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ABSTRACT

One of the most important and challenging tasks for mobile robots that navigate
autonomously is localisation - the process whereby a robot locates itself within a map of a
known environment or with respect to a known starting point within an unknown
environment. Localisation of a robot in an unknown environment is done by tracking the
trajectory of the robot on the basis of the initial pose. Trajectory estimation becomes a
challenge if the robot is operating in an unknown environment that has a scarcity of
landmarks, is GPS-denied, has very little or no illumination, and is slippery - such as in
underground mines. This paper attempts to solve the problem of estimating a robot’s
trajectory in underground mining environments using a time-of-flight (ToF) camera and an
inertial measurement unit (IMU). In the past, this problem has been addressed by using a 3D
laser scanner; but these are expensive and consume a lot of power, even though they have
high measurement accuracy and a wide field of view. Here, trajectory estimation is
accomplished by the fusion of ego-motion provided by the ToF camera with measurement
data provided by a low cost IMU. The fusion is performed using the Kalman filter algorithm
on a mobile robot moving on a 2D planar surface. The results show a significant
improvement on the trajectory estimation. A Vicon system is used to provide groundtruth
for the trajectory estimation. Trajectory estimation only using the ToF camera is prone to
errors, especially when the robot is rotating; but the fused trajectory estimation algorithm
is able to estimate accurate ego-motion even when the robot is rotating.

OPSOMMING

Een van die belangrikste en uitdagendste take vir mobiele robotte om selfstandig te kan
navigeer is lokalisering. Lokalisering van ’n robot in ’n onbekende omgewing word gedoen
deur die volg van die trajek van die robot (die aanvanklike posisie moet bekend wees).
Trajekskatting raak uitdagend as die robot moet funksioneer in ’n onbekende omgewing
met ’n tekort aan landmerke, geen GPS opvangs, baie swak of geen verligting en ’n gladde
oppervlak - soos in ondergrondse myne. Hierdie artikel poog om die probleem van die
skatting van ’n robot se trajek in ondergrondse mynbou omgewing met ’n tyd-van-viug
kamera en traagheid meet eenheid op te los. In die verlede is hierdie probleem
aangespreek deur die gebruik van ’n 3D laserskandeerder. 3D laserskandeerders is duur en
gebruik baie krag, al is hulle baie akkuraat met 'n wye veld van sig. In hierdie artikel is
trajek skatting gedoen deur die samesmelting van die ego-beweging, gekry van die TVV
kamera, en die meting data voorsien deur ’n goedkoop TME. Die samesmelting is uitgevoer
deur gebruik te maak van die Kalmanfilter algoritme op ’n mobiele robot wat in ’n 2D plat
vlak beweeg. Die resultate toon ’n verbetering op die trajekskatting. ’n Vicon stelsel word
gebruik om die begin posisie te verskaf vir die trajekskatting. Trajekskatting slegs met die
behulp van die TVV kamera is geneig tot foute, veral wanneer die robot draai. Die
trajekskatting algoritme is in staat om akkuraat ego-beweging te skat, selfs wanneer die
robot draai.
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1 INTRODUCTION

There has been a lot of interest recently in autonomous mobile robots, especially those
being used in dangerous work environments. While the mobile robot is in operation, it must
be able to navigate within the environment. To do so autonomously, one of the most
important and challenging tasks is localisation - the process whereby a robot locates itself
within a map of a known environment, or in relation to a known starting point within an
unknown environment. Also, for a mobile robot to perform any useful task, it is important
to know the pose (position and orientation) of the robot at any point during a specific task.

The problem of localisation becomes a major challenge if the robot is operating in unknown
environments that have few landmarks, are GPS-denied, have very little or no illumination,
and are slippery - such as underground mine stopes. In such an environment, the robot is
localised by tracking the trajectory of the robot, given the initial pose.

Trajectory estimation in environments like underground mines has been successfully
achieved by using three-dimensional (3D) laser scanners [1] [2] [3]. These provide high
accuracy measurements with a wide field of view, making it easy to estimate the
transformation between two scans, using registration algorithms such as Iterative closest
point (ICP) [4]. But these sensors are very expensive and consume a lot of power.

