
http://dx.doi.org/10.7166/26-3-1030

South African Journal of Industrial Engineering November 2015 Vol 26(3) pp 41-53

A HEURISTIC APPROACH TO MINIMISING MAXIMUM LATENESS ON A SINGLE MACHINE

B. Çalış1*, S. Bulkan2 & F. Tunçer3

1,2Department of Industrial Engineering
Marmara University, Turkey

1bcalis@marmara.edu.tr, 2sbulkan@marmara.edu.tr

3Department of Computer Engineering
Marmara University, Turkey
ferittuncer@marun.edu.tr

ABSTRACT

This paper focuses on the problem of scheduling on a single machine to minimise the
maximum lateness when each job has a different ready time, processing time, and due
date. A simple procedure is developed to find a better solution than the early due date
(EDD) algorithm. The new algorithm suggested in this paper is called Least Slack Time -
Look Ahead (LST-LA), which minimises the maximum lateness problem. Computational
results show that when the number of jobs increases, LST-LA outperforms EDD.

OPSOMMING

Die artikel konsentreer op die skedulering van ‘n enkele masjien om die maksimum
laatwees probleem, wanneer elke taak ‘n verskillende gereedheidstyd, prosesseertyd en
keerdatum het, te minimeer. ‘n Eenvoudige prosedure om ‘n beter oplossing tot die vroeë
keerdatum algoritme te bepaal, is ontwikkel. Die nuwe algoritme word die “Least Slack
Time Look Ahead” genoem en dit minimiseer die maksimum laatwees probleem. Simulasie
resultate toon dat soos die aantal take toeneem, vertoon die nuwe algoritme beter as die
vroeë keerdatum algoritme.

1 The author was enrolled for an PhD degree in the Department of Industrial Engineering,

Marmara University, Turkey
3 The author was enrolled for a BSc degree in the Department of Computer Engineering,

Marmara University, Turkey
* Corresponding author

42

1 INTRODUCTION

This paper considers the problem of finding an effective schedule for n jobs with different
release dates on a single machine, in order to minimise the maximum lateness. The single
machine scheduling problem is one of the important problem types in machine scheduling
models; it can be used to solve the single machine models, or it gives an initial solution to
the decomposition of big problems into sub-problems, such as job shops or flow shops.
Minimising maximum lateness (Lmax) is an important objective if all preceding activities
must be completed before the rest can begin in a project; i.e., a very late activity may
cause a delay in the project. In addition, Lmax may be used as an aid for solving other
problems [1].

To define a scheduling problem, the well-known three-field notation of Graham et al. [2],
α│β│γ, is used, where α, β, and γ represent the machine environment, job characteristics
(problem constraints), and objective function respectively. The scheduling problem studied
in this work is minimising maximum lateness (Lmax) for n jobs, with release dates (rj) on a
single machine. The problem is denoted by 1 │rj│Lmax and shown as NP-hard by Lenstra et
al. [3]. When the difference of Cj-dj (completion time of job j – due date of job j) is
positive, the job is said to be late; if the difference of Cj-dj is negative, the job is said to be
early; if the result of the difference equals zero, the job is said to be on time.

This paper provides a brief and up-to-date literature review of the single machine maximum
lateness with release times. It then proposes a simple and effective heuristic called Least
Slack Time - Look Ahead (LST-LA) to solve the 1 | rj│ Lmax problem. The solutions obtained
by the full enumeration (for the problems up to 13 jobs) and early due date (EDD) rule (for
the problems with more than 13 jobs) are compared. Experimential results of the study
show that the proposed algorithm (LST-LA) outperforms the EDD algorithm, on average, by
at least 400 per cent on the Carlier’s instances.

The outline of this paper is as follows. In Section 2, the maximum lateness problem is
defined. In Section 3, the analysis of the proposed heuristic algorithm, procedures, and a
computational example are explained in detail. Section 4 presents computational results
based on the randomly generated problem instances for the single machine minimising
maximum lateness problem under study. Section 5 presents the statistical analysis of the
results. Test results on Carlier’s problems are also presented in Section 5.2. Finally, in
Section 6, overall conclusions are drawn and future research paths are highlighted.

