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ABSTRACT 

This paper focuses on the problem of scheduling on a single machine to minimise the 
maximum lateness when each job has a different ready time, processing time, and due 
date. A simple procedure is developed to find a better solution than the early due date 
(EDD) algorithm. The new algorithm suggested in this paper is called Least Slack Time - 
Look Ahead (LST-LA), which minimises the maximum lateness problem. Computational 
results show that when the number of jobs increases, LST-LA outperforms EDD. 

OPSOMMING 

Die artikel konsentreer op die skedulering van ‘n enkele masjien om die maksimum 
laatwees probleem, wanneer elke taak ‘n verskillende gereedheidstyd, prosesseertyd en 
keerdatum het, te minimeer. ‘n Eenvoudige prosedure om ‘n beter oplossing tot die vroeë 
keerdatum algoritme te bepaal, is ontwikkel. Die nuwe algoritme word die “Least Slack 
Time Look Ahead” genoem en dit minimiseer die maksimum laatwees probleem. Simulasie 
resultate toon dat soos die aantal take toeneem, vertoon die nuwe algoritme beter as die 
vroeë keerdatum algoritme. 
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1 INTRODUCTION 

This paper considers the problem of finding an effective schedule for n jobs with different 
release dates on a single machine, in order to minimise the maximum lateness. The single 
machine scheduling problem is one of the important problem types in machine scheduling 
models; it can be used to solve the single machine models, or it gives an initial solution to 
the decomposition of big problems into sub-problems, such as job shops or flow shops. 
Minimising maximum lateness (Lmax) is an important objective if all preceding activities 
must be completed before the rest can begin in a project; i.e., a very late activity may 
cause a delay in the project. In addition, Lmax may be used as an aid for solving other 
problems [1].  
 
To define a scheduling problem, the well-known three-field notation of Graham et al. [2], 
α│β│γ, is used, where α, β, and γ represent the machine environment, job characteristics 
(problem constraints), and objective function respectively. The scheduling problem studied 
in this work is minimising maximum lateness (Lmax) for n jobs, with release dates (rj) on a 
single machine. The problem is denoted by 1 │rj│Lmax and shown as NP-hard by Lenstra et 
al. [3]. When the difference of Cj-dj (completion time of job j – due date of job j) is 
positive, the job is said to be late; if the difference of Cj-dj is negative, the job is said to be 
early; if the result of the difference equals zero, the job is said to be on time.  
 
This paper provides a brief and up-to-date literature review of the single machine maximum 
lateness with release times. It then proposes a simple and effective heuristic called Least 
Slack Time - Look Ahead (LST-LA) to solve the 1 | rj│ Lmax problem. The solutions obtained 
by the full enumeration (for the problems up to 13 jobs) and early due date (EDD) rule (for 
the problems with more than 13 jobs) are compared. Experimential results of the study 
show that the proposed algorithm (LST-LA) outperforms the EDD algorithm, on average, by 
at least 400 per cent on the Carlier’s instances. 
 
The outline of this paper is as follows. In Section 2, the maximum lateness problem is 
defined. In Section 3, the analysis of the proposed heuristic algorithm, procedures, and a 
computational example are explained in detail. Section 4 presents computational results 
based on the randomly generated problem instances for the single machine minimising 
maximum lateness problem under study. Section 5 presents the statistical analysis of the 
results. Test results on Carlier’s problems are also presented in Section 5.2. Finally, in 
Section 6, overall conclusions are drawn and future research paths are highlighted. 

2 MINIMISING THE MAXIMUM LATENESS PROBLEM 

The problem without release times (1││Lmax) is optimally solvable by the EDD first in 
polynomial time [4]. The EDD rule can be defined as the set of n jobs, with known 
processing times and due dates; the minimum value of Lmax is achieved by sequencing the 
jobs in non-decreasing order of their due dates [5]. A detailed literature review on the 
single machine maximum lateness problem with release times (1|rj|Lmax) can be found in 
Sels and Vanhoucke [6]. The well-studied problem 1|rj|Lmax is a special case of problem 
1|prec;rj|Lmax. 
 
Oyetunji and Oluleye [7] proposed a heuristic to reduce the number of tardy jobs by 
scheduling the jobs according to an ascending order of the job allowance; test results show 
that the given algorithm is faster than others when the number of jobs is large. 
 
