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ABSTRACT 

This paper considersthe optimisation of the movement of a fixed crane operating in a single 
aisle of a distribution centre. The crane must move pallets in inventory between docking 
bays, storage locations, and picking lines. Both a static and a dynamic approach to the 
problem are presented. The optimisation is performed by means of tabu search, ant colony 
metaheuristics,and hybrids of these two methods. All these solution approaches were tested 
on real life data obtained from an operational distribution centre. Results indicate that the 
hybrid methods outperform the other approaches. 

OPSOMMING 

Die optimisering van die beweging van 'n vaste hyskraan in 'n enkele gang van 'n 
distribusiesentrum word in hierdie artikel beskou. Die hyskraan moet pallette vervoer tussen 
dokhokke, stoorposisies, en opmaaklyne. Beide 'n statiese en 'n dinamiese benadering tot die 
probleem word aangebied. Die optimisering word gedoen met behulp van tabu-soektogte, 
mierkolonieoptimisering,en hibriede van hierdie twee metodes. Al die oplossingsbenaderings 
is getoets met werklike data wat van 'n operasionele distribusiesentrum verkry is. Die 
resultate toon aan dat die hibriedmetodes die beste oplossings lewer.
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1. INTRODUCTION 

Distribution centres (DCs) play an important role in the supply chain. DCs may be viewed as a 
connecting hub between manufacturers, suppliers, and retailers, and may come in varying 
forms intended to deal with different types of and areas in supply chains. Because DCs playa 
vital role in the supply chain, it is important to analyse and optimise their internal processes. 
In this paper the operation of moving goods within a retail DC is considered. 
 
The operations in this DC mainly deal with orders that may be viewed as requests by retail 
stores for a selection of distinct goods inspecific quantities. A central operation within the DC 
is order picking,ensuring that goods received are reorganised into batches destined for retail 
stores. Order picking is the most cost-intensive and time-consuming operation within the DC 
[7]. The order-pick operation usually requires the manual unpacking and re-packing of 
individual stock keeping units (SKUs) from larger cartons into smaller cartons to meet the 
demand of the retail stores. This operation may rely on the building of a picking line –a set of 
SKU types arranged on a designated floor space to be picked and re-packed. Other main 
operations in the DC include receiving, storage, and distribution of goods. The physical 
movement of pallets and/or cartons is central to all these operations. 
 
The equipment currentlyused to move pallets in the DC under consideration is pump trollies, 
fork lifts, and fixed cranes. The cranes are fixed,mounted to the roof and floor of the DC. The 
main focus of this paper is on the moving of pallets (also called jobs) by these cranes. The 
objective is to determine a job sequence of a crane that minimises the total completion time 
of all these jobs. The integration of jobs from different operations,i.e. order picking and 
storage, are also considered and compared with the DC’scurrent method. 
 
The DC has a static layout.A schematic representation of the floor plan is shown in Figure 1. 
Order picking is handled by picking lines contained at certain levels or floors within the 
storage racks (see Figure2). 

 

 

 

 

 

 

 

 

Figure 1: A schematic representation of the layout (floor plan) of the DC. 

Most of the internal deadlines and time constraints relate to setting up and completingthe 
picking lines. Picking lines are active for 8 hours a day.However, the DC runs on a 24-hour 
basis,usingnight shifts to build and dismantle picking lines and to storenew stock. 
 
The picking lines are positioned below the storage racks (as shown in Figure 2). Cranes are 
able to move vertically and horizontally. Each half of the picking line can be servedby a single 
crane. In order to get pallets from the floor into storage (levels 5-10), pallets need to be 
placed in a docking bay at the base of the storage aisles. Manual pump trolleys are required to 
load pallets onto the docking racks. Pallets can also be moved between aisles by means of 
these pump trolleys. 
 
The DC’scrane system is responsible for all the movement of the pallets above the floor level. 
These crane movements are mainly to store goods and to build and dismantlepicking lines. 
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The current method of the DC is to focus all the efforts of a crane on one of three activities: 
building a picking line (moving pallets from storage racks to picking lines), dismantling a 
picking line (moving pallets from picking lines to storage racks), or storing a batch of received 
pallets (moving pallets from docking bays to storage racks). The DC’s current method requires 
a crane to complete a small set of jobs – typically 30 – conforming to a single activity until that 
set is complete.The crane driver uses his own discretion to determine the order in which the 
jobs within the set are completed. This implies that there is limited or no integration between 
the jobs from different activities, and that the optimisation within each set is limited to the 
choices of the crane driver. For example, if 20 jobs on a picking line need to be completed 
before the picking can begin, and 20 pallets need to be stored from the goods received 
floor,the crane would either first complete all 20 jobs for the picking line and then complete 
the storage jobs, or vice versa– not a combination of both. 
 