2 MINIMISING THE MAXIMUM LATENESS PROBLEM

The problem without release times (1││Lmax) is optimally solvable by the EDD first in
polynomial time [4]. The EDD rule can be defined as the set of n jobs, with known
processing times and due dates; the minimum value of Lmax is achieved by sequencing the
jobs in non-decreasing order of their due dates [5]. A detailed literature review on the
single machine maximum lateness problem with release times (1|rj|Lmax) can be found in
Sels and Vanhoucke [6]. The well-studied problem 1|rj|Lmax is a special case of problem
1|prec;rj|Lmax.

Oyetunji and Oluleye [7] proposed a heuristic to reduce the number of tardy jobs by
scheduling the jobs according to an ascending order of the job allowance; test results show
that the given algorithm is faster than others when the number of jobs is large.

McMahon and Florian [8] provide efficient branch and bound algorithms to solve this
problem. Lagaweg et al. [9] studied scheduling jobs on a single machine subject to given
release dates and precedence constraints; they described applications to the theory of job-
shop scheduling and to a practical scheduling situation.

43

Frederickson [10] showed that the problem of scheduling n unit-time tasks with integer
release times and deadlines is solvable in O(n log n) time, if a sufficient amount of
uninitialised space is available. Baker et al. [11] considered that n jobs are to be processed
on a single machine, subject to release dates and precedence constraints, and they
presented an O(n2) algorithm for this problem.

Gordon [12] considered the optimal assignment of slack due-dates and sequencing in the
single-machine shop to the case when pre-emption is allowed and there are precedence
constraints and ready times of jobs. The study shows that under special conditions, the
presented algorithm may be used when pre-emption is not allowed.

Oyetunji and Oluleye [13] considered the single machine scheduling problem subject to
release dateto minimise total completion time and the number of tardy jobs and a proposed
a solution algorithm, which was recommended when there are 30 or more jobs in the
problem.

Monma and Potts [14] studied the single machine scheduling problem with sequence-
dependent family setup times. Results of their study showed that “for the maximum
lateness problem, there is an optimal schedule where the jobs within each batch are
ordered by the EDD rule”.

Schrage [15] proposed an algorithm that considers scheduling an available job with the
largest tail time. Carlier [16] studied how to solve the 1│rj, qj │Lmax problem. Results from
Carlier’s algorithms shows that this is the most promising approach in the literature.

A lot of researchers considered minimising the maximum lateness problem under different
constraints. Due to the NP-hard nature of the problem, a number of different heuristics
have been developed. In this study, minimising the maximum lateness problem is studied
under a release date constraint; and a simple and efficient heuristic algorithm called LST-
LA is proposed and tested on randomly-generated problems.

The next section includes detailed information about the proposed heuristic algorithm.

3 PROPOSED LST-LA ALGORITHM

The problem of 1|rj|Lmax is strongly NP-hard [15]. The problem considers n independent
jobs (j=1,2,…,n) with unequal release dates (rj) on a single machine to minimise maximum
lateness. There are no precedence constraints between jobs, and each job has positive due
dates, dj (dj ≥ 0). The machine is continuously available and can process one job at a time.

The problem of 1 ││ Lmax is the best-known special case of 1 │ prec │ hmax. The function hj
is then defined as Cj–dj, and the algorithm results in the schedule that orders the jobs in
increasing order of their due date [14]; in order to minimise the maximum lateness the
algorithm processes the jobs in non-decreasing due date order. This dispatching rule is
known as EDD, or Jackson's rule, after Jackson [16] who studied it in 1955 [17].

The results obtained by LST-LA are compared with the results from the EDD rule. The
notations below are used to describe the scheduling problem.

Problem procedures: the flow chart of the LST-LA algorithm is given in Figure 1.

Notations:

J : set of scheduled operations
Jd : candidate to schedule jobs at time t, (rj ≤ t)
Jc : set of unscheduled operations
t : scheduling time
Lmax : maximum lateness

44

Lj : lateness of job j
Pj : processing time of job j
dj : due date of job j
Cj : completion time of job j

The machine is assumed to be continuously available and can process, at most, one job at a
time.

The jobs may not be pre-empted, and each job j is characterised by its processing time pj,
its release time rj, and its due date dj.

3.1 Algorithm definition

The flow chart of the proposed LST-LA algorithm can be seen in Figure 1.

Figure 1: Flow chart of the LST-LA algorithm

The pseudo code of the proposed model is given in Figure 2.

