OPTIMISING STEEL PRODUCTION SCHEDULES VIA A HIERARCHICAL GENETIC ALGORITHM
K. Worapradya®* & P. Thanakijkasem?

Division of Materials Technology
School of Energy, Environment and Materials
King Mongkut’s University of Technology Thonburi,
Bangkok, Thailand
kiatkajohn.wora@mail.kmutt.ac.th, ®purit.tha@kmutt.ac.th

ABSTRACT

This paper presents an effective scheduling in a steel-making continuous casting (SCC)
plant. The main contribution of this paper is the formulation of a new optimisation model
that more closely represents real-world situations, and a hierarchical genetic algorithm
(HGA) tailored particularly for searching for an optimal SCC schedule. The optimisation
model is developed by integrating two main planning phases of traditional scheduling: (1)
planning cast sequence, and (2) scheduling of steel-making and timing of all jobs. A novel
procedure is given for genetic algorithm (GA) chromosome coding that maps Gantt chart
and hierarchical chromosomes. The performance of the proposed methodology is illustrated
and compared with a two-phase traditional scheduling and a standard GA toolbox. Both
qualitative and quantitative performance measures are investigated.

OPSOMMING

Effektiewe skedulering van ‘n kontinue-giet staalaanleg word voorgehou. Die hoof bydrae
van hierdie navorsing is die formulering van ‘n nuwe optimiseringsmodel wat regte wéreld
situasies beter verteenwoordig, asook ‘n hiérargiese genetiese algoritme wat spesifiek
aangepas word vir die soek van ‘n optimale kontinue-giet skedule. Die optimiseringsmodel
is onwikkel deur twee hoof beplanningsfases van tradisionele skedulering te integreer,
naamlik die beplan van die giet volgorde en die skedulering van staal vervaardiging en die
tydsberekening van alle werkstukke. ‘n Nuwe prosedure word voorgestel vir genetiese
algoritme chromosoom kodering wat Gantt-kaart en hiérargiese chromosome kombineer.
Die voorgestelde metode word geillustreer en vergelyk met ‘n twee fase tradisionele
skedulering en ‘n standaard genetiese algoritme. Beide die kwalitatiewe en kwantitatiewe
prestasiemaatstawwe is ondersoek.

* Corresponding author
South African Journal of Industrial Engineering August 2014 Vol 25(2), pp 209-221

1 INTRODUCTION

Production scheduling plays a critical role in improving productivity and limiting production
costs, especially for mass customised production such as a steel-making-continuous casting
(SCC) plant. Due to technological and economic restrictions that add extra difficulty to the
SCC scheduling problem, the development of an effective and efficient methodology for
scheduling an SCC plant is a challenge.

The problems related to SCC scheduling, at various production stages from steel-making to
continuous casting, are characterised by two issues: how molten steel should be arranged
and in what sequence, and at what time and on which machine. A review of various SCC
production scheduling methods is comprehensively addressed in Tang et al. [1] and in Dutta
and Fourer [2]. The SCC scheduling process was introduced by Numao and Morishita [3] and
addressed in more recent literature. Numao and Morishita’s [3] heuristic scheduling was
developed in two steps: (1) sequencing the cast (sub-scheduling); and (2) scheduling of the
steel-making process and timing of the jobs (rough scheduling), including elimination of
machine conflicts (optimal scheduling). Most researchers concentrate on either step, while
the rest is given. For instance, Chang et al. [4], Xue et al. [5], Jian et al. [6], and Gravel et
al. [7] determined the cast sequence on continuous casters (the first step) with a binary- or
integer-programming formulation, and solved it by using heuristic and artificial intelligent
methods. Lee et al. [8] designed a continuous slab caster schedule via a special class of
graphs called interval graphs, while Cowling et al. [9] adopted a multi-agent system for
evaluating a dynamic caster schedule.

In the second step, most researchers perform the SCC scheduling by obtaining the cast
sequence from a higher-level planning. Linear programming and heuristic methods are
mostly adopted in this instance. Tang et al. [10] proposed an SCC scheduling that eliminates
machine conflicts, via a non-linear programming model. In another work, Tang et al. [11]
developed an integer-programming model and obtained the optimal solution by combining
Lagrangian relaxation and a heuristic method. Pacciarelli and Pranzo [12] completed the
SCC schedule by using a generalisation of the disjunctive graph of Roy and Sussman [13]
and Beam search. Bellabdaoui et al. [14] focused on SCC scheduling inspired by an
industrial application from the Arcelor Group to eliminate machine conflicts via linear
programming and then solve them via a heuristic algorithm. In their more recent work,
Bellabdaoui and Teghem [15] formulated the same problem into a mixed-integer linear
programme using a commercial software package. Recently, Atighehchian et al. [16]
designed SCC scheduling by using a combination of ant colony optimisation and non-linear
optimisation, comparing the efficiency between a standard genetic algorithm (GA) and a
heuristic method.