McMahon and Florian [8] provide efficient branch and bound algorithms to solve this 
problem. Lagaweg et al. [9] studied scheduling jobs on a single machine subject to given 
release dates and precedence constraints; they described applications to the theory of job-
shop scheduling and to a practical scheduling situation. 
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Frederickson [10] showed that the problem of scheduling n unit-time tasks with integer 
release times and deadlines is solvable in O(n log n) time, if a sufficient amount of 
uninitialised space is available. Baker et al. [11] considered that n jobs are to be processed 
on a single machine, subject to release dates and precedence constraints, and they 
presented an O(n2) algorithm for this problem. 
 
Gordon [12] considered the optimal assignment of slack due-dates and sequencing in the 
single-machine shop to the case when pre-emption is allowed and there are precedence 
constraints and ready times of jobs. The study shows that under special conditions, the 
presented algorithm may be used when pre-emption is not allowed.  
 
Oyetunji and Oluleye [13] considered the single machine scheduling problem subject to 
release dateto minimise total completion time and the number of tardy jobs and a proposed 
a solution algorithm, which was recommended when there are 30 or more jobs in the 
problem. 
 
Monma and Potts [14] studied the single machine scheduling problem with sequence-
dependent family setup times. Results of their study showed that “for the maximum 
lateness problem, there is an optimal schedule where the jobs within each batch are 
ordered by the EDD rule”.  
 
Schrage [15] proposed an algorithm that considers scheduling an available job with the 
largest tail time. Carlier [16] studied how to solve the 1│rj, qj │Lmax  problem. Results from 
Carlier’s algorithms shows that this is the most promising approach in the literature.  
 
A lot of researchers considered minimising the maximum lateness problem under different 
constraints. Due to the NP-hard nature of the problem, a number of different heuristics 
have been developed. In this study, minimising the maximum lateness problem is studied 
under a release date constraint; and a simple and efficient heuristic algorithm called LST-
LA is proposed and tested on randomly-generated problems.  
 
The next section includes detailed information about the proposed heuristic algorithm.   

3 PROPOSED LST-LA ALGORITHM 

The problem of 1|rj|Lmax is strongly NP-hard [15]. The problem considers n independent 
jobs (j=1,2,…,n ) with unequal release dates (rj) on a single machine to minimise maximum 
lateness. There are no precedence constraints between jobs, and each job has positive due 
dates, dj (dj ≥ 0). The machine is continuously available and can process one job at a time.  
 
The problem of 1 ││ Lmax is the best-known special case of 1 │ prec │ hmax. The function hj 
is then defined as Cj–dj, and the algorithm results in the schedule that orders the jobs in 
increasing order of their due date [14]; in order to minimise the maximum lateness the 
algorithm processes the jobs in non-decreasing due date order. This dispatching rule is 
known as EDD, or Jackson's rule, after Jackson [16] who studied it in 1955 [17]. 
 
The results obtained by LST-LA are compared with the results from the EDD rule. The 
notations below are used to describe the scheduling problem.  
 
Problem procedures: the flow chart of the LST-LA algorithm is given in Figure 1. 
 
Notations: 
 
J : set of scheduled operations 
Jd  : candidate to schedule jobs at time t, (rj ≤ t) 
Jc  : set of unscheduled operations 
t : scheduling time 
Lmax : maximum lateness 
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Lj : lateness of job j 
Pj : processing time of job j  
dj : due date of job j 
Cj : completion time of job j 
 
The machine is assumed to be continuously available and can process, at most, one job at a 
time.  
 
The jobs may not be pre-empted, and each job j is characterised by its processing time pj, 
its release time rj, and its due date dj. 

3.1 Algorithm definition 

The flow chart of the proposed LST-LA algorithm can be seen in Figure 1. 
 

 

Figure 1: Flow chart of the LST-LA algorithm 

The pseudo code of the proposed model is given in Figure 2. 
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01 t=0, J = new empty set, Jc = job input; 
02 for each job in Jc 
03 if time >= job.releaseDate 
04  add this job to Jd; 
05  if Jd > 1 
06   schedule the job with max lateness available in Jc; 
07   update time, Jc, J; 
08   if Jc > 0 
09    goto line 3 
10   else 
11    EXIT 
12  if Jd = 1 
13   mainJob = the job in Jd 
14   if there is a job in Jc else then this candidate 
15    alternativeJob = next first available job in Jc; 
16    If scheduling mainJob before alternativeJob result in a 
lower 
                                                            Lmax than scheduling alternative job before main 
job 
17     schedule mainJob 
18     if Jc > 0 
19      goto line 3 
20     else 
21      EXIT 
22    else  
23     schedule alternativeJob 
24    if Jc > 0 
25     goto line 3 
26    else 
27     EXIT 
28   else 
29   schedule main job 
30   if Jc > 0 
31    goto line 3 
32   else 
33    EXIT 
34 else 
35  time = next available jobs release date; 
36  goto line 3 