45

01 t=0, J = new empty set, Jc = job input;
02 for each job in Jc
03 if time >= job.releaseDate
04 add this job to Jd;
05 if Jd > 1
06 schedule the job with max lateness available in Jc;
07 update time, Jc, J;
08 if Jc > 0
09 goto line 3
10 else
11 EXIT
12 if Jd = 1
13 mainJob = the job in Jd
14 if there is a job in Jc else then this candidate
15 alternativeJob = next first available job in Jc;
16 If scheduling mainJob before alternativeJob result in a
lower
 Lmax than scheduling alternative job before main
job
17 schedule mainJob
18 if Jc > 0
19 goto line 3
20 else
21 EXIT
22 else
23 schedule alternativeJob
24 if Jc > 0
25 goto line 3
26 else
27 EXIT
28 else
29 schedule main job
30 if Jc > 0
31 goto line 3
32 else
33 EXIT
34 else
35 time = next available jobs release date;
36 goto line 3

Figure 2: Pseudo code of LST-LA algorithm

3.2 A computational example

In this part of the study, execution of the algorithm is presented using a small example in
order to demonstrate the algorithm. Sample data is given in Table 1.

Table 1: Sample data of execution

Jobs 1 2 3 4 5 6 7 8
Pj 4 9 3 3 6 8 8 12
rj 0 12 0 20 2 22 15 30
dj 10 29 8 30 16 33 42 48

Step1. t=0 J= ϕ, Jd = ϕ, Lmax=-∞ and Jc={1,2,3,4,5,6,7,8}
Step2. Jd = {1,3} since they are ready at time 0.
Max{Pj+rj – dj} ={P1+r1- d1, P3+r3-d3}
 = {4+0-10, 3+0-8}
 ={-6,-5}
 =-5
J={3}, Jc={1,2,4,5,6,7,8}, C3 =3, t=3, L3=-5 < 0 and since L3 > Lmax, Lmax=-5

46

Step3. Jc is not an empty set (Jc ≠ϕ) so go to Step 2.
Step2. t=3
Jd = {1,5} and t=3 > r1 =0 so r1 =3 and t=3 > r5 =2 so r5 =3
Max{Pj+rj – dj} ={P1+r1- d1, P5+r5-d5}
 = {4+3-10, 6+3-16}
 ={-3,-7}
 =-3
J={3,1}, Jc={2,4,5,6,7,8}, C1 =7, t=7, L1=-3 < 0 and since L1 > Lmax, Lmax=-3

Step3. Jc is not an empty set (Jc ≠ϕ), so go to Step 2.

Step2. t=7 and Jd set has only one job (J5), check the next available job (j2 and r2 =12),
which has next minimum rj value in Jc set and calculate Lmax values for two possible
sequences of two jobs, and then schedule the first job in the sequence that results in
minimum Lj value for the second job in the sequence.
Jd = {2, 5}

For the sequence of 5, 2:
Since t=7 > r5 =2 so r5 =7

L5={P5+r5-d5}= {6+7-16}=-3 and C5=13, t=13 > r2 =12 so r2 =13.
L2={P2+r2- d2}= {9+13-29}=-7 and C2=22, t=22

Max {L5, L2} = -3 < 0 so Lmax =-3 (for the sequence of 5, 2)

For the sequence of 2, 5:
Since t=7 < r2 =12 so keep the machine idle until time 12 and set t=12

L2={P2+r2-d2}= {9+12-29}=-8 and C2=21, t=21 > r5 =2 so r5 =21
L5={P5+r5-d5}= {6+21-16}=11 and C5=27, t=27

Max {L2, L5} =11 > 0 so Lmax =11 (for the sequence of 2, 5)

Since Lmax value is minimum for the first sequence (i.e., sequence of 5, 2) Job 5 will be
selected and assigned to the J set. So, J={3,1,5}, Jc={2,4,6,7,8}, Cj =13, t=13, Lj=-3 < 0
Lmax=-3.

Step3. Jc is not an empty set (Jc ≠ϕ), so go to Step 2.

At the end of the solution all sets are calculated as:
J={3,1,5,2,6,4,7,8}, Jc= ϕ, C8 =53, t=53, L3 =-5, L1=-3, L5=-3, L2=-7, L6=-3, L4=3, L7=-1 and
L8=5. LST-LA yields an Lmax=5, which is identical to the Lmax obtained by EDD solution
although the sequence is different.