Several arguments emerge for taking these two steps into account together. First, the cast
sequence designed in the first step often affects the optimality or creates machine
conflicts. Second, the existing planning system with two-phase scheduling in many steel
factories is not consistent with mass customised production. For example, a higher level
planning of a compact strip plant (CSP) is not designed for short-term and variety-product
planning [17]. Finally, faster scheduling and lower step planning, particularly in emergency
situations, are able to stabilise the production process and reduce manpower and facility
requirements.

In this paper, an efficient and effective approach is proposed that combines the two steps
simultaneously into one model, so that SCC scheduling is achieved in one package. This
approach focuses on the multi-production line of SCC scheduling, defined as a flexible flow
shop, which is NP-complete [18]. A new mathematical model is designed by taking into
account the special and practical steel requirements. Furthermore, a GA is adopted
because it is particularly suitable for this practical problem. Efficiency is improved by a
hierarchical chromosome coding, which can search for both optimal topology (number of
jobs in each machine) and variables (starting time of jobs) of steel scheduling. Special

210

genetic operations are designed for discrete and continuous decision variables of the
proposed model. To investigate the performance of the proposed approach, a case study is
conducted on customer orders from a real factory.

2 SCC PLANT

Steel production (as shown in Figure 1) normally consists of three basic stages: melting,
refining, and continuous casting. The melting stage reduces C, S, and Si in molten iron to a
desirable level by burning it with oxygen in an electric arc furnace (EAF). The molten steel
is then transported to a refining furnace (RF) that further refines the chemicals, eliminates
impurities in the molten steel, and/or adds the required alloy ingredients. The product is
delivered to the continuous caster (CC) and is poured into a tundish. The molten steel flows
down through a nozzle of the tundish into a mould. It continuously solidifies into a strand
(stream of steel) and is processed into steel slabs or billets.

Scrap, gf IEIE
Piglron, DRI s —

Continuous
Caster (CC)

Refining
Furnace (RF)
N o Slab
Electric Arc Furnace (EAF) Bloom Billet

Figure 1: An illustration of SCC production
3 OPTIMISATION OF THE SCC SCHEDULE VIA A HIERARCHICAL GENETIC ALGORITHM

In this section, the mathematical optimisation model and the design of GA for SCC
scheduling are proposed. The model integrates two phases of traditional planning. The GA
chromosome coding and its operations are designed on a hierarchical structure to suit the
proposed model.

3.1 Proposed optimisation model

The SCC scheduling problem in this paper is a multi-production line characterised as a
flexible flow shop system. Two terms are introduced as follows: a charge (or a job of SCC
scheduling) is a basic unit of steel-making production; and a cast is a set of charges casted
continuously on the same CC, with a similar chemical composition. The process flow of cast
in the parallel production line is illustrated in Figure 2. Given that molten steel is handled
at high temperatures, there are strict requirements for material continuity and flow time.

The problem is therefore formulated based on the following practical requirements:
Charge

b
2 3
EAF1 [
1

EAF |
L 3
RF 1 . |
2
RF2 [B
Waiting —p: 1 2 3
col time

cC2
Clast

» time

Figure 2: Process flow of a cast

211

Constraints

The number of charges in a cast sequence is defined by the life-time of the nozzle at
the bottom of a tundish.

In practice, the machine setup time of each cast is required to change equipment.

Each charge must be completely processed in operation before proceeding to the next
operation.

All charges processed on the same machine must be handled separately and
sequentially.

Special requirements

The main objective chosen for the SCC scheduling model is to minimise production costs by
ensuring production continuity and Just-in-Time (JIT) delivery. Several losses must be
considered:

Loss from steel grade difference in adjacent charges: a slab mixed with another steel
grade will be assigned to the second grade product.

Loss from width and thickness change: the material between the changes of charges will
be disposed of.

Loss from consignment date (e.g., inventory and compensation to customers and
shipping).