Figure 2: Pseudo code of LST-LA algorithm 

3.2 A computational example 

In this part of the study, execution of the algorithm is presented using a small example in 
order to demonstrate the algorithm. Sample data is given in Table 1. 

Table 1: Sample data of execution 

Jobs 1 2 3 4 5 6 7 8 
Pj 4 9 3 3 6 8 8 12 
rj 0 12 0 20 2 22 15 30 
dj 10 29 8 30 16 33 42 48 

 
Step1. t=0 J= ϕ, Jd = ϕ, Lmax=-∞ and Jc={1,2,3,4,5,6,7,8} 
Step2. Jd = {1,3} since they are ready at time 0. 
Max{Pj+rj – dj}  ={P1+r1- d1, P3+r3-d3} 
   = {4+0-10, 3+0-8} 
    ={-6,-5} 
    =-5 
J={3}, Jc={1,2,4,5,6,7,8}, C3 =3, t=3, L3=-5 < 0 and since L3 > Lmax, Lmax=-5  
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Step3. Jc is not an empty set (Jc ≠ϕ) so go to Step 2. 
Step2. t=3  
Jd = {1,5} and t=3 > r1 =0 so r1 =3 and t=3 > r5 =2 so r5 =3  
Max{Pj+rj – dj}                ={P1+r1- d1, P5+r5-d5} 
   = {4+3-10, 6+3-16} 
   ={-3,-7} 
   =-3 
J={3,1}, Jc={2,4,5,6,7,8}, C1 =7, t=7, L1=-3 < 0 and since L1 > Lmax, Lmax=-3  
 
Step3. Jc is not an empty set (Jc ≠ϕ), so go to Step 2. 
 
Step2. t=7 and Jd set has only one job (J5), check the next available job (j2 and r2 =12), 
which has next minimum rj value in Jc set and calculate Lmax values for two possible 
sequences of two jobs, and then schedule the first job in the sequence that results in 
minimum Lj value for the second job in the sequence. 
Jd = {2, 5}    
 
For the sequence of 5, 2: 
Since t=7 > r5 =2 so r5 =7  
 
L5={P5+r5-d5}= {6+7-16}=-3 and C5=13, t=13 > r2 =12 so r2 =13. 
L2={P2+r2- d2}= {9+13-29}=-7 and C2=22, t=22  
 
Max {L5, L2} = -3 < 0 so Lmax =-3 (for the sequence of 5, 2) 
 
For the sequence of 2, 5: 
Since t=7 < r2 =12 so keep the machine idle until time 12 and set t=12 
 
L2={P2+r2-d2}= {9+12-29}=-8 and C2=21, t=21 > r5 =2 so r5 =21 
L5={P5+r5-d5}= {6+21-16}=11 and C5=27, t=27  
 
Max {L2, L5} =11 > 0 so Lmax =11 (for the sequence of 2, 5) 
 
Since Lmax value is minimum for the first sequence (i.e., sequence of 5, 2) Job 5 will be 
selected and assigned to the J set. So, J={3,1,5}, Jc={2,4,6,7,8}, Cj =13, t=13, Lj=-3 < 0 
Lmax=-3. 
 
Step3. Jc is not an empty set (Jc ≠ϕ), so go to Step 2. 
 
At the end of the solution all sets are calculated as: 
J={3,1,5,2,6,4,7,8}, Jc= ϕ, C8 =53, t=53, L3 =-5, L1=-3, L5=-3, L2=-7, L6=-3, L4=3, L7=-1 and 
L8=5. LST-LA yields an Lmax=5, which is identical to the Lmax obtained by EDD solution 
although the sequence is different. 