4 TEST PROBLEMS AND RESULTS

First, the problem data is generated as follows:

pj is generated from a discrete uniform distribution between 5 to 50
rj is generated from a discrete uniform distribution between 0 and ∑ pjn

j=1
dj is generated from a discrete uniform distribution between 0 and [max rj + max pj]

The problem is then tested with 15 independent samples with a constant size of 10. LST-LA,
EDD, and full enumeration (FE) solutions are calculated and compared in Table 2.

47

Table 2: Comparison table for set size 10

Job
size

Problem
set

Lmax-
FE

Lmax-
EDD

Lmax-
LST-LA

%difference
btw EDD & FE

%difference
btw LST-LA &
FE

%difference btw
LST-LA & EDD

10

1 257 332 260 29,18% 1,17% -27,69%

2 163 203 163 24,54% 0,00% -24,54%

3 127 170 127 33,86% 0,00% -33,86%

4 245 299 245 22,04% 0,00% -22,04%

5 275 303 275 10,18% 0,00% -10,18%

6 131 206 144 57,25% 9,92% -43,06%

7 226 320 269 41,59% 19,03% -18,96%

8 191 209 191 9,42% 0,00% -9,42%

9 146 214 161 46,58% 10,27% -32,92%

10 273 308 280 12,82% 2,56% -10,00%

11 200 202 200 1,00% 0,00% -1,00%

12 189 225 189 19,05% 0,00% -19,05%

13 115 142 115 23,48% 0,00% -23,48%

14 175 204 208 16,57% 18,86% 1,92%

15 113 113 130 0,00% 15,04% 13,08%
Bold values in the column of Lmax-EDD and
Lmax-LST-LA are optimal solutions. 23,17% 5,12% -17,41%

LST-LA obtained an optimal solution eight times out of 15 for randomly-selected problems,
the EDD rule obtained an optimal solution only once, and the EDD rule ended up with a
better solution than the LST-LA algorithm only once. The percentage differences show that
the EDD rule yielded a maximum lateness up to 57 per cent away from the optimum value
obtained by the full enumeration, whereas the LST-LA algorithm yielded a maximum
lateness up to 19.3 per cent away from the optimum solution. The average percentage
differences are calculated to be 23.17 per cent between EDD and FE, and 5.12 per cent
between LST-LA and FE. LST-LA yields solutions that are 17.41 per cent lower than EDD,
and these results mean that LST-LA gives a better solution than EDD, on average.

Hereafter, the problem set size is increased to 30, 50, 80, 100, and 150 jobs, and the
results are listed in Table 3, Table 4, Table 5, Table 6, and Table 7, respectively.

When the job size increases to 30 jobs (Table 3), LST-LA yields solutions that are 8.16 per
cent lower than EDD, on average. The LST-LA algorithm obtains better results than EDD in
13 out of the 15 test problems, whereas EDD yields better results than LST-LA only twice
out of the 15 test problems. The LST-LA algorithm yields better results than EDD 8.16 per
cent of the time, on average.

Table 3: Comparison table for set size 30

Job size Problem
set Lmax-EDD Lmax-LST-LA % difference btw LST-LA-EDD

30

1 619 587 -5,17%

2 695 660 -5,04%

3 828 852 2,90%

4 858 670 -21,91%

5 729 684 -6,17%

6 713 637 -10,66%

48

Table 3 (cont.): Comparison table for set size 30

Job size Problem
set Lmax-EDD Lmax-LST-LA % difference btw LST-LA-EDD

7 698 627 -10,17%

8 749 751 0,27%

9 678 592 -12,68%

10 811 681 -16,03%

11 908 871 -4,07%

12 792 705 -10,98%

13 683 572 -16,25%

14 683 667 -2,34%

15 777 745 -4,12%

-8,16%

The LST-LA algorithm yields solutions that are 4.61 per cent lower than EDD, on average,
for the problems with 50 jobs, as seen in Table 4.

Table 4: Comparison table for set size 50

Jo
b
siz
e

Proble
m set Lmax-EDD Lmax-LST-LA

%difference
btw LST-LA-

EDD

50

1 1267 1223 -3,47%
2 1001 980 -2,10%
3 1566 1380 -11,88%
4 1256 1247 -0,72%
5 1333 1219 -8,55%
6 1605 1513 -5,73%
7 1216 1031 -15,21%
8 1272 1265 -0,55%
9 945 936 -0,95%
10 1284 1324 3,12%

-4,61%

The LST-LA algorithm yields solutions that are 8.46 per cent lower than EDD, on average,
for the problems with 80 jobs, as seen in Table 5.