Loss from cast break: the cast break causes the remaining molten steel to be re-heated
or drained out.

Loss from waiting time: a drop in the molten steel’s temperature because of the waiting
time affects the quality of the steel.

The optimisation model is formulated by the above conditions and inspired by Tang et al.
[10]. A mixed-integer programming model is used to represent the production costs as

follows:
1(M 0T o Me T
fXY,st) = 2|3 YXOQXW + 3 v QL y™
2 m=lkeP, m=1
P
+Y Y Cq#(sti™ —st™ —T™)
k=1 i, jeQ,
N
£ Xy (™ st T @)
i=1 m,nell;
N
+> S ¢ #max(0, st™ +T,™ —d;)
i=1 mell
N
=3 >Ce *min(0, st™ +T,(™ —d,)
i=1 mell;
subject to:

212

for binary variables (Assignment)

P k

>x =1)

k=1

Mg Mg

Yy™=1 and Yy™=1 3)

m=1L m=(Mg+1)
N

2<3xM <L 4)
i=1

x,y™ ef0,13 (5)

for continuous variables (Time relations)

Melting and Refining (mell;)
st > gt™M 4T,V , mnell; 6
st > st(™ 4+ 1M , meTl; @

Continuous Casting (meIl;)

sti™ > st™+ ™M+ 6™ e, jeQ, ()
sti™ = st(™ + T, i, jeQ, 9)
where
ES Y
X® =), y® =] (10)
ER i
Gig - Ouw o o oy
Qe=| i o i, Qe=| |, gy =g]+l (11)
[Ona 0 OnN CNi " CNw
0 chargeiand j are the same steel grade serial
CiG,j =4 f, chargeiand jbelong to the same steel grade serial (12)
f, chargeiand j are the different steel grade serial
o = fy*(Awd, ;)?, Awd,; =wd, -wd; (13)
ot = f,x(Ah)% A =h—h, (14)
i,jeQ and j follows i (15)
m,neIl and m follows n (16)
K=1..- P n

Decision variables
. x&) is a binary decision vector to allocate the charge into cast k on CC. Charge i

belongs to cast k if and only if x is equal to 1.
. Y™ s a binary decision vector to allocate the charge into EAF and RF m (mellg).
Charge i is operated on machine m if and only if yi(m) is equal to 1.

e st{™ is the starting time of the charge i on machine m .

Other notations
. Q¢ is a cost matrix for CC and Qg is a cost matrix for EAF and RF. g;; is the

production cost between charge i and j due to losses as follows: ij , c}”ﬁp , and C,T'f

are losses of steel grade difference, loss of width change, and loss of thickness
change, respectively.
° IT is a set of all machines, T1={,,2,...,M}, where M is the total number of machines.

. I1; is a set of steel-making furnaces (EAF and RF), I1p ={1,2,...,M:}, where M is
the total number of EAF and RF. II; cII. Mg is the total number of EAF and My is
the total number of RF, where M +My=M. II. is the set of CC,
e ={1,2,...,M_.}, where M is the total number of casters. Mo +Mg =M , Il Il
,and Il NI =@ . II; is the set of machines used for charge i, IT; cII.

213

P is the total number of casts and P, is the set of casts that are processed on caster
m . For example, p ={1, 3 means that cast number 1 and 3 are operated on caster
number 1.

° Q is the set of all charges, Q={1,2,..., N}, where N is the total number of charges to
be arranged. Q, is the set of charges in cast k _

. L is the maximum number of charges in a cast.
o f,,---, f, are penalty factors.

. wd; is the ordered slab width of charge i. h; is the ordered slab thickness of charge
i and d; is the consignment date or time of charge i

. Ti(m) is the processing time of charge i on machine m. §™ is the setup time of
caster m

. Cw, Cg, C_ and C; are the penalty factors of waiting time (W), cast break time
(B), lateness (L), and earliness (E), respectively.

The last four terms in Equation (1) represent the cast break loss, waiting time, lateness,
and earliness penalties, respectively. While the real decision variable (sti(’“)) is used for

timing the charges on the machines, it also implies the charge sequence. The constraint in
Equation (2) ensures that every charge must be arranged to a cast, while the constraint in
Equation (3) ensures that every charge must be arranged once to a machine in each
process. Equation (4) ensures that the number of charges in each cast must not be less than
two and cannot exceed the endurance capability of each tundish. Equation (6) ensures that
the two consecutive operations of each charge are executed sequentially. Equation (7)
ensures that two contiguous charges are not processed simultaneously on the same
machine. Equation (8) ensures that enough setup time is required between casts, while the
constraint in Equation (9) ensures the continuity of casting.