The rest of this paper is structured as follows. Two modelling approaches are introduced to 
optimise crane movement in the DC. In Section 2 we introduce a static modelling approach, 
where all the jobs that need to be performed are known in advance. This approach is 
generalised in Section 3 to add new jobsdynamically. Results from real life instances of the 
problem are presented in Section 4. The paper end in Section5 with a discussion of the results 
and with recommendations flowing from the results. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2: A schematic representation of the crane movement associated with building a 
picking line, dismantling a picking line, and storing received pallets, resulting in a 

building job (thick), a breaking job (medium), and a storage job (thin) respectively. 

2. STATIC MODELLING APPROACH 

The problem under consideration may be viewed as a dynamic version of an ordering problem 
with side constraints [5], or as a sequential ordering problem with deadlines (SOPD) [1]. The 
term ‘dynamic’ implies that the available information changes over time. To solve the 
dynamic model, a static version of the problem is considered each time a new batch of jobs 
enters the system. 

2.1 Assumptions 

For modelling purposes the following assumptions were made in consultation with the 
DC’smanagement [3]:  
 
1. The availability and speed of the pump trolleys allow pallets to be loaded onto docking 

bays at such a high rate that cranes do not have to wait for pump trolleys to deliver a 
pallet to the docking bay. It is thus assumed that any job has starting and ending positions 
only within a storage rack, picking line, or docking bay. 

2. Four types of jobs are considered: 
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• storage job: Pallets that are moved from a docking bay to a storage rack. 
• building job: Pallets that are moved from a storage rack into a picking line. 
• breakdown job: Pallets that are removed from a picking line (after all the picking has 

been completed) and placed back into a storage rack. 
• replenishment job: Pallets that are moved from a storage rack into a picking line 

with picking still in progress. 
Figure 2 illustrates the movements needed to perform these jobs. A replenishment job 
requires the same crane movements as a building job. 

3. The travelling times of cranes are deterministic. Travelling times were measured and a 
formula was developed for estimating the expected time needed for a crane to move 
between loading bays. The physical loading and off-loading times are added to the travel 
times.  

4. A job may have at most two direct prerequisites. The first possible prerequisite is the job 
that creates the open storage bay at the destination, and the second is the job that first 
places the required pallet at the starting destination. These prerequisites occur most 
often when a picking line is built or broken. For testing purposes these prerequisites are 
determined before optimisation starts. 

5. Every job has a strict deadline. For the metaheuristic approachesa job may be completed 
after the deadline, although this is heavily penalised. This exception is included because, 
in the dynamic problem, deadlines may be broken through the inclusion of new jobs and 
delays that occur in real time – for example, when a crane breaks down. 

2.2 A mixed-integer programming formulation 

A static sequential ordering problem (SOP) may be defined as a set of n  jobs that need to be 
processed by a machine. Each job requires a specific amount of machine time, and a release 
and completion time are associated with it. Certain precedences occur between different 
jobs, as well as a set-up cost when changing between two jobs. The objective is to find a 
sequence of the jobs such that all the constraints are satisfied and the completion time of the 
last job is minimised [1]. 
 
The release times for the jobs will not be considered in the static problem; however, release 
times will affect the dynamic problem. The following mixed-integer programming model for 
this revised SOPD without release times is based on a formulation by Maffioli & 
Sciomachen[11]. Let  
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The objective function in (1) minimises the total time travelled between all the jobs. 
Constraint sets (2) and (3) ensure that each job is completed only once. Constraint set (4) 
allocates a start time to each job, ensuring that a job starts only once its predecessor has 
finished. Constraint set (5) ensures that all the deadlines are met. Job 1is considered a 
dummy job in that all distances to and from it are 0, and it is forced to be the first job in the 
cycle by constraint (6). Each job is assigned a position in the cycle, and subtours are 
eliminated by constraint set (7). The prerequisite relationships are handled by constraint set 
(8), ensuring that if job i  is a prerequisite of job j  then job i  would be executed before 

job j . 