Table 5: Comparison table for set size 80

Job size Problem set Lmax-EDD Lmax-LST-LA %difference btw LST-LA-EDD

80

1 2379 2179 -8,41%
2 2310 2239 -3,07%
3 2275 1979 -13,01%
4 2260 2102 -6,99%
5 2277 2015 -11,51%
6 1898 1729 -8,90%
7 1694 1612 -4,84%
8 1984 1846 -6,96%
9 2054 1883 -8,33%
10 2280 1993 -12,59%

 -8,46%
For 100 job problems, LST-LA yields solutions that are 6.65 per cent lower than EDD, on
average, as seen in Table 6.

49

Table 6: Comparison table for set size 100

Job
size

Proble
m set Lmax-EDD Lmax-LST-LA

%difference
btw LST-LA -
EDD

100

1 2479 2334 -5,85%
2 2944 2604 -11,55%
3 2836 2642 -6,84%
4 2994 2623 -12,39%
5 2416 2394 -0,91%
6 2545 2442 -4,05%
7 2617 2312 -11,65%
8 2599 2504 -3,66%
9 2476 2391 -3,43%
10 2491 2337 -6,18%

-6,65%

For the problems with 150 jobs, as can be seen in Table 7, improvement of LST-LA’s results
is 5.44 per cent compared with EDD, on average.

Table 7: Comparison table for set size 150

Job size Problem set Lmax-EDD Lmax-LST-LA %difference btw LST-LA -EDD

150

1 3501 3409 -2,63%
2 3689 3528 -4,36%
3 3484 3428 -1,61%
4 3784 3721 -1,66%
5 4207 3752 -10,82%
6 4461 4033 -9,59%
7 3596 3343 -7,04%
8 4048 3651 -9,81%
9 4107 3982 -3,04%
10 3963 3809 -3,89%

-5,44%

5 STATISTICAL ANALYSIS

5.1 Statistical analysis of the randomly-generated problems

In order to discover the relationship between the two algorithms and to obtain more
reliable test results, the data was transferred to SPSS software. First, descriptive statistics
were gathered for µ𝐷 (mean differences) for six test sets. The results are given in Table 8
where, as can be seen, negative differences show that LST-LA reaches lower maximum
lateness values than EDD.

The paired t test is performed for all groups to see whether there is a significant difference
between the two algorithms [18].

Ho: µ𝐷=0
H1: µ𝐷≠0

As can be seen from Table 9, p value = 0.00 <0.05 and H0 is rejected at level 0.05.

50

Table 8: Descriptive statistics for six groups

Job size

N Mean Std. deviation Std. error

95% confidence interval for mean

Minimum Maximum Lower bound Upper bound
10 15 -32.87 25.108 6.483 -46.77 -18.96 -72 17
30 15 -61.33 54.395 14.045 -91.46 -31.21 -188 24
50 10 -62.70 78.284 24.756 -118.70 -6.70 -186 40
80 10 -183.40 78.774 24.911 -239.75 -127.05 -296 -71

100 10 -181.40 118.756 37.554 -266.35 -96.45 -371 -22
150 10 -218.40 154.802 48.953 -329.14 -107.66 -455 -56

Total 70 -112.46 112.478 13.444 -139.28 -85.64 -455 40

Table 9: Paired samples test for problem size 10

Tukey’s procedures are then used to look for significant differences among µ𝐷𝑖s [17]. The
ANNOVA table (Table 10) is also used to see whether there is a significant difference
between the results of LST-LA and EDD, both between and within groups.

Hypothesis testing is:
Ho: All µ𝐷𝑖s are equal
H1: At least two of the µ𝐷𝑖s are different

Table 10: ANOVA Table

 Sum of squares df Mean square F P value
Between groups 369081.005 5 73816.201 9.376 .000
Within groups 503852.367 64 7872.693
Total 872933.371 69

Tukey’s test results can be seen in Table 11.