In this paper, the estimation of a robot’s trajectory is performed by fusing a time-of-flight
(ToF) camera’s ego-motion with data from a low-cost inertial measurement unit (IMU). The
ToF camera is a compact sensor that provides both range and amplitude images, and is an
attractive option because it can operate at video frame rate, and has a working range of 10
metres, compared with the Microsoft® Kinect sensor, which has a working range of 3
metres.

The IMU consists of three accelerometers and three gyroscopes that are orthogonally
mounted such that measurements are on the x, y and z axes. By integrating linear
acceleration and angular velocity from the accelerometers and gyroscopes respectively, the
inertial navigation system (INS) is able to track the position, velocity, and orientation of the
robot [5]. Fusion was performed using the Kalman filter algorithm [6], the IMU
measurements as inputs, and the ToF camera ego-motion estimates as observations.

The objectives for the paper are the following:

. To investigate different methods for improving the quality of the ToF camera images;

. To investigate the different algorithms for filtering ToF camera images and the
implementation of an algorithm;

. To investigate various ways of tracking the camera pose using ToF images, and to
select the most accurate and suitable ones for underground mine stopes;

. To develop an algorithm that fuses IMU data and ToF ego-motion to estimate a more
accurate trajectory;

. To evaluate the fusion method using the Vicon motion capture system (a system that
tracks an object’s pose with high accuracy).

The rest of the paper is organised as follows: Section 2 gives the background and related
work on ToF camera ego-motion and the fusion of the camera's ego-motion with IMU data;
Section 3 describes the design and analysis of the full system; Section 4 gives the
experimental results and discussions; and Section 5 presents the conclusion and discusses
future work.
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2 BACKGROUND AND RELATED WORK

2.1 ToF camera ego-motion estimation

The ToF camera is a compact sensor that produces 3D range images and amplitude images
at a video frame rate. The 3D information is obtained by using the phase-shift principle [7].
A scene is illuminated with a modulated near-infrared (NIR) light. The reflected light is
measured, and the phase-shift computed is proportional to the distance travelled by the
light. Two ToF cameras are generally used in robotics: the camCube from
pmdTechnologies®’, and the Swiss Ranger from Mesa Imaging®. Our experiments used the
Swiss Ranger ToF cameras. Even though both cameras use the same principle to measure
distance, their sensors tend to have different characteristics, based on the number and
arrangement of the modulated NIR light sources [8]. The accuracy of these sensors is
limited by errors that are caused by the measurement principle, the architecture of the
sensors, and the environment (background light and reflectivity of objects). These errors
can be divided into systematic errors and non-systematic errors [9] [10]. Systematic errors
are those errors that behave in a systematic way, making them easy to model and correct
through calibration. Calibration methods to remove systematic errors have been proposed
in [9] [11] [12] [13]. Non-systematic or random errors are highly dependent on the scene
configuration, implying that they cannot be corrected during calibration, but have to be
detected during the application. Most of the dominant non-systematic errors are jump edge
points, phase wrapping, or aliasing and noise.

Ego-motion refers to the process of estimating the trajectory of a camera that is used in
localising a mobile robot. The camera’s ego-motion is estimated by registering two
consecutive range images to find a rigid transformation (translation and rotation). Mobile
robot trajectory estimation has successfully been applied on 3D laser scanner data
collected in underground environments [1] [2].

To our knowledge, no work has been done on estimating a mobile robot trajectory
operating in underground mining environments using a ToF camera. These cameras are
suitable because of their low power consumption and high frame rate. The widely-used
algorithm to register two 3D range images is iterative closest point (ICP) [4] [14]. There are
two forms of ICP: point-to-point ICP [4] and point-to-plane ICP [14]. A point-to-point ICP
was applied in [1] and [2] to 3D laser scanner range images in underground and outdoor
environments for map-building and localisation respectively. A point-to-point ICP finds the
rigid transformation by iteratively minimising the root mean square (RMS) error between
corresponding points, while point-to-plane ICP finds the rigid transformation by minimising
the RMS error between points in one range image and the tangent plane in the other range
image. In [15], a more thorough study is presented of the ICP algorithm with its variants.
The ICP algorithm is divided into six stages, and different variants were compared in terms
of convergence speed and accuracy.