2.3 Solution approaches to the SOPD in the literature 

The SOPD may be described as a combination of two variants of the travelling salesman 
problem (TSP):TSP with precedence (TSPP), and the asymmetrical TSP with time windows 
(ATSPTW). A study of exact solution approaches to ATSPTWs by Ascheuer et al. [2] suggests 
that ATSPTWs of order 40>n  require computation times that are too long to use in a 
dynamic context. The computation time involved when using an exact solution 
re-optimisation approach is too large for the given problem, as the rate at which the cranes 
move requires a solution within a few minutes. So metaheuristics need to be considered to 
reduce the computation time.Landrieu et al.[9] suggest using tabu search as a solution 
approach. Their results shows considerably lower computation times for problems of order 

90<n , with the best solutions obtained having values at most 1% above the optimal. A 
second type of meatheuristics suggested by Cheng & Mao [3] is that of an ant colony 
algorithm. The data gathered by Cheng & Mao [3] showed, however, that there is a chance 
that the algorithm might not find feasible solutions for the given test cases. 
 
A threshold accepting heuristic was developed by Nikolakopoulos & Sarimveis [16] for 
ASTPTWs and SOPs. The heuristic is based on local search techniques with some variational 
forms of simulated annealing. This algorithm was tested using test cases by Reinelt [17] with 
good results for both SOP and ASTPTW. This algorithm is out-performed with respect to SOPS 
by a heuristic algorithm specifically designed for SOPs by Gambradella & Dorigo [6] – a 
hybridisation of an ant colony algorithm and local search heuristics. The algorithm was also 
tested using test cases from Reinelt [17], with most of the known upper bounds being 
improved in reasonable time. A genetic algorithm was applied by Moon et al. [13] to a 
travelling salesman problem with precedence constraints (TSPP), which is similar to a SOP. 
The proposed method showed good results for small- to medium-sized problems; however, 
larger problems (i.e. 50>n ), which will be required for the crane system, were not handled 
effectively. 
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Similar types of TSP variants – such as single vehicle routing problems (SVRP) and its variants, 
machine scheduling (MS),and more complex multiple vehicle routing problems (VRP) and 
variants – have been handled with metaheuristic methods. The most flexible of the heuristics 
is tabu search, with tabu implementations for most TSP variants [8, 9, 11]. Two metaheuristic 
methods – tabu search and ant colony algorithms – were developed and implemented on the 
basis of the results found in the literature. 

2.4 Tabu search 

The specific SOPD considered here has two main types of constraints: those for precedence 
and those for deadlines. The algorithm must search for possible solutions or job sequences 
that conformfirst to precedence constraints, secondto deadlines or to minimising the penalty 
for missing deadlines, and finally to minimising the total run time of the crane. 
 
The solution is represented as an ordered set J  of jobs, with job iJ  performed before job 

kJ  if ki < . The neighbourhood for this algorithm consists of all solutions that can be 
attained by a switch of two jobs (switch move) or the insertion of one job from its original 
position into a new one (insertion move). The inverse move of a switch move is the switch 
move, while the inverse of an insertion is the insertion of the same job, but with the position 
being the original position before the insertion. The tabu search makes use of an active tabu 
list as discussed in Józefowska et al. [8], where the number of iterations for which a move 
remains tabu is equal to the tabu list size or tenure. The tabu tenure is a percentage (10%) of 
the number of jobs, and is changed dynamically as the problem changes (for example, when 
new jobs are added to the problem), allowing for easier use in the dynamic problem. 
 
The initial solution conforms to the precedence constraints. A solution may be found by 
starting with a job that has no precedence (such a job should always exists for the problem to 
be feasible), and then selecting jobs that have no unselected precedence nodes. In order to 
ensure precedence feasibility, neighbours will only be considered that conform to these 
constraints. 
 
The deadline constraints do not necessarily hold in the initial solution. The tabu search will 
seek out solutions with a lower deadline penalty until a solution is found that fulfils the 
constraints. The penalty of breaking deadlines is calculated as the sum of the total delay for 
each job that does not meet its deadline. Once a solution is found that meets all the 
deadlines, the algorithm attempts to minimise the starting time of the last job, and hence 
total run time, without breaking the precedence and deadline constraints. The aspiration 
level consists of multiple goals – namely, deadlines and run times.This allows the algorithm to 
move towards infeasible solutions with respect to deadlines if a local optimum is reached. A 
similar structure using a relaxation of goal functions was used by Cordeau & Laporte [4] for a 
multi-vehicle dial-a-ride problem in order to allow the algorithm to move through infeasible 
neighbourhoods. It is also important that the tabu search is able to handle infeasible 
solutions, because they may be created when new jobs are added or when real time delays 
(for example, a breakdown) occur. 

