C., Yenradee, P. & Drake, P.R. 2007. PSO-based algorithm for home care worker scheduling 

in the UK. Computers & Industrial Engineering, 53(4): pp. 559-583. 
[12] Bredström, D. & Rönnqvist, M. 2008. Combined vehicle routing and scheduling with temporal precedence 

and synchronization constraints. European Journal of Operational Research, 191(1): pp. 19-31. 
[13] Rasmussen, M.S., Justesen, T., Dohn, A. & Larsen, J. 2012. The home care crew scheduling problem: 

Preference-based visit clustering and temporal dependencies. European Journal of Operational Research, 
219(3): pp. 598-610. 

[14] Castillo-Salazar, J.A., Landa-Silva, D. & Qu, R. 2014. Workforce scheduling and routing problems: 
Literature survey and computational study. Annals of Operations Research, pp. 1-29. 

[15] Trautsamwieser, A. & Hirsch, P. 2011. Optimization of daily scheduling for home health care services. 
Journal of Applied Operational Research, 3: pp. 124-136. 

[16] Fikar, C. & Hirsch, P. 2017. Home health care routing and scheduling: A review. Computers & Operations 
Research, 77: pp. 86-95. 

[17] Fikar, C. & Hirsch, P. 2015. A matheuristic for routing real-world home service transport systems 
facilitating walking. Journal of Cleaner Production, 105: pp. 300-310. 

[18] Trautsamwieser, A. & Hirsch, P. 2014. A branch-price-and-cut approach for solving the medium-term 
home health care planning problem. Networks, 64(3): pp. 143-159. 



 

149 

[19] Han, J. & Kamber, M. 2006. Data mining: Concepts and techniques. The Morgan Kaufmann Series in Data 
Management Systems, 2nd edition. Morgan Kaufmann. 

[20] Chiu, T., Fang, D., Chen, J., Wang, Y. & Jeris. C. 2001. A robust and scalable clustering algorithm for 
mixed type attributes in large database environment. In Proceedings of the seventh ACM SIGKDD 
international conference on Knowledge discovery and data mining: pp. 263-268. San Francisco: ACM. 

[21] Michailidou, C., Maheras, P., Arseni-Papadimititriou, A., Kolyva-Machera, F. & Anagnostopoulou, C. 
2009. A study of weather types at Athens and Thessaloniki and their relationship to circulation types for 
the cold-wet period, part I: Two-step cluster analysis. Theoretical and Applied Climatology, 97(1-2): pp. 
163-177. 

[22] Zaki, M.J. & Meira Jr., W. 2014. Data mining and analysis: Fundamental concepts and algorithms. 1st 
edition. USA: Cambridge University Press. 

[23] Mladenovic, N. & Hansen, P. 1997. Variable neighborhood search. Comput. Oper. Res., 24(11): pp. 1097-
1100. 

[24] Hansen, P., Mladenović, N., Brimberg, J. & Pérez, J.A.M. 2010. Variable neighborhood search, in M. 
Gendreau and J.-Y. Potvin (eds), Handbook of metaheuristics. Boston: Springer US. 

[25] Bräysy, O. & Gendreau, M. 2005. Vehicle routing problem with time windows, Part I: Route construction 
and local search algorithms. Transportation Science, 39(1): pp. 104-118. 

[26] Hansen, P. & Mladenovic, N. 2002. Developments of variable neighborhood search, in C.C. Ribeiro and P. 
Hansen (eds), Essays and surveys in metaheuristics. Boston: Springer US. 

[27] Cissé, M., Yalçındağ, S., Kergosien, Y., Şahin, E., Lenté, C. & Matta, A. 2017. OR problems related to 
home health care: A review of relevant routing and scheduling problems. Operations Research for Health 
Care, 

[28] Aiken, L., Clarke, S., Sloane, D., Sochalski, J. & Silber, J. 2002. Hospital nurse staffing and patient 
mortality, nurse burnout, and job dissatisfaction. JAMA, 288(16): pp. 1987-1993. 

[29] Pasnap. 2016.  Studies on nurse-to-patient ratios. http://www.pennanurses.org/pac/ratio-research/ 
[accessed 21/06/16]. 

 