In general, point-to-point ICP is faster than point-to-plane ICP; but point-to-plane
converges in few iterations. ICP tends to be trapped in local minima. This can be avoided by
providing ICP with an initial guess, or by applying ICP to images with small relative
transformation [16]. The latter is possible with ToF cameras, since they have high frame
rates.

The first application of a ToF camera in mobile robots trajectory estimation was performed
by Ohno et al. [17], using a second generation Swiss Ranger ToF camera (SR2000). A
modified point-to-point ICP algorithm with K-Dimensional (KD)-tree for finding
corresponding points was used. The algorithm was evaluated using a motion capture system
with an accuracy of 10mm. For a simple one degree of freedom motion, the average error
was 17% for translation and 15% for rotation. The algorithm produced erroneous results
while the robot was moving in a rubble-filled environment. The errors were mostly caused

" http://www.pmdtec.com/
* http://www.mesa-imaging.ch/

147



by rotational motion; but other causes were the uncalibrated distance measurements of the
ToF camera, and the fact that edge points were used as source points for estimating the
transformation. Edge points are mostly classified as jump edge points, which is erroneous.

A thorough study of the Swiss Ranger ToF camera can be found in [10], where a SR3000 ToF
camera was used for map-building and trajectory estimation. To get accurate ToF images,
photogrammetric and distance calibration was performed as in [9] [18]. A point-to-point ICP
algorithm was modified by introducing frustrum culling, KD-trees, and a jump edge filter.
Frustrum culling was used to find mismatches and the non-overlaps between two range
images. The frustrum culling method is used to find points that are in the current range
image but were not present in the previous image, and vice versa.

The ToF camera also produces amplitude/intensity images that are similar to grey-scale
images. Two-point feature extraction algorithms were implemented to track points on the
amplitude images, and to use their corresponding 3D points to estimate the transformation
using a least squares method proposed by Arun et al. [19]. The point features algorithms
implemented by May et al. [10] are scale invariant feature transform (SIFT) [20] and Kanade
Lucas Tomasi (KLT) [21]. The limiting factor with point features is that the ToF camera has
a low resolution, which means that few features are detected; and the situation is
substantially worse if the camera operates in an environment with few features, such as a
mine.

May et al. [10] also implemented a direct registration efficient second order method (ESM)
visual tracking algorithm [22] [23] for trajectory estimation. Instead of tracking point
features, ESM tracks both rigid and non-rigid bodies in the images. A ToF camera was
mounted on an industrial robot arm with high accuracy that was used as groundtruth. A
point-to-point ICP had a higher accuracy than all the other algorithms that were
implemented. Both SIFT and KLT were faster than ICP. This was because no matching of 3D
points was necessary, as the exact point of correspondence was known.

Dario [13] proposed a multi-frame registration algorithm that averages 30 images per pose,
to obtain more accurate distance measurements. The speeded up robust features (SURF)
[24] algorithm was used to track point features in the amplitude images, and the 3D points
were used to compute the transformation. To make the algorithm more robust, a least
median square estimator [25] was used to estimate the transformation, and jump edges
were also rejected by a pixel removal algorithm [13]. This algorithm is not applicable to
mobile robots, since it requires the camera to be stationary to capture 30 images.

Alternative methods to ICP for trajectory estimation using 3D range images have been
proposed in [26] [27] [28]. Pathak et al. [26] used a method called ‘minimally uncertain
maximum consensus’, which finds planes in the range images, iteratively finds the
correspondence of these planes, and computes the transformation using the Davenport g-
method [29] for rotation and the least squares method for translation. This algorithm
requires the environment to have a large number of planes - and at least three non-parallel
planes - to compute the translation.

The algorithm proposed in [28] simultaneously estimates the ego-motion and segments the
images by curve fitting. The algorithm minimises the energy function, which consists of
ego-motion and curve fitting parameters using the variational approach. The algorithm is
best suited to an environment where there are moving objects.