2.5 Ant colony algorithms 

SOPs may be presented graph theoretically by a weighted connected digraph ),( EV , with a 

set of vertices V  and a set of edges E  between the nodes, where the vertices may be seen 
as a job and the weight of an edge as the distance between two jobs. In the algorithm each 
ant k  traverses the graph and constructs a cycle of n  stages during each iteration t . The 
path between vertices i  and j  for each ant depends on several elements. The first is a list 

of destinations not yet visited when ant k  is currently at destination i , represented as set 
k
iD . This defines the possible movements in each step. The visibility of an edge, which is the 

reciprocal of the distance of that edge, is used to direct ants towards close destinations. 
Pheromone quantities on each edge of a trail, called the intensity of the trail, direct ants to 
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previously attractive paths. Each vertex iV  has a set iR  of predecessors associated with it. 
The random proportional transition rule used in the model may be stated as  
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where )(tpk
ij  is the probability that ant k  traverses edge ),( ji  at iteration t , α  and 

β  are two parameters controlling the relative importance of the trail intensity, )(tijτ , and 

the visibility, ijη  [2]. When 0=α , only visibility is taken into consideration, and when 

0=β  only pheromone trails are considered. 
 

After a cycle, an ant leaves a quantity )(tk
ijτ∆  of pheromone on its route. This quantity of 

pheromone is calculated by means of the formula  
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where )(tT k  is the path traversed by ant k  during iteration t , )(tLk  is the length of the 

path, and Q  is a parameter [2]. 
 
A form of ‘evaporation’ for the sub-optimal solutions when updating the trails is  
 

,)()(1=1)( ijijij tt ττρτ ∆+⋅−+   (13) 
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m
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A new variant on the ant colony system was implemented in order to handle deadline 
constraints. The first method adjusted the visibility parameters, taking deadlines into 
account, as well as penalising any route that breaks deadlines. The new visibility is 
recalculated as  

,1=
jij

ij ud
λη ⋅   (14) 

where ijd  is the distance between job i  and j , ju  is the deadline associated with job j
and λ  is a parameter controlling the influence of deadlines. An increase in λ  decreases 

the effect of the deadlines. A route is penalised by allowing for the value of )(tijτ  to become 

negative. If a route does not conform to a deadline, each edge ),( ji  on the route will 

assume a negative )(tijτ . 

 
A second variant based on the method developed by Cheng & Mao [3] for TSPTW proposes to 

use an adjusted random proportional transition rule. For an ant at job i , let jw  be the time 

at which the ant arrives at job i ; then ijG  = ij wu −  is the slack associated with the 
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deadline of job j . A nonlinear relationship  
 

,
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holds between ijg  and ijG  where µ  is the average of all ijG  and δ  is a scaling 

parameter to adjust the limits of ijg . The new random proportional transition rule is given as  
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where γ  is a parameter controlling the relative importance of the slack associated with the 
deadlines. 
 
All the parameters were configured by means of experimentation. Combinations of values for 
all the parameters were tested individually, using a number of representative data based on 
historical data as well as benchmark instances for SOPs [17]. The best combination of 
parameters was used. 

2.6 Hybrid algorithms 

A study done by Gambradella & Dorigo [6] suggested using ant colony algorithms in 
conjunction with local search heuristics. The ant colony algorithm can find good solutions 
faster thanthe tabu search, and the tabu search is better suited for smaller local 
improvements. Therefore two hybrid methods, HB1 and HB2, were developed in order to use 
the properties of tabu search methods and ant colony algorithms. The first method attempts 
to assist the tabu search method by generating a relatively good initial solution quickly:first it 
runs an ant colony algorithm, and then passes the resulting solution to a tabu search method 
as the current solution. 
 
The second method calls the tabu and ant methodssequentially. An ant colony algorithm is 
run, and the solution is passed to a tabu search. Once the tabu search is complete, the initial 
pheromone levels of the ant colony algorithm are adjusted, and the ant colony algorithm is 
called again. This process continues until a stopping criterion is met. The initial pheromones 
are adjusted by means of the formula  
 

,(0))(1=(0)
Z
QMijij +⋅− τρτ                                                (17) 

 
where M  is a scaling parameter effecting the change in the initial pheromone levels for the 
new instance of the ant colony algorithm, and Z  is the length of the route generated by the 
previous tabu search. As M  increases, the effect of the previous iteration on the initial 
pheromones is increased. 