3.2 Designing a Hierarchical Genetic Algorithm

Since gradient-based optimisation methods are not practical for finding an optimal schedule
for the binary- or integer-programming model, this work applies a GA that is widely used,
especially in flow shop production [19]. In a real-life process, a GA can be easily modified
with respect to the objectives and constraints [17, 20]. Because this problem focuses on a
particular type of application, this work adopts the concept of a Hierarchical Genetic
Algorithm (HGA), because it provides suitable GA operations to avoid infeasible solutions.

3.2.1 Hierarchical chromosome coding

A hierarchical chromosome coding for GAs is introduced in Tang et al. [21]. This concept is
regarded much as DNA is regarded in a biological chromosome. DNA consists of two types of
genes: (1) structural genes and (2) regulatory genes. The structural genes contain the
genetic information, while the regulatory genes control coding of the structural genes.
Similarly, a mathematical hierarchical chromosome can be classified into two different
types: i(1) parametric genes, and (2) control genes. The parametric genes, which contain
parametric values of the objective function, are analogous to the structural genes. The
activation of the parametric genes is governed by the control genes, which are analogous to
the regulatory genes. In Figure 3, these three-level gene structures are illustrated. The
value 0 or 1 of the control genes is used to define the activation of the parametric genes.

214

274 [gyel 1 Jevel
camtrol gene control gene Farametric gene

Chramosaone \—

Figure 3: General form of the hierarchical chromosome

From the proposed optimisation model, the decision variables, X®, vy and sti(m) are
coded into two types of chromosomes as follows:

Variable chromosome (H,): The variable chromosome comprises a job-control gene
and a starting-time gene. The job-control gene (g,) contains the binary variable X®
or Y™ while the starting-time gene (d,) contains the real variable Ati(m) , Which is a
slack of the starting-time according to Equation (7) or Stgm) =st(™ 4+T,™ +At§m), i
follows i. The value 1 of the job-control gene will activate the associated starting-
time gene and address the number of charges on machine m as shown in Figure 4.

=AM A A, AR AtD, A™ At} (18)
Job Control Gene (g,) Starting Time Gene ()
EAFxl EAF=" EAFK] EAFI7
’—‘ o)) 2 (2 Variable
--.nnn El AI AI AI’ Chromosome (H)
L

S 542 54z 34s 545 945 gequence

5q, < S, < 8q, 4' 6[5, Chromosome (H)

G
A0 ArfY AP
EAFi e 2 e[1 Jes
EAF#2 [«][s J[s]

Figure 4: The proposed hierarchical chromosome

Sequence chromosome (H,): the sequence chromosome arranges the activated
starting-time gene. It represents a set of integer numbers as follows:
H, =¢n®,n®,h©} (19)

hErRIO —fsq; |sq, e[LN] and sq #sq; i, jeQ} (20)

where h® , h(R) , and h© are the sub-groups of the sequence chromosome of EAF,
RF, and CC, respectively. Each integer number (sg;) shows the priority of each
member (Ati(m)) of the starting-time gene. An activated charge with the smallest
integer number will be processed first (shown in Figure 4). Figure 4 illustrates the
chromosomes coding and decoding for the first melting machine (EAF#1). The job
control gene is the variable Y®, in which the first three charges are enabled.
Therefore the slack Atl(l), Atéz), and At§3) are selected. These activated slacks are
then sequenced by the sequence chromosome, e.g., SO, <S0; <SQ;. Consequently,
charge 2 is executed and is then followed by charge 1 and 3, sequentially. It is noted

215

that the sequence of the activated charges for EAF#1 will be different if the priority in
the sequence chromosome is different.

3.2.2 Genetic operations

The main operation of the HGA optimisation consists of selection, crossover, and mutation.
Since there are two types of genes in the chromosome, a specific crossover and mutation
method has been designed to suit this particular purpose.

l."rr;\'.w\'lr'r paint Crassover point ‘/ \
: '
EAF#L [1] 1]o0]1f0]0] [1]1]o]o]1]1 BE e B LI

Variable chromosome crossover: The crossover is performed separately for two
types of genes. To avoid infeasible solutions, according to Equation (2), first a parent
chromosome of the control genes is formed by arranging all job-control genes into a
matrix. A one-point crossover with a probability rate is then performed by swapping
the matrix columns, as shown in Figure 5. The offspring A is made by replacing the last
two columns behind the crossover point of the parent A with the last two columns of
the parent B. Since the starting-time gene is a vector of real numbers, the standard
one or multiple-point crossovers can be directly applied.