Villaverde and Grafia [27] proposed an algorithm for ego-motion estimation using artificial
neural networks. Their algorithm has three stages. The first is pre-processing: range images
are filtered for distances using phase-wrap. In the second stage, neural gas networks [30]
[31] perform vector quantisation on the filtered range images to produce codebooks. In the
third stage, these are used to compute the transformation using an evolutional strategy
module.
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2.2 Fusion of ToF camera ego-motion and IMU data

Trajectory estimation using the ToF camera’s ego-motion is prone to errors, especially
when the robot is turning. The ToF ego-motion needs to be fused with information from
another sensor to increase accuracy and reduce errors. IMU - which measures linear
acceleration and angular velocity to track the pose using the INS algorithm - is mostly used
to enhance the camera’s ego-motion estimation. INS has rapid errors, mainly caused by the
noise and biases in the IMU measurements, making the INS error unbounded if it is used
alone [5].

Data fusion is the process of combining measurements from different sensors in order to
estimate a robust and complete description of the state of interest. It has a wide range of
applications in robotics. A good introduction to the fusion of visual and inertial sensors in
the application of localising a mobile robot by estimating the trajectory can be found in
[32]. The camera and the inertial sensor complement each other in estimating the mobile
robot trajectory. The main advantage is that they do not require an external infrastructure,
meaning that they can operate in unknown environments.

Most methods used in data fusion make use of stochastic techniques, with the Kalman filter
[6] and the particle filter [33] being the two main ones. The Kalman filter is an optimal
recursive filter that estimates the state of linear systems at a given time from the
estimated state of the previous time and the current measurements. It is optimal in the
sense that it tries to minimise the estimated error covariance of the estimated state. The
particle filter is a recursive implementation of the Monte Carlo method, which describes
state estimates as the probability distribution, using a set of weighed samples of an
underlying state space. Particle filters are suitable for problems where dynamic processes
and measurement models are non-linear and the noise is not Gaussian [34]. For our
application, the Kalman filter is used because of its non-linear system, and because the
noise can be modelled as Gaussian.

Even though the ToF camera ego-motion estimation has been studied for at least a decade,
there is limited research on the topic of fusing it with an IMU sensor data in order to
increase the accuracy of the trajectory estimation. To our knowledge, Droeschel et al. [35]
are the only researchers who have fused ToF camera data with IMU data, using an SR3000
ToF camera with Xsens MTi IMU. The Kalman filter was used to fuse the ToF camera ego-
motion with the IMU data. Motion estimates of the camera were computed by applying the
SIFT algorithm [20] to the amplitude images to find corresponding point features between
two consecutive images. The 3D points were then used to compute the motion estimates,
using the least squares method [19]. By fusion, the translation error was reduced by
1006mm in translation and by 25.4° in rotation.

3 DESIGN AND ANALYSIS

The design and analysis of the full ToF-IMU system that was capable of trajectory
estimation of a mobile robot is divided into three sections. The first is the pre-processing
step; the second is the ToF ego-motion estimation; and the third is the fusion of ToF ego-
motion and IMU data.

3.1 3D ToF pre-processes

The pre-processing step is applied to all the ToF images to reduce the errors in the ego-
motion estimation algorithms. In this work, a SR4000 from Swiss Ranger is used. This is the
fourth-generation ToF camera from Swiss Ranger, and most of the systematic errors - such
as internal scattering, which was an issue in the third-generation cameras - have been
eliminated [13]. The SR4000 does not have temperature compensation, so a 40-minute
warm-up time is allowed before any experiments are performed, as suggested in [8]. The
non-systematic errors, which are mostly dependent on the scene configuration, are handled
by the various filters discussed below.
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3.1.1  Jump edge filter

Jump edge points occur when the transition between background and foreground objects is
sudden. The ToF camera measurements show a smooth transition, as shown in Figure la. If
these points are used for ego-motion estimation, they produce erroneous results, since they
are random. A jump edge filter is adopted from [10] due to its simplicity and accuracy in
finding jump edge points. Assume that P ={p; € R®|i=1,-,N} represents a 3D point
cloud from the ToF camera. To check if a point p; is a jump edge, a set of eight
neighbouring points P, = {pi,m |m =1,---,8} is extracted from the point cloud P. The angle
0; between p; and neighbouring points p;,,, with the third vertex at the focal point of the
camera is defined as

where ¢ is the apex angle of the two neighbouring pixels. An experimental environment
was set-up to test the jump edge filter and the filtered image (see Figure 1b). The angle,
defined in (1), is compared with the threshold angle to determine whether a point is a jump
edge. The threshold angle is determined experimentally, depending on the camera. For this
work, an angle of 175°is used.