3. DYNAMIC MODELLING APPROACH 

During a typical working day in the DC, jobs become available at different times as trucks 
arrive, picking lines are completed or planned, and functioning picking lines are replenished. 
This continuous inclusion and completion of jobs adds a dynamic element to the problem that 
needs to be handled. 
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A common approach to solving dynamic SOPs and their variants is to make use of existing 
algorithms designed for static problems. According to Ichoua et al. [7], these adaptations of 
static algorithms may be divided into three categories: fast local update procedures, 
re-optimisation procedures, and hybrid procedures. 
 
A re-optimisation procedure is selected to model the dynamic system, and the tabu search is 
selected for the re-optimisation, as the algorithms using ant colony methods require 
parameter changes depending on the number of jobs and length of deadlines. Although the 
two hybrid methods marginally outperform the tabu search when applied to the DC scenarios, 
the computational effort of reconfiguring parameters does not justify the insignificant gain. 
In order for a re-optimisation procedure to be used, a system needs to be developed that can 
collect the changing information and generate a new static problem. A decision support 
system,the ‘dynamic real time job scheduler’, was developed and coded in order tohandle 
the dynamic elementsin real time. 
 
The first process that the job scheduler must handle is the inclusion of additional jobs in the 
system. The job insertion process attempts to insert a new job into the best position, such 
that the new job does not break deadlines. This is achieved by searching for the latest 
feasible positionthat meets the prerequisites, where the new job does not break its deadline 
constraints. If such a position does not exist, the job is placed in the position that minimises 
the penalty of the broken deadline. This will ensure that emergency jobs receive high priority 
even if the deadline has passed. If a new job has a low priority, it will be placed at the end of 
the current schedule. Upon completion of a job the job release process is induced. The first 
job in the current schedule is removed, and the information is sent to the crane. 
 
In order to test the performance of the dynamic realtime job scheduler, a simulator was 
coded with a virtual systems operator and a virtual crane. The virtual systems operator sends 
new orders in real time to the job scheduler with information about prerequisites and 
deadlines. The virtual crane requests a job from the scheduler when it is empty, and while it 
has a job, it will process the job until the required job completion time has elapsed. 
 
A small example to illustrate what happens during the dynamic process is given. It is based on 
the sample of data given in Table 1. 
 

 

 

 

 

 

Table 1: Data used to illustrate the process of dynamic optimisation. The release time 
(the time at which a job is entered into the system) and the list of future jobs are in 

reality not known in advance. 

Assume that the crane is busy with job 0J , the time is 10:15, and the list of pending jobs is 

1J - 2J - 3J . Let the crane finish job 0J  at 10:18. The next job ( 1J ) is then given to the 

crane, and the list of pending jobs changes to 2J - 3J . At 10:20 job 4J  enters the system, 
and because of its deadline it is placed at the top of the list, resulting in a pending job list of 

4J - 2J - 3J . Once job 1J  is completed, job 4J  is sent to the crane. The crane is still busy 

with job 4J  when jobs 5J  and 6J  enter the system at 10:30. The pending job list is now 

2J - 3J - 4J - 5J - 6J . Re-optimisation then takes place while job 4J  is performed, resulting 

in a pending job list of 3J - 5J - 2J - 6J  at 11:32 when job 4J  is completed. 
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4. RESULTS 

Different test instances were run for each of the four algorithms (i.e. tabu search, ant colony, 
HB1, and HB2) and individual solution qualities were compared in order to determine the best 
solution method. A set of benchmark problems, developed by Stecco et al. [17] of size 

100>n , was used to estimate parameters. All testing was performed on an Intel Pentium 
Core 2 Duo 2.4 Ghz processor with 1Gb RAMrunning Microsoft Windows XP with Service Pack 3, 
and the code was programmed in JAVA 1.6 [6, 10]. 

4.1 Static modelling results 

Test data sets making use of historical data from the DC were used to compare the algorithms 
with the DC’scurrent method. These data sets were generated using real data captured by the 
DC over several days. Four types of scenarios were generated after consultation with the DC 
manager, incorporating only two different activities [3]. The combinations of these activities 
are: building and breaking two consecutive picking lines on the same level (BBS), building and 
breaking two different picking lines (BBD), building a picking line with storage of goods (BS), 
and building picking lines where the picking line is situated in another aisle and the pallets 
need to be moved to the floor (FS). For the BBS scenario,the old leftover stock from a previous 
picking line must be replaced by new stock for the next picking line. A pallet of new stock may 
only be placed in the picking line once the old stock (if any) has been removed from the 
required bay. 
 