Table 11: Tukey difference

Size
N

Subset for alpha = 0.05
1 2

150 10 -218.40
80 10 -183.40
100 10 -181.40
50 10 -62.70
30 15 -61.33
10 15 -32.87
Sig. .920 .967

Group sizes 10, 30, and 50 are not significantly different from each other. Group sizes
80,100, and 150 are also not significantly different from one another, but these two groups
are significantly different from each other, as seen in Table 11. This result shows that when
the number of jobs increases, LST-LA outperforms EDD on minimising the maximum lateness
problem.

Paired differences

t Df
P

value Mean
Std.
dev.

Std. error
mean

95% confidence interval of the
difference

Lower Upper
Pair
1

LmaxEDD -
LmaxLTSLA 32.867 25.108 6.483 18.962 46.771 5.07 14 .000

51

5.2 Experimental tests on Carlier’s benchmark problems

For the additional experimental analysis, test instances were generated in the way defined
by Carlier [16]. For the generation of problems, the following parameters were used:

n= 50, 100,150,200, …, 1000, and
K= 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
A sample of 20 instances was generated for each job size and difficulty level.
pj is generated from a discrete uniform distribution between 0 and pmax= 50,
rj is generated from a discrete uniform distribution between 0 and rmax =n*K
qj is generated from a discrete uniform distribution between 0 and qmax=n*K
dj = rj+pj+qj

where n is the job size, pj is the processing time of the job j, rj is the release date of job j,
K is the parameter to define the tightness of due dates, qj is the tail time of job j, pmax is
the maximum processing time of jobs, rmax is the maximum release time, qmax is the
maximum tail time, and dj is the due date of job j.

In this case, 4,000 instances were analysed in 200 different problem sets; the average
maximum lateness values obtained by LST-LA and EDD are summarised in Table 12. A
straightforward comparison between LST-LA and EDD for Carlier’s benchmark problem
shows that LST-LA outperforms EDD. For example, for the job size of 50 and difficulty level
of 16, the average difference between LST-LA and EDD rules is 480.18 per cent.

6 CONCLUSION

Considering the NP-hardness of the 1|rj|Lmax scheduling problem, the heuristic algorithm
called LST-LA was developed to obtain a better solution than the EDD algorithm. The
algorithm was first tested on six different job size groups, which were 10, 30, 50, 80,100,
and 150 jobs. These job size groups were generated randomly with defined parameters, as
presented in Section 4, and the results were tested in SPSS. For each set, computational
results show that LST-LA outperforms EDD and that the highest improvement over the EDD
rule is obtained on the problems with 10 jobs.

In order to see the performance of the proposed LST-LA algorithm, it was also tested on
randomly-generated Carlier’s instances, as explained in Section 5.2. In these instances,
LST-LA outperformed the EDD rule, even on the hard problems with difficulty levels of K=
18, 19, and 20.

The main contribution of the LST-LA algorithm is that it solves the 1|rj|Lmax problem as
easily as the EDD rule, but with an improved solution performance. This proposed algorithm
can be used easily in practice in a make-to-order environment that uses a single machine
(e.g., plastic injection machine, moulding machine, or press machine). The proposed
algorithm (LST-LA) can also be used to solve more complex scheduling problems, such as
the shifting bottleneck algorithm, which iteratively solves a job shop scheduling problem by
considering each machine as a single machine sub-problem.

For future work, we plan to use the LST-LA algorithm to boost the performance of the
algorithms that solve a more complicated scheduling problem, by partitioning it to single
machine sub-problems.

52

Table 12: Average maximum lateness values of LST-LA and EDD for 4,000 problem sets
of Carlier’s instances