4 TEST PROBLEMS AND RESULTS 

First, the problem data is generated as follows: 
 
pj is generated from a discrete uniform distribution between 5 to 50 
rj is generated from a discrete uniform distribution between 0 and ∑ pjn

j=1   
dj is generated from a discrete uniform distribution between 0 and [max rj + max pj] 
 
The problem is then tested with 15 independent samples with a constant size of 10. LST-LA, 
EDD, and full enumeration (FE) solutions are calculated and compared in Table 2.  
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Table 2: Comparison table for set size 10 

Job 
size 

Problem 
set 

Lmax-
FE 

Lmax-
EDD 

Lmax-
LST-LA 

%difference 
btw EDD & FE 

%difference 
btw LST-LA & 
FE 

%difference btw 
LST-LA & EDD 

10 

1 257 332 260 29,18% 1,17% -27,69% 

2 163 203 163 24,54% 0,00% -24,54% 

3 127 170 127 33,86% 0,00% -33,86% 

4 245 299 245 22,04% 0,00% -22,04% 

5 275 303 275 10,18% 0,00% -10,18% 

6 131 206 144 57,25% 9,92% -43,06% 

7 226 320 269 41,59% 19,03% -18,96% 

8 191 209 191 9,42% 0,00% -9,42% 

9 146 214 161 46,58% 10,27% -32,92% 

10 273 308 280 12,82% 2,56% -10,00% 

11 200 202 200 1,00% 0,00% -1,00% 

12 189 225 189 19,05% 0,00% -19,05% 

13 115 142 115 23,48% 0,00% -23,48% 

14 175 204 208 16,57% 18,86% 1,92% 

15 113 113 130 0,00% 15,04% 13,08% 
Bold values in the column of Lmax-EDD and 
Lmax-LST-LA are optimal solutions. 23,17% 5,12% -17,41% 

 
LST-LA obtained an optimal solution eight times out of 15 for randomly-selected problems, 
the EDD rule obtained an optimal solution only once, and the EDD rule ended up with a 
better solution than the LST-LA algorithm only once. The percentage differences show that 
the EDD rule yielded a maximum lateness up to 57 per cent away from the optimum value 
obtained by the full enumeration, whereas the LST-LA algorithm yielded a maximum 
lateness up to 19.3 per cent away from the optimum solution. The average percentage 
differences are calculated to be 23.17 per cent between EDD and FE, and 5.12 per cent 
between LST-LA and FE. LST-LA yields solutions that are 17.41 per cent lower than EDD, 
and these results mean that LST-LA gives a better solution than EDD, on average. 
 
Hereafter, the problem set size is increased to 30, 50, 80, 100, and 150 jobs, and the 
results are listed in Table 3, Table 4, Table 5, Table 6, and Table 7, respectively. 
 
When the job size increases to 30 jobs (Table 3), LST-LA yields solutions that are 8.16 per 
cent lower than EDD, on average. The LST-LA algorithm obtains better results than EDD in 
13 out of the 15 test problems, whereas EDD yields better results than LST-LA only twice 
out of the 15 test problems. The LST-LA algorithm yields better results than EDD 8.16 per 
cent of the time, on average.  

Table 3: Comparison table for set size 30 

Job size Problem 
set Lmax-EDD Lmax-LST-LA % difference btw LST-LA-EDD 

30 

1 619 587 -5,17% 

2 695 660 -5,04% 

3 828 852 2,90% 

4 858 670 -21,91% 

5 729 684 -6,17% 

6 713 637 -10,66% 
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Table 3 (cont.): Comparison table for set size 30 

Job size Problem 
set Lmax-EDD Lmax-LST-LA % difference btw LST-LA-EDD 

 

7 698 627 -10,17% 

8 749 751 0,27% 

9 678 592 -12,68% 

10 811 681 -16,03% 

11 908 871 -4,07% 

12 792 705 -10,98% 

13 683 572 -16,25% 

14 683 667 -2,34% 

15 777 745 -4,12% 

 
   

-8,16% 
 

The LST-LA algorithm yields solutions that are 4.61 per cent lower than EDD, on average, 
for the problems with 50 jobs, as seen in Table 4.  

Table 4: Comparison table for set size 50 

Jo
b 
siz
e 

Proble
m set Lmax-EDD Lmax-LST-LA 

%difference 
btw LST-LA-

EDD 

50 

1 1267 1223 -3,47% 
2 1001 980 -2,10% 
3 1566 1380 -11,88% 
4 1256 1247 -0,72% 
5 1333 1219 -8,55% 
6 1605 1513 -5,73% 
7 1216 1031 -15,21% 
8 1272 1265 -0,55% 
9 945 936 -0,95% 
10 1284 1324 3,12% 

 
   

-4,61% 
 
The LST-LA algorithm yields solutions that are 8.46 per cent lower than EDD, on average, 
for the problems with 80 jobs, as seen in Table 5. 