(a) (b)

Figure 1: (a) Point cloud with jump edges as they can be seen between the transitions;
and (b) point cloud with jump edge points removed using a jump edge filter

3.1.2 Non-homogeneous illumination

Due to the arrangement of LEDs that emit modulated NIR light, pixels on the boundary of
the image receive less reflected light. The amount of reflected light is directly related to
the accuracy of the measured distance. The ToF camera was placed facing a white wall at
different distances. At each position, 100 images were captured and their standard
deviation computed. The standard deviation for each pixel at different locations is shown in
Figure 2.

The boundary pixels show high values of standard deviation, especially the corner pixels,
meaning that these pixels are very inaccurate. In the experiments performed, boundary
pixels were removed.

3.1.3 Phase wrap filter

Phase wraps occur when the emitted light travels further than the maximum distance,
which is controlled by the modulation frequency, of the ToF camera. Since the main
application is for trajectory estimation, the implemented methods detect the phase wraps,
but do not correct them. In cases where these points are needed for mapping or object
reconstruction, methods such as the ones proposed in [36] [37] can be used. The method
implemented here makes use of both range and amplitude images. A confidence map of the
pixels is used as the product of the squared range (d) image and amplitude (A) image,
which should give an approximately constant value, since distance and amplitude are
inversely proportional. The confidence map n is computed as:

n=Ad* )
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Figure 2: Standard deviation for 100 images while the ToF camera is stationary

The confidence map is compared with the threshold confidence map (9¢pes ) to determine
whether a pixel is wrapped. The threshold is computed to accommodate non-uniform
illumination. The threshold is computed as:

Wi=cw)?+ (hi=cn)?
Nehres = (1 - %)T , ©)

where w;, h; are the pixels’ locations, c,, c, is the center pixel location, and T is the
maximum value of the confidence map. This is determined experimentally, depending on
the reflectivity of the environment. In this experiment, T is set to 5e4.

Another motivation for this simple method is that the camera is used in an environment
with a uniform reflectivity. This means that it will not reject unwrapped points, and it will
be able to determine wraps even if the whole image is phase wrapped - unlike in [37]. The
application of the filter is shown in Figure 3.

3.2 ToF camera ego-motion estimation

A full 6D model is used for estimating ToF camera ego-motion. The camera pose at time t is
represented by T, and the transformation AT{*! transforms it to pose, T, defined as:

T = TtT?l 4)
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Figure 3 : Point cloud (a) before the phase-wrap filter, and (b) after the phase-wrap
filter has been applied

The pose is represented by a3 x 3 rotation matrix Rand translation t = [t, t, t,]* in a
matrix form as:

=[5 i ®

Since the mobile robot will be operating in an underground environment without unique
landmarks, point feature extraction algorithms such as SIFT, SURF, and KLT do not work.
Two variants of ICP are implemented: point-to-point ICP [4], and point-to-plane ICP [14].
The ICP algorithm tries to find the transformation between a base point cloud and scene
point cloud by iteratively minimising the root mean square (RMS) error. The algorithm can
be explained in five stages [15], summarised below.

1. Selection of source points
The ToF camera provides 25,344 points, and thus using all these points will be time-
consuming. By sampling a certain number of points such that the accuracy is not
affected, the time taken can be decreased. Source points are randomly selected from
the base point cloud.

2. Matching of points
Once the source points have been sampled on the base point cloud, they must be
matched to the corresponding points on the scene point cloud. The exact
correspondence is not known. It is assumed that the closest point on the scene point
cloud is the corresponding point. The closest point is found using a KD-tree.

3. Weighting
This gives the quality of the corresponding points from the previous stage. A uniform
weighing of unity is used.