Job
size

K value
16 17 18 19 20 21 22 23 24 25

50 LST-LA 75,8 11,8 17,3 8,2 1,8 -5,2 -1,4 -3,5 1,3 -12,5
EDD 251,7 153,6 163,2 172,6 109,4 89,4 100,5 60,1 65,5 32

100 LST-LA 54,6 9,8 -0,8 -6,5 -1 -4,6 0,5 -9 -5,2 -10,5
EDD 463,9 346,2 270,6 270,1 171,6 146,6 134,8 87,2 87 30,6

150
LST-LA 60,9 0,1 3,8 3 -3,1 6,9 -5,4 -7,3 -7,4 2
EDD 647,8 462,2 462,7 277,5 249,6 193 178,1 121 74,7 111,5

200 LST-LA 19,6 4,2 2,2 5,9 2,8 -0,1 -7,9 3,3 -5 -6,4
EDD 812,3 671,3 504,2 429,5 329,7 276,7 148,3 133,8 69,9 54,4

250 LST-LA 19,2 0,1 -1,8 -3 2,9 -1 -2,8 -0,3 -1,8 -7,4
EDD 981,1 860,6 677,3 471,1 390,6 303,6 200,9 231,5 165,6 113,8

300 LST-LA 35,4 4,4 3,4 7,8 -4,1 1,7 4,9 -0,7 -14,1 -3,1
EDD 1185,7 986,9 787,9 675 385 373,2 277,7 208,3 78,2 129,2

350 LST-LA 14,9 3,9 7,3 8,4 1,9 9,2 -8,5 -9,5 1,5 -9,9
EDD 1260,5 1029,8 966,8 690,8 688,6 510,7 255,5 246,3 147,1 86,4

400 LST-LA 15,2 10 3,8 2,7 -15,5 -4,9 0,1 -0,6 -8 -2,1
EDD 1658,7 1188 1026,7 720,5 569,4 512,7 370,3 205,9 144,8 154,2

450 LST-LA 9,6 3,4 -0,9 1,1 -5,1 0,6 -6,6 -1 -14,2 2,2
EDD 1617,3 1513,9 1001,8 914,3 646,9 488,8 385,6 292,9 139,1 187,5

500 LST-LA 18,1 4,9 3,1 1,7 8,4 -9,8 -3,3 -4,3 -12,1 -8,5
EDD 2033,4 1608,5 1229,3 1034,4 701,6 435 460,9 302,7 153,9 163,7

550
LST-LA 1,8 6,6 5,7 6,9 -3,9 0,9 -1,8 -1,2 -8,6 -6,3
EDD 1959,3 1743,2 1232,5 1031,4 896,5 624,1 389,1 295,4 173,6 133,4

600 LST-LA 9,7 4,7 5,6 10,2 9,9 -0,2 -0,8 -1,8 0,9 -17,9
EDD 2368,8 1815,9 1560,3 1221,6 929,5 646,5 515 280,5 253 165

650 LST-LA 6,1 6,1 0,6 -6,4 4,6 2,9 -2,9 1,7 0,3 -16,9
EDD 2403 2010,1 1640,8 1250 854,5 757,8 450,7 348,9 250,7 88,3

700 LST-LA 15,4 -1,4 4,5 -0,3 -10,6 -3,4 2,5 -6,6 -3,3 0,9
EDD 2652,4 2244,3 1658,7 1357,3 970,3 815,4 532,2 286,7 218,8 165

750 LST-LA 21,4 -4,8 6,6 4,6 -9,1 2,1 -7,3 -2,4 -9,9 -17,1
EDD 2921,3 2341,1 1816,5 1428,8 1162,6 766 600,3 384 164,3 221,1

800 LST-LA 9,3 0,8 2,7 1,8 -4,9 2,9 8 -2,8 -21,2 -2,6
EDD 3109 2256,1 1811,4 1414,5 1159,7 857,2 640,3 436,4 274,5 195,6

850 LST-LA 10,8 2,6 3,9 3,8 1,2 -4,2 -7,1 -3,3 -5,9 -5,8
EDD 3177,1 2467,8 2227,4 1562,4 1201 988,4 540,7 538,4 191 229,3

900 LST-LA 13,9 -3,8 -6 4 -5,5 2,3 -5,3 -3,8 -6,8 -1,1
EDD 3458,9 2718,9 2158,5 1821 1227,1 983,1 685,3 440,8 302,2 187,4

950 LST-LA 4,9 -2,8 6,6 7,9 8 1,6 -2,5 -9,8 -12,7 -0,8
EDD 3542,4 2737,5 2289,3 1645,8 1476,3 858,4 730,8 447,1 269,1 196

1000 LST-LA 3,4 2 3,1 4,7 2,5 7,3 -8,6 -6 -13,9 -2,1
EDD 3841,6 3120,8 2487,3 1728,5 1488,3 886,9 606,3 412 312,1 189,2

REFERENCES

[1] Chang, P.C. and Su, L.H. 2001. Scheduling n jobs on one machine to minimize the maximum
lateness with a minimum number of tardy jobs. Computer and Industrial Engineering, 40(4), pp.
349-360.