Table 5: Comparison table for set size 80 

Job size Problem set Lmax-EDD Lmax-LST-LA %difference btw LST-LA-EDD 

80 

1 2379 2179 -8,41% 
2 2310 2239 -3,07% 
3 2275 1979 -13,01% 
4 2260 2102 -6,99% 
5 2277 2015 -11,51% 
6 1898 1729 -8,90% 
7 1694 1612 -4,84% 
8 1984 1846 -6,96% 
9 2054 1883 -8,33% 
10 2280 1993 -12,59% 

        -8,46% 
For 100 job problems, LST-LA yields solutions that are 6.65 per cent lower than EDD, on 
average, as seen in Table 6. 
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Table 6: Comparison table for set size 100 

Job 
size 

Proble
m set Lmax-EDD Lmax-LST-LA 

%difference 
btw LST-LA -
EDD 

100 

1 2479 2334 -5,85% 
2 2944 2604 -11,55% 
3 2836 2642 -6,84% 
4 2994 2623 -12,39% 
5 2416 2394 -0,91% 
6 2545 2442 -4,05% 
7 2617 2312 -11,65% 
8 2599 2504 -3,66% 
9 2476 2391 -3,43% 
10 2491 2337 -6,18% 

    
-6,65% 

 
For the problems with 150 jobs, as can be seen in Table 7, improvement of LST-LA’s results 
is 5.44 per cent compared with EDD, on average. 

 
Table 7: Comparison table for set size 150 

Job size Problem set Lmax-EDD Lmax-LST-LA %difference btw LST-LA -EDD 

150 

1 3501 3409 -2,63% 
2 3689 3528 -4,36% 
3 3484 3428 -1,61% 
4 3784 3721 -1,66% 
5 4207 3752 -10,82% 
6 4461 4033 -9,59% 
7 3596 3343 -7,04% 
8 4048 3651 -9,81% 
9 4107 3982 -3,04% 
10 3963 3809 -3,89% 

    
-5,44% 

5 STATISTICAL ANALYSIS 

5.1 Statistical analysis of the randomly-generated problems 

 
In order to discover the relationship between the two algorithms and to obtain more 
reliable test results, the data was transferred to SPSS software. First, descriptive statistics 
were gathered for µ𝐷 (mean differences) for six test sets. The results are given in Table 8 
where, as can be seen, negative differences show that LST-LA reaches lower maximum 
lateness values than EDD.  

 
The paired t test is performed for all groups to see whether there is a significant difference 
between the two algorithms [18]. 

 
Ho: µ𝐷=0  
H1: µ𝐷≠0 
 
As can be seen from Table 9, p value = 0.00 <0.05 and H0 is rejected at level 0.05.  
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Table 8: Descriptive statistics for six groups 

Job size 

N Mean Std. deviation Std. error 

95% confidence interval for mean 

Minimum Maximum Lower bound Upper bound 
10 15 -32.87 25.108 6.483 -46.77 -18.96 -72 17 
30 15 -61.33 54.395 14.045 -91.46 -31.21 -188 24 
50 10 -62.70 78.284 24.756 -118.70 -6.70 -186 40 
80 10 -183.40 78.774 24.911 -239.75 -127.05 -296 -71 

100 10 -181.40 118.756 37.554 -266.35 -96.45 -371 -22 
150 10 -218.40 154.802 48.953 -329.14 -107.66 -455 -56 

Total 70 -112.46 112.478 13.444 -139.28 -85.64 -455 40 

Table 9: Paired samples test for problem size 10 

 
Tukey’s procedures are then used to look for significant differences among µ𝐷𝑖s [17]. The 
ANNOVA table (Table 10) is also used to see whether there is a significant difference 
between the results of LST-LA and EDD, both between and within groups. 
 
Hypothesis testing is: 
Ho: All µ𝐷𝑖s are equal 
H1: At least two of the µ𝐷𝑖s are different 

Table 10: ANOVA Table 

 Sum of squares df Mean square F P value 
Between groups 369081.005 5 73816.201 9.376 .000 
Within groups 503852.367 64 7872.693   
Total 872933.371 69    

 
Tukey’s test results can be seen in Table 11. 