4. Rejection of outlier
Points that are classified as outliers are rejected. An adaptive distance threshold and
multi-pairing rejection filters were implemented. An adaptive threshold filter rejects
corresponding points with a distance greater than a certain threshold. Sometimes one
point corresponds to multiple points. These points are rejected by a multi-pairing
filter.

5. Error metric
This refers to either a point-to-point ICP or a point-to-plane ICP. A point-to-point ICP
algorithm finds the transformation by minimising the sum of the squared distances
between the corresponding pairs. It can be formulated as:

e (R = Yj||Rs; + t — dj|” ©)

A point-to-plane ICP minimises the sum of the squared distance between points in the base
point cloud and the tangent planes of the corresponding point on the scene point cloud. It
is formulated as
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where n; is the normal vector of the surface place of the base point cloud. The surfaces
normal are estimated using least squared methods proposed by Mitra et al. [38]. Unlike the
point-to-point, the point-to-plane does not have a closed form solution, and it is solved by
linearisation of the transformation by using a small angle approximation (sinf =
0 and cos8 = 1). Algorithm 1 shows an implemented point-to-plane algorithm that is similar
to the point-to-point as well - except that there is no surface normal computation.

Algorithm 1 ICP point-to-plane algorithm

1: Get the base point cloud (B)

2: Apply jump edge filter

3: Apply a phase-wrap filter

4: Initialise the first pose Ty to 4 x 4 identity matrix
5. for i « to NumberO fImages do
6
8
9

Get the scene point cloud (S)

Apply jump edge filter

Apply a phase-wrap filter

Initialise the transformation (AT) to 4 x 4 identity matrix

10:  repeat

11: Randomly select source points in the scene point cloud

12: For every source point, find the corresponding point in the base point
cloud (KD-tree)

13: Multiple pairing rejection for source points with more than one pair

14: Adaptive mean Outlier filter

15: Compute the transformation (AT)

16: Update AT with the computed transformation (AT)

17: Apply the transformation (AT) on the scene point cloud

—

& until It converges or reach maximum number of iterations

19:  Compute the current pose

20:  Equate the base point cloud to scene point cloud for the next iteration
21: end for

3.3 Fused ToF-IMU ego-motion estimation

The fusion of ToF ego-motion and IMU data is performed using the Kalman filter method.
ToF camera ego-motion is erroneous, especially with rotational movement; and IMU data
can be useful in these situations to provide a robust estimation. For our implementation,
the problem of trajectory estimation is simplified into a 3D trajectory motion that can be
illustrated by a mobile robot moving on a 2D planar surface, as shown in Figure 4.

The fusion performed using the Kalman filter with a ten element state vector, X, is
represented as:

x=[Vi ba o by Sp; 6 a4, 8

where V; is the velocity of IMU with respect to IMU frame , b, is the accelerometer bias, w
is the angular velocity, b, is the gyroscope bias, Gp, is the position of IMU with respect to
global frame, 8 is the orientation of IMU, and ag is the angular acceleration. The Kalman
filter algorithm is divided into a time update stage and a measurement update stage. In the
time update stage, the IMU measurements that are sampled at 100 Hz are integrated to
track orientation, angular velocity, and the position of the IMU. The IMU measurements are
modelled as:

Wy (£) = w(t) + by (t) +npg (), 9
an(®) = RE(a(t) — €g) + ba(t) + nya(t), (10)
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where w,, and a,, are the measured angular velocity and linear acceleration, while w and a
are the actual angular velocity and linear acceleration respectively. n., and n,, represent
zero-mean Gaussian white noise.

G}

(a)

% (G}
(b)

Figure 4: (a) Simplification of the 2D planar problem where (x,y) is the position and 0 is
the orientation. (b) Co-ordinates frames where {G} is the global frame, {I} is the IMU
frame, and {C} is the camera frame. ‘P, is the transformation.