Sequence chromosome crossover: The standard one-point crossover is adopted by
randomly choosing the fixed crossover points @ and b, as shown in Figure 6. An
example shows that when crossover point a is chosen, offspring A is consequently
created from swapping h® and h© between parent A and parent B.

Mutation: For variable chromosomes, a bit mutation is applied to the job-control

gene, while the random mutation shown in Equation (21) is applied to the starting-
time gene.

A =A™ +y (u,0) (21)
where is a random function (may be normally distributed), x and o? are mean
and variance, respectively. For the sequence chromosome, a special mutation

operator has been designed to find an optimal sequence. A delta-shift mutation [22],
which alters each element in the sequence chromosome, is adopted as follows:

sg™ = sqif} (22)
where Ai has equal chance to be 1 or -1 with a small probability.

Parent A Parent B Crossover paint

ParentA [123456[213456 21435

=

ear2 [o]o[1]o]1]1] lofola]1{0]o] .
; P : ParentB [4561 23 [4561 32 [4561 32 |
Castin | 1| 1| 0| o]0 [l| |T|?|—0|—1.T|7 i
M iyl M Y
Offspring A Offspring B Offspring & [1234 56 ias 61324561 32 |
Ear#l [1]1]e]1]2]1] [i]2]e] 2] e]o _ g
: . Offspring B [1234 56 [213456 214356 |
EAF#2 U|U|1|D|O|U| |0|O|1|l|1|1]
castin [1]1]1]0[1]0] [a]ofola]o]s
Figure 5: Crossover for variable Figure 6: One-point crossover for sequence
chromosome chromosome

4

COMPUTATIONAL EXPERIMENT

To verify the proposed optimisation model and test the performance of the methodology,
this section presents a case study of scheduling in an SCC factory that consists of two EAFs,
two RFs, and two CCs. A daily production lot contains 12 charges (as shown in Table 1),
with the factory wanting to arrange these orders optimally into four casts (grade groups).
The first and second casts are processed on caster 1, while the third and forth casts are

216

processed on caster 2. The related set in the model can be defined as follows:
M={1,2,3,4,56}, I ={1,2,3,4}, T, ={L 2}, Q={12,...,12}.

The experiments were implemented on MATLAB and carried out on a 1.66 GHz Intel(R) Core
2 CPU personal computer with 4 GB memory. The processing time of SCC production was
defined by a real factory situation. The system performance was defined in terms of the
production costs in US dollars (USD). The EAF and RF processing times were defined exactly

at 50 minutes, while a dynamic processing time was used for CC. The casting time (Ti(m))

was calculated from slab dimension, casting speed (V;), and steel weight (W) in the
ladle, as expressed in Equation (23).

. mell, (23)

where p; is steel-specific weight, W; and h, are slab width and thickness of charge i. The
cast speed is between 4.4-5.5 m/min, and depends on steel grade and mould dimension.

Table 1: Production orders

Charge | Due time Grade Factory steel grade Width Thickness Weight
No. (min) serial (mm) (mm) (ton)
1 320 SM400A 1008MnDK2 1272 60 14300
2 320 SM400A 1008MnDK2 1258 60 14300
3 320 SM400A 1008MnDK2 1252 50 14300
4 320 SS400 1008MnDK-M1 1230 60 16000
5 320 SS400 1008MnDK-M1 1230 60 16000
6 350 SS400 1008MnDK-M3 1272 60 24500
7 420 SS400 1008MnDK-M3 1552 50 14300
8 450 SS400 1008MnDK-M3 1245 50 16000
9 450 SM400A 1008MnDK2 1240 60 16000
10 480 SPHC 1007DKGXA-00 1272 60 14300
11 480 SPHC 1007DKGXA-00 1255 60 19500
12 500 SPHC 1007DKGXA-00 1275 50 24500

4.1 Model performance

Focusing on the performance of the proposed optimisation model, the scheduling is
optimised by using the proposed model with a standard GA (a MATLAB tool). “The result is
compared with the 2-phase traditional scheduling that an initial cast sequence is defined
(based on Xue et al. [5]) and then timing of all jobs is assigned”?. The model parameters, as
presented in Table 2, are based on a real factory situation. The approximate penalty
factors are defined from the production costs in USD.