Table 11: Tukey difference 

Size 
N 

Subset for alpha = 0.05 
1 2 

150 10 -218.40  
80 10 -183.40  
100 10 -181.40  
50 10  -62.70 
30 15  -61.33 
10 15  -32.87 
Sig.  .920 .967 

 
Group sizes 10, 30, and 50 are not significantly different from each other. Group sizes 
80,100, and 150 are also not significantly different from one another, but these two groups 
are significantly different from each other, as seen in Table 11. This result shows that when 
the number of jobs increases, LST-LA outperforms EDD on minimising the maximum lateness 
problem. 
 

 

Paired differences 

t Df 
P 

value Mean 
Std. 
dev. 

Std. error 
mean 

95% confidence interval of the 
difference 

Lower Upper 
Pair 
1 

LmaxEDD - 
LmaxLTSLA 32.867 25.108 6.483 18.962 46.771 5.07 14 .000 
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5.2 Experimental tests on Carlier’s benchmark problems 

For the additional experimental analysis, test instances were generated in the way defined 
by Carlier [16]. For the generation of problems, the following parameters were used: 
 
n= 50, 100,150,200, …, 1000, and  
K= 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 
A sample of 20 instances was generated for each job size and difficulty level.   
pj is generated from a discrete uniform distribution between 0 and pmax= 50, 
rj is generated from a discrete uniform distribution between 0 and rmax =n*K  
qj is generated from a discrete uniform distribution between 0 and qmax=n*K  
dj = rj+pj+qj 
 
where n is the job size, pj is the processing time of the job j, rj is the release date of job j, 
K is the parameter to define the tightness of due dates, qj is the tail time of job j, pmax is 
the maximum processing time of jobs, rmax is the maximum release time, qmax is the 
maximum tail time, and dj is the due date of job j. 
 
In this case, 4,000 instances were analysed in 200 different problem sets; the average 
maximum lateness values obtained by LST-LA and EDD are summarised in Table 12. A 
straightforward comparison between LST-LA and EDD for Carlier’s benchmark problem 
shows that LST-LA outperforms EDD. For example, for the job size of 50 and difficulty level 
of 16, the average difference between LST-LA and EDD rules is 480.18 per cent. 

6 CONCLUSION 

Considering the NP-hardness of the 1|rj|Lmax scheduling problem, the heuristic algorithm 
called LST-LA was developed to obtain a better solution than the EDD algorithm. The 
algorithm was first tested on six different job size groups, which were 10, 30, 50, 80,100, 
and 150 jobs. These job size groups were generated randomly with defined parameters, as 
presented in Section 4, and the results were tested in SPSS. For each set, computational 
results show that LST-LA outperforms EDD and that the highest improvement over the EDD 
rule is obtained on the problems with 10 jobs. 
 
In order to see the performance of the proposed LST-LA algorithm, it was also tested on 
randomly-generated Carlier’s instances, as explained in Section 5.2. In these instances, 
LST-LA outperformed the EDD rule, even on the hard problems with difficulty levels of K= 
18, 19, and 20. 
 
The main contribution of the LST-LA algorithm is that it solves the 1|rj|Lmax problem as 
easily as the EDD rule, but with an improved solution performance. This proposed algorithm 
can be used easily in practice in a make-to-order environment that uses a single machine 
(e.g., plastic injection machine, moulding machine, or press machine). The proposed 
algorithm (LST-LA) can also be used to solve more complex scheduling problems, such as 
the shifting bottleneck algorithm, which iteratively solves a job shop scheduling problem by 
considering each machine as a single machine sub-problem. 
 
For future work, we plan to use  the LST-LA algorithm to boost the performance of the 
algorithms that solve a more complicated scheduling problem, by partitioning it to single 
machine sub-problems. 
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Table 12: Average maximum lateness values of LST-LA and EDD for 4,000 problem sets 
of Carlier’s instances 