A state error vector is defined as:

X=x— X,

(11)

where x is the actual state vector and X is the estimated state vector. A continuous time

error state equation is defined as

*=FX+ Gn,
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The covariance matrix is computed as:

Pii1/k = PiPr® + Qu,
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where @ is the state transition matrix and Q is the system noise covariance matrix

®(t + At t) = exp(F At), (14)
Q4= ftk+T
4=

ti

and Q.is the covariance matrix of the IMU measurements that depend on the noise
characteristics of accelerometer and gyroscope.

q)(tk+1'T)GCQCG£¢(tk+1'T)I (15)

The measurement update stage takes the ToF ego-motion estimation as measurements, and
updates the state vector. ToF ego-motion estimates a change in position and change in
orientation. Since the mobile robot will be moving on a 2D surface, this is simplified into
[tx ty Ad]. Since the time difference is also known, the measurements are taken as

linear velocity and angular velocity. Given @ and V defined as:

Vx t./At _
V= [vy] = [ty/At] and w = A8/At.

measurements are modelled as:
o _[RgV
z—h(x)—[w]+n, (16)

where R, is the orientation difference between the IMU frame and the ToF camera frame,
estimated during the calibration of the ToF-IMU system; n is the noise from the ToF ego-
motion. The Jacobian matrix for the measurement error state is:

R, O 0 0 0252 022
H = [ « 2x2 2x2 0O2x2 _ 17
O1x2 012 1 0 O1x2 O1x2 an

Assuming that propagated state estimate X;,., propagated covariance matrix estimate
Py/i+1, current measurement z, estimated measurement Z, and the error measurement

Jacobian matrix H are computed, then updated state estimate Xj /.1 is computed using
Algorithm 2.

Algorithm 2 Updating the state estimates of the Kalman filter
1: Residual r according to

r=z-—=2

2: Covariance of the residual S as

S=HPH" + R
2. Kalman gain
K=PH'S™
3: Error vector
x=Kr

4: Update the state vector as
Xhetl/k+1 = Xiefhel — X
5: Updated covariance matrix Py /4, 1s computed as

Priijirr = (I - KH)Prog(I— KH)" + KRKT

4 EXPERIMENTAL RESULTS AND DISCUSSIONS

All the algorithms are implemented in MATLAB® and tested on an offline dataset. The
dataset is collected using a PC running the Robot Operating System (ROS)® on Ubuntu 12.04.
The final system is supposed to operate in an underground mine environment, but because

$ http://www.ros.org/wiki/
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of the inherent difficulties in obtaining the groundtruth in an underground mine, an
artificial mine stope was used, as shown in Figure 5. The dataset was collected in the
evening to simulate the darkness of underground mines.

The groundtruth is collected using the Vicon motion capture system. The Vicon system is a
motion capture system that uses passive infra-red reflective markers to track the pose of an
object in space. It has sub-millimetre accuracy and an update rate of more than 100 Hz.

To evaluate the results, let T¢ be the estimate pose, T¢ the groundtruth pose provided by
the Vicon system at time t. The evaluation is done in terms of absolute error MZbS and
incremental error Mi"¢, defined in equations (18) and (19).

Mgbs - (T'g )_11'? - [Ali)abs Atilbs]'

4% i & . 7 =
Figure 5: Artificial mine stope (18)
Translational error egp 4, and rotational erroregps ag are computed as:

€abs At = |1ALgpslls
€absAR = ”[a B Y]T“ = ”fAR(ARabs)”:

where [@ B y]T are the Euler angles. Similarly, the incremental errors are measured by
the sum of the difference of the change in the real pose AT;" and change in the estimated
pose AT¢

-1 AR; At;
Minc,t = (AT}q) AT‘E = [ (l)nc,t ;lnc,t], (19)

€incAt = Zi”Atinc,i” s €incAR = Zl”fAR(AR)”

For the ToF ego-motion estimation, the RMS errors and the number of iterations are also
used as a measure of evaluation. RMS error measures the errors that remain after two point
clouds have been registered. Before the ego-motion estimation algorithms are applied, the
pre-processing steps, which include 40 minutes warm-up time, the jump edge filter, the
phase-wrap filter, and boundary points rejection, are applied.

The ICP algorithms were tested on the dataset collected on an artificial mine stope, where
the mobile robot moved at an average linear velocity of 0.2 m/s and angular velocity of
10°/s. The path was approximately 8m long. The trajectory estimation is shown in Figure 6.