The best results (from ten trials) using the proposed model and the two-phase traditional
approach are presented in a Gantt chart in Figures 7 and 8 respectively. The performance
comparison is shown in Table 3, which reveals that the proposed model can provide a
better total cost than the traditional approach. It is observed that, although the traditional
method can provide a somewhat better cast sequence plan in the first phase (considering
only the cost from the grade mixing, size changing, and consignment sequencing at CC), the
total cost becomes undesirable in practice when the timing of all processes is assigned in
the second phase.

217

Table 2: Optimisation model and GA parameters

Optimisation model GA
Parameters Value Parameters Value
f, £, f5, 14 600, 14400, 0.07, 1.6 | Representation Binary
Cw. Cg, C_,C¢ | 6.7,14400, 16.2, 5.4 | Pop. Size/Max. iter. | 600/2000
N 12 Crossover 2 point (rate 0.8)
P 2 Selection Stochastic uniform
L 4 Mutation Bit (rate 0.01)
EaF| 2 _T10 [91 [12 T7&
BaF#z|IC8 [1 [3 a7 T8 [8
RF#1 2 T 91 3 [12 aj&]
RF#2 1 [W | W] 7l & &1
co# CZ [T 1 3 1 8] 7 1T &8 T &]
Co#2 [0 1T 11] 12 4 T 5]
SID 1DID 1;0 205 QSDI SDDI SSDI 4IZIJJ 4501 ﬂ]ﬂJ >
time (min)

Figure 7: Best schedule from the proposed model

Earp1 |4 [o (o[2 J[1 7]
ErFe2IC T8 [3 [s J[CH2 18]
RF#1 T s 7T 4 T 5 [0 18]
RF#2 e T T2 T 7 J[FTHe]
CC#l T8 717 @ 1T 1 71 [CmT1 Tz
co#z 4 [&5] - T
20 100 150 200 240 300 3480 400 450 00 600
time (prin)

Figure 8: Best schedule from the two-phase traditional approach

Table 3: Comparison of results (the proposed model vs the two-phase traditional

approach)
Objective factors Propostl-j(ej3 rr?;(?la;ncezfgﬁ;spergg:; iili?)rr]]alllln:gproach
Optimal objective value (x10* USD) 2.16 2.41
Steel grade mixing (ton) 0 0
Width/ thickness change (ton) 12.8 10.4
Total consignment date delay (min) 218 226
Total cast break (min) 0 0
Total waiting time (min) 118 223
Total completion time (min) 506 619

4.2 Optimisation performance

The performance of the proposed methodology, which combines the proposed model and an
HGA, is compared with the standard GA in this section. It is known that the quality of the
optimal solution from the GA frequently depends on the population size, and the same
initial solution does not always provide the same result over different searches due to
uncertainty in the method. In practice, the factory needs an approach that is reliable and
that provides an acceptable result within an appropriate computational time. Thus the
experiment is divided into two cases: population sizes of 400 and 600 respectively. In each
population size, five different test sets (initial set no.1-5) will be executed repeatedly -

218

five times in each test set (a total of 25 samples) to observe the variation. The HGA and GA
parameters are shown in Table 4.

Table 5 shows the optimisation results from observing the overall performance by
comparing the average results from each population size through 25 trials. Regarding the
qualitative assessment, the proposed approach can provide a lower average than the
standard GA does for all population sizes. The percentage differences are around 6.6% and
5.7% for the 400 and 600 population sizes respectively. Moreover, the proposed approach
provides a smaller standard deviation. The results of all 25 trials are shown in Figure 9. It
can be claimed that the proposed approach is more likely to provide a better solution than
the standard GA does.