Job 
size   

K value 
16 17 18 19 20 21 22 23 24 25 

50 LST-LA 75,8 11,8 17,3 8,2 1,8 -5,2 -1,4 -3,5 1,3 -12,5 
EDD 251,7 153,6 163,2 172,6 109,4 89,4 100,5 60,1 65,5 32 

100 LST-LA 54,6 9,8 -0,8 -6,5 -1 -4,6 0,5 -9 -5,2 -10,5 
EDD 463,9 346,2 270,6 270,1 171,6 146,6 134,8 87,2 87 30,6 

150 
LST-LA 60,9 0,1 3,8 3 -3,1 6,9 -5,4 -7,3 -7,4 2 
EDD 647,8 462,2 462,7 277,5 249,6 193 178,1 121 74,7 111,5 

200 LST-LA 19,6 4,2 2,2 5,9 2,8 -0,1 -7,9 3,3 -5 -6,4 
EDD 812,3 671,3 504,2 429,5 329,7 276,7 148,3 133,8 69,9 54,4 

250 LST-LA 19,2 0,1 -1,8 -3 2,9 -1 -2,8 -0,3 -1,8 -7,4 
EDD 981,1 860,6 677,3 471,1 390,6 303,6 200,9 231,5 165,6 113,8 

300 LST-LA 35,4 4,4 3,4 7,8 -4,1 1,7 4,9 -0,7 -14,1 -3,1 
EDD 1185,7 986,9 787,9 675 385 373,2 277,7 208,3 78,2 129,2 

350 LST-LA 14,9 3,9 7,3 8,4 1,9 9,2 -8,5 -9,5 1,5 -9,9 
EDD 1260,5 1029,8 966,8 690,8 688,6 510,7 255,5 246,3 147,1 86,4 

400 LST-LA 15,2 10 3,8 2,7 -15,5 -4,9 0,1 -0,6 -8 -2,1 
EDD 1658,7 1188 1026,7 720,5 569,4 512,7 370,3 205,9 144,8 154,2 

450 LST-LA 9,6 3,4 -0,9 1,1 -5,1 0,6 -6,6 -1 -14,2 2,2 
EDD 1617,3 1513,9 1001,8 914,3 646,9 488,8 385,6 292,9 139,1 187,5 

500 LST-LA 18,1 4,9 3,1 1,7 8,4 -9,8 -3,3 -4,3 -12,1 -8,5 
EDD 2033,4 1608,5 1229,3 1034,4 701,6 435 460,9 302,7 153,9 163,7 

550 
LST-LA 1,8 6,6 5,7 6,9 -3,9 0,9 -1,8 -1,2 -8,6 -6,3 
EDD 1959,3 1743,2 1232,5 1031,4 896,5 624,1 389,1 295,4 173,6 133,4 

600 LST-LA 9,7 4,7 5,6 10,2 9,9 -0,2 -0,8 -1,8 0,9 -17,9 
EDD 2368,8 1815,9 1560,3 1221,6 929,5 646,5 515 280,5 253 165 

650 LST-LA 6,1 6,1 0,6 -6,4 4,6 2,9 -2,9 1,7 0,3 -16,9 
EDD 2403 2010,1 1640,8 1250 854,5 757,8 450,7 348,9 250,7 88,3 

700 LST-LA 15,4 -1,4 4,5 -0,3 -10,6 -3,4 2,5 -6,6 -3,3 0,9 
EDD 2652,4 2244,3 1658,7 1357,3 970,3 815,4 532,2 286,7 218,8 165 

750 LST-LA 21,4 -4,8 6,6 4,6 -9,1 2,1 -7,3 -2,4 -9,9 -17,1 
EDD 2921,3 2341,1 1816,5 1428,8 1162,6 766 600,3 384 164,3 221,1 

800 LST-LA 9,3 0,8 2,7 1,8 -4,9 2,9 8 -2,8 -21,2 -2,6 
EDD 3109 2256,1 1811,4 1414,5 1159,7 857,2 640,3 436,4 274,5 195,6 

850 LST-LA 10,8 2,6 3,9 3,8 1,2 -4,2 -7,1 -3,3 -5,9 -5,8 
EDD 3177,1 2467,8 2227,4 1562,4 1201 988,4 540,7 538,4 191 229,3 

900 LST-LA 13,9 -3,8 -6 4 -5,5 2,3 -5,3 -3,8 -6,8 -1,1 
EDD 3458,9 2718,9 2158,5 1821 1227,1 983,1 685,3 440,8 302,2 187,4 

950 LST-LA 4,9 -2,8 6,6 7,9 8 1,6 -2,5 -9,8 -12,7 -0,8 
EDD 3542,4 2737,5 2289,3 1645,8 1476,3 858,4 730,8 447,1 269,1 196 

1000 LST-LA 3,4 2 3,1 4,7 2,5 7,3 -8,6 -6 -13,9 -2,1 
EDD 3841,6 3120,8 2487,3 1728,5 1488,3 886,9 606,3 412 312,1 189,2 
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