[2] Graham, R.L., Lawler, E.L., Lenstra, J.K., and Rinnooy–Kan, A.H.G. 1979. Optimization and
approximation in deterministic sequencing and scheduling: A survey. Annals of discrete
mathematics, 5, pp. 287-326.

[3] Lenstra, J.K., Rinnooy, Kan, A.H.G. & Brucker, P. 1977. Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1, pp. 343–362.

[4] Liu, L. and Zhou, H. 2012. Applying variable neighborhood search to the single-machine
maximum lateness rescheduling problem, Electronic Notes in Discrete Mathematics, 39, pp. 107–
114.

[5] Baker, K.R. and Magazine, M.J. 2000. Minimizing maximum lateness with job families. European
Journal of Operational Research, 127(1), pp. 126-139.

[6] Sels, V. and Vanhoucke, M. 2011. A hybrid dual-population genetic algorithm for the single
machine maximum lateness problem. Lecture Notes in Computer Science, 6622, pp. 14–25.

[7] Oyetunji, E.O. and Oluleye, A.E. 2008. Heuristics for minimizing the number of tardy jobs on a
single machine with release time. South African Journal of Industrial Engineering, 19(2), pp.183-
196.

[8] McMahon, G. and Florian, M. 1975. On scheduling with ready times and due dates to minimize
maximum lateness. Operations Research, 23(3), pp. 475-482.

53

[9] Lageweg, B.J., Lenstra, J.K., and Rinnooy-Kan, A.H.G. 1976. Minimizing maximum lateness on
one machine: Computational experience and some applications. Statistica Neerlandica, 30(1),
pp. 25-41.

[10] Frederickson, G.N. 1983. Scheduling unit-time tasks with integer release times and deadlines.
Information Processing Letters, 16(4), pp. 171–173.

[11] Baker, K.R., Lawler, E.L., Lenstra, J.K., and Rinnooy–Kan, A.H.G. 1983. Preemptive scheduling
of a single machine to minimize maximum cost subject to release dates and precedence
constraints. Operations Research, 31(2), pp. 381-386.

[12] Gordon, V.S. 1993. A note on optimal assignment of slack due-dates in single-machine
scheduling. European Journal of Operational Research, 70(3), pp. 311–315.

[13] Oyetunji, E.O. and Oluleye, A.E. 2010. New heuristics for minimising total completion time and
the number of tardy jobs criteria on a single machine with release time. South African Journal of
Industrial Engineering, 21(2), pp. 101-113

[14] Monma, C. and Potts, C. 1989. On the complexity of scheduling with batch setup times.
Operations Research, 37(5), pp. 798–804.

[15] Schrage, L.E. 1971. Obtaining optimal solution to resource constrained network scheduling
problems. Unpublished manuscript, 189.

[16] Carlier, J. 1982. The one-machine sequencing problem, European Journal of Operational
Research, 11(1), pp.42-47.

[17] Pinedo, M. 2002. Scheduling theory algorithms and systems. 4th edition, Prentice Hall.
[18] Jackson, J.R. 1955. Scheduling a production line to minimize maximum tardiness. Research

Report 43, Management Science Research Project, University of California, Los Angeles, CA.
[19] Potts, C.N. and Strusevich, V.A. 2009. Fifty years of scheduling: A survey of milestones. The

Journal of the Operational Research Society, 60(5)(Supplement), pp. 41-68.
[20] Devore, J.L. 1995. Probability and statistics for engineering and sciences. 4th edition, Wadsword

Inc.

http://www.sciencedirect.com/science/journal/03772217
http://www.sciencedirect.com/science/journal/03772217/70/3

	A HEURISTIC APPROACH TO MINIMISING MAXIMUM LATENESS ON A SINGLE MACHINE
	B. Çalış0F *, S. Bulkan2 & F. Tunçer3

	ABSTRACT
	OPSOMMING
	1 INTRODUCTION
	2 MINIMISING THE MAXIMUM LATENESS Problem
	3 Proposed LST-LA Algorıthm
	3.1 Algorithm definition
	3.2 A computational example

	4 TEST PROBLEMS AND RESULTS
	5 STATISTICAL ANALYSIS
	5.1 Statistical analysis of the randomly-generated problems
	5.2 Experimental tests on Carlier’s benchmark problems

	6 CONCLUSION
	REFERENCES