Table 4: HGA and GA parameters for methodology demonstration

Proposed methodology
GA Parameters H, H . Standard GA
Representation | Binary, Real Integer Binary
Population size | 400, 600 400, 600 400, 600
Max. iteration 2000 2000 2000
Crossover 1 point (rate 0.8) 1 point (rate 0.8) 2 point (rate 0.8)
Selection Stochastic uniform | Stochastic uniform Stochastic uniform
Mutation Random (rate 0.01) | Delta shift (rate 0.01) | Bit (rate 0.01)

Table 5: Optimisation results

Average
Pop. size | Algorithm Objective value .
4 o %Diff*
(x107 Usb/Lot)
Standard GA 3.14 0.56
400 Proposed GA 2.96 0.45 | 7
600 Standard GA 3.05 0.58 6.6
Proposed GA 2.85 03 |
* %DIff = 100 (Obj ,r, — Objyrg)/ Objy
Pop. size = 400 ok Pop. size-= 60
25 E
£, oyt AR e 23
g 1= LI crare
@ 2 5 10 15 20 25 5 10 15 0 5
Replication (initial set no,1-5) Replication finitial set no.1-5)
+ Standard GA
Proposed GA

Figure 9: Quantitative comparison of all results shown by population size

Furthermore, the quantitative performance of the proposed approach is evaluated via a
probabilistic assessment. The probability density functions (PDF) of both approaches are
obtained from the results of 25 trials in each population size, as shown in Figure 10 (a) and
(b). The achievable probability is calculated and compared in Table 6. It implies that the
proposed approach is likely to achieve an acceptable solution about 70 per cent of the
time, while the standard GA scores only 55 per cent and 48 per cent for the population
sizes of 400 and 600 respectively. In other words, the proposed approach is more likely to
provide a better result.

219

PDF comparision POF Cormparasion

1 ceeeeeee Standard GA
= Proposed GA
§0° 05

0 \ g haid
2 4 1 2 3 4 5
Obiective value (10% Objective value (x1D4)
(a) Pop. size = 400 (b) Pop. size = 600

Figure 10: Plot of average of best objective value in each initial set

Table 6: Comparison of probability of the method achievement

Pop. size Proposed GA Standard GA YEFf =100 x (Pyro (X) = Pya (X)) / Py (X)
400 P(X <32510)=0.70 | P(X <32510)=0.55 27.2
600 P(X <30200)=0.70 | P(X <30200) = 0.48 45.8

Regarding the computational time, the average time of all cases is shown in Table 7. It can
be seen that the standard GA needs around five times more computational time than the
proposed approach. It is presumed that the better computational time for the proposed
approach arises because the design better fits the particular scheduling purpose, while the
standard GA aims for general purpose scheduling.

Table 7: Average of computational time consumption

Pop. Average of computational time (min)
size Standard GA Proposed GA
400 193.3 30.4
600 280.0 42.0

5 CONCLUDING REMARKS

This paper proposes a novel scheduling methodology for an SCC production (a flexible flow
shop production) that is NP-complete. The methodology can optimise both caster
sequencing and steel-making scheduling phases simultaneously via a proposed optimisation
model. The HGA with specific operations is introduced to search for the optimal schedule.
The efficiency of both the proposed optimisation model and the methodology is illustrated
by the simulation of the real-world case. The experimental results are compared with the
standard GA against three criteria; (1) the quality of the solution, (2) the quantity of
achievement in terms of the probabilistic assessment, and (3) the computational time
needed. It can be seen that the proposed methodology can satisfy all criteria, especially in
a larger population.

It is noted that this case study, along with many steel factories, is based on a compact strip
plant (CSP) design, which has no buffer between the steel-making plant and the rolling mill.
A JIT concept is therefore necessary. Consequently, the earliness and lateness penalties in
the optimisation model are practically emphasised, and the consignment date is set as the
due time for delivering the slabs to the rolling mill. It should be noted that the application
of this methodology to other steel production types producing only slabs or billets can be
slightly different. In slab or billet factories, the earliness penalty is often relaxed or
approximated from the warehouse cost, while the lateness penalty is approximated from
the marine cargo delay expense. In addition, the cast break penalty may be relaxed in some
cases. In practice, the caster operators can avoid cast breaks by reducing the casting speed
while awaiting the charge from the RF. However, this method (reducing casting speed)
generally works only when the waiting time is less than 30 minutes due to the steel
degradation.

220

REFERENCES

[1

[2
[3
[4]
[5]
(6]

[’]

(8]
[9
[10]

[11]
[12]
[13]
[14]
[18]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

Tang, L.X., Liu, J., Rong, A. & Yang, Z. 2001. A review of planning and scheduling systems and
methods for integrated steel production. European Journal of Operational Research, 133, pp 1-
20.

Dutta G. & Fourer R. 2001. A survey of mathematical programming application in integrated
steel plants. Manufacturing & Service Operations Management, 3 (4), pp 387-400.