Both the point-to-point ICP and point-to-plane ICP trajectory estimates follow the correct
path until the mobile robot starts to turn or to rotate. After turning, the error in the
rotation causes both the trajectories to diverge from the actual path. The absolute and
incremental errors are shown Figure 7. The absolute translation error at the end of the path
was 4.33m for point-to-plane ICP and 1.03m for point-to-point ICP. For rotation, it was
48.67° and 70.8° for point-to-plane and point-to-point ICP respectively. According to the
absolute errors, point-to-point ICP produces better results for translation, but suffers a
large margin of error in rotation. The reason for good rotational results in point-to-plane is
that ICP minimises the error between a point and a plane rather than point-to-point. The
incremental errors, which give a better description of the error, show that the point-to-
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point error was 7.32m and 119.6° for translation and rotation respectively, while the point-
to-plane ICP error was 13.57m and 123.8° for translation and rotation.

35

25
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point-to-plane
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Figure 6: Comparison of point-to-point ICP and point-to-plane ICP with Vicon estimates

Note that the rate of error increase is high while the robot is turning. This is because the
ToF camera produces erroneous measurements for rotation due to its measurement

principle.
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Figure 7: ICP-based algorithm errors where (a) and (b) represent the absolute errors
and (c) and (d) show incremental errors

The RMS errors and number of iterations are shown in Figure 8; they show similar results for
rotational motion. This can be improved by incorporating a low-cost IMU.

The fusion was implemented using point-to-point ICP, since it proved to be the most
accurate one for our application. The transformation between IMU and ToF camera is
estimated using the technical drawings of these sensors. The Kalman filter implementation
was tested on an 8.7m long path, with an average linear velocity of 0.2 m/s and average
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angular velocity of 30°/s. The angular velocity is higher than in the previous experiment in
order to show maximum improvement of Kalman filter. The trajectory estimations are

shown in Figure 9.
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Figure 8 (a) Number of iteration over time and (b) RMS error for both point-to-point ICP
and point-to-plane ICP
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Figure 9: Comparison of point-to-point ICP, Kalman filter-based, and Vicon groundtruth

The Kalman filter trajectory estimation shows a huge improvement compared with the
point-to-point ICP. In terms of absolute errors, translational error was reduced by 4.72m
and 260.2° for rotational error. The translation incremental error was reduced by 7.17m,
while the rotational error was reduced by 197.5°. This experiment also shows how
important orientation is for the estimated trajectory to be as close as possible to the actual
trajectory. See Figure 10 for incremental and absolute errors.

These results compare with the results of fusing ToF ego-motion with IMU data done by
Droeschel et al. [35], where the SIFT algorithm was used for ToF ego-motion estimation.
The robot similarly moved along a square path with an approximate total length of 4.8m.
For the SIFT algorithm to find enough features, posters and calibration checkerboard were
placed in the environment. The SIFT algorithm produced better results than the point-to-
point ICP used in this paper. This is due to the differences in the environment.

5 CONCLUSION AND FUTURE WORK

This research presented the design and implementation of a system capable of estimating
the trajectory of a robot operating in an underground mining stope. The estimation is
performed using a ToF camera and an IMU. Even though the main goal was investigate the
fusion of ToF camera ego-motion with IMU data, some of the questions that were answered
were:

. Which methods were best for filtering out erroneous points for the ToF camera?
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Which algorithm was best for ego-motion of the ToF camera data in an underground
mine stope?
By how much does the fusion improve the trajectory estimation?
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Figure 10: Trajectory estimation errors where (a) and (b) are the absolute errors and

(c) and (d) are the incremental errors

The point-to-point ICP produced better results than the point-to-plane ICP. These
algorithms suffer high errors when the robot is turning, due to the error in the ToF
measurements. The fusion of ToF ego-motion with IMU data increased the accuracy of the
trajectory estimation of a mobile robot. The fusion was performed using the Kalman filter
algorithm.

The transformation between the ToF camera and the IMU was estimated using the technical
drawings of these sensors, but a more accurate transformation can be estimated using the
extended Kalman filter. The fusion was only performed for a robot operating on a 2D planar
surface; future work will involve extending it to a full 6D motion.
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