Nuamo, M. & Morishita, S.I. 1991. Cooperative scheduling and its application to steelmaking
processes. IEEE Transactions on Industrial Electronics, 38 (2), pp 150-155.

Chang, S.Y., Chang, M.-R. & Hong, Y. 2000. A lot grouping algorithm for a continuous slab caster
in an integrated steel mill. Production Planning & Control, 11, pp 363-368.

Xue, Y., Yang Q. & Shao, H. 2004. Optimum cast plan for steelmaking-continuous casting
production scheduling. IEEE International Conference on Control Applications, pp 1394-1397.
Jian, W., Xue, Y.C. & Yang, Q.W. 2004. Optimum cast plan for steelmaking-continuous casting
production scheduling using artificial fish swarm optimization algorithm. 3rd International
Conference on Machine Learning and Cybernetics, pp 2339-2341.

Gravel, M., Price, W. & Gagné, C. 2002. Scheduling continuous casting of aluminum using a
multiple objective ant colony optimization metaheuristic. European Journal of Operational
Research, 143, pp 218-229.

Lee, K., Chang, S.Y. & Hong, Y. 2004. Continuous slab caster scheduling and interval graphs.
Production Planning & Control, 15, pp 495-501.

Cowling, P.l., Ouelhadj, D. & Petrovic, S. 2004. Dynamic scheduling of steel casting and mill
using multi-agents. Production Planning & Control, 15 (2), pp 495-501.

Tang, L.X., Luh, P.B., Liu, J. & Fang, L. 2000. A mathematical programming model for
scheduling steel-making-continuous casting production. European Journal of Operational
Research, 120, pp 55-70.

Tang, L.X., Luh, P.B., Liu, J. & Fang, L. 2002. Steelmaking process scheduling using Lagrangian
relaxation. International Journal of Production Research, 40, pp 55-70.

Pacciarelli, D. & Pranzo, M. 2004. Production scheduling in a steelmaking-continuous casting
plant. Computers and Chemical Engineering, 28, pp 2823-2835.

Roy, B., & Sussman, B. 1964. Les probl~ em d’ordonnancement avec contraintes disjonctives.
Note DS No. 9bis. Paris: SEMA.

Bellabdaoui, A., Fiordaliso, A. & Teghem, J. 2005. A heuristic algorithm for scheduling the steel
making continuous casting process. Pacific Journal of Optimization, 1, pp 1-18.

Bellabdaoui, A. & Teghem, J. 2006. A mixed-integer linear programming model for the
continuous casting planning. International Journal Production Economics, 104, pp 260-270.
Atighehchian, A., Bijari, M. & Tarkesh, H. 2009. A novel hybrid algorithm for scheduling steel-
making continuous casting production. Computer and Operations Research, 36, pp 2450-2461.
Bierwirth, C. & Mattfeld, D.C. 1999. Production scheduling and rescheduling with genetic
algorithms. Evolutionary Computation, 7 (1), pp 1-17.

Gupta, J.N.D. 1988. Two state hybrid flow shop scheduling problems. Operational Research, 39,
pp 359-364.

Reeves, C.A. 1995. A genetic algorithm for flow shop scheduling. Computers and Operation
Research, 22, pp 5-13.

Birvenich, H.P. 1999. CSP sequence planning and optimization. SIEMENS Metals, Mining, &
More, pp 4-5.

Tang, K.S., Man, K.F., Liu, Z.F. & Kwang, S. 1998. Minimal fuzzy memberships and rules using
hierarchical genetic algorithms. |EEE Transaction on Industrial Electronics, 45 (1), pp 162-169.
Man, K.F., Tang, K.S. & Kwong, S. (1999). Genetic algorithms: Concepts and designs. London:
Springer-Verlag.

221

	OPTIMISING STEEL PRODUCTION SCHEDULES VIA A HIERARCHICAL GENETIC ALGORITHM
	K. Worapradya10F(& P. Thanakijkasem2

	ABSTRACT
	opsomming
	1 INTRODUCTION
	2 SCC plant
	3 OpTimisation of THE scc schedule via A hIERARCHICAL GENETIC ALGORITHM
	3.1 Proposed optimisation model
	3.2 Designing a Hierarchical Genetic Algorithm
	3.2.1 Hierarchical chromosome coding
	3.2.2 Genetic operations

	4 Computational Experiment
	4.1 Model performance
	4.2 Optimisation performance

	5 Concluding Remarks
	REFERENCES