Scenarios were generated by pairing two sets of jobs, each associated with different activities 
(see assumption 2) from the same historical data set to create a single set of jobs1. These 
initial scenarios were run with the exclusion of deadlines (generating SOP instances) as well as 
with binding deadlines (generating SOPD instances). The exact solutions to the scenarios 
without deadlines may thus be viewed as lower bounds for the scenarios with binding 
deadlines. Both ant colony algorithms for SOPD presented in Section2.5 were tested, with 
similar results. The maximum run time for each algorithm is 90 seconds, as this is the duration 
of a typical job. In an attempt to compare the results with an exact solution, the SOP 
scenarios were all solved to optimality using Lingo 11 [4]. The scenarios with binding 
deadlines were not solved, but the exact solutions for the scenarios without deadlines were 
used as lower bounds. The results were also compared with those calculated based on the 
DC’scurrent method discussed in Section 1. These individual sets were, however, optimised 
independently using the formulation (1) – (10), resulting in a best case scenario of that used in 
practice. 
 
From the results in Figure 3, it can be seen that the ant colony algorithm has the worst 
performance for all instances, with especially poor performance for the instances with 
deadlines. The DC's method is shown to be inferior to the tabu search and hybrid methods. 
The ant colony at times performs worse than the DC’s method. The percentage gain 
throughcombining the two types of jobs involved in building a picking line and breaking down 
another one is given in Table 2. 
 
Figure 4 illustrates the performance of all the algorithms, as well as the method used by the 
DC for instances where a picking line is broken and a new one is built. The results are similar 
to Figure 3, in that the ant colony algorithm performs poorly and the DC's method is improved 
by the tabu search and hybrid methods. Table 3 shows large improvements on the DC's 
method, suggesting that this particular combination of jobs should be grouped together in 
practice. 
 
From the results based on instances where a picking line is built and a set of pallets isstored 
(Figure 5),there is an improvement in the ant colony performance; however, the 
improvements on the DC's method and the exact solution are minimal for all algorithms. Table 
4 illustrates the low improvements on the DC's method, suggesting that improvements may be 
less, compared with other combinations, if these job types are combined in practice. 

                                                                 
1BBS1_68_D indicates data set 1 of type BBS and size 68 with binding deadlines. 
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Figure 3: A plot of the total completion times by each algorithm for the DC data sets, 
where a picking line is built and a different picking line is broken down. 

 

 

 

 

 

Table 2: Percentage improvement of total completion times with respect to the 
DC’scurrent method, using scenarios with building and breaking down 

different picking lines. 

 

 

 

 

 

 

 

 

 

 

Figure 4: A plot of the total completion times by each algorithm for the DC data sets, 
where two succeeding picking lines are broken down and built. 

 

 

 

 

Table 3: Percentage improvement of total completion times forthe DC’smethod,using 
scenarios with building and breaking down the same picking line. 
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Figure 5: A plot of the total completion times by each algorithm for the DC data sets, 
where a picking line is built and a set of pallets isstored. 

 

 

 

 

 

Table 4: Percentage improvement of total completion times for the DC’s method,using 
scenarios with building a picking line as well as the storage of goods. 

The results shown in Figure 6 illustrate the improvements made on the DC's method, as well as 
the poor performance of the ant colony algorithm when a set of storage jobs iscombined with 
building a picking line in another aisle, where all the pallets are required to go to the floor 
first. The significant improvements presented in Table 5 suggest the combination of these job 
types in practice. 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: A plot of the total completion times by each algorithm for the DC data sets, 
where a picking line is built in another aisle and a set of pallets isstored. 

 



119 

 

 

 

 

 

Table 5: Percentage improvement of total completion times with respect to the 
DC’smethod,where a picking line is built in another aisle and a set of pallets is stored. 

The DC’s method,where no job integration is used, was tested against the optimisation with 
full integration. The data suggests that improvements may be achieved by combining 
different job types, with gains of up to 20% for certain combinations. The scenarios that 
combine storage jobs with building a picking line in another aisle, as well as simultaneously 
building and breaking two succeeding picking lines, show the largest improvements. 

4.2 Dynamic modelling results 

Real-time instances were generated using real data from the DC over several days. Similar 
instanceswith varying dynamic levels were compared with the DC’s method. All testing was 
again performed on an Intel Pentium Core 2 Duo 2.4 Ghz processor with 1Gb RAM running 
Microsoft Windows XP with Service Pack 3, and the code was programmed in JAVA [10]. 
 
Scenarios were generated in a similar fashion to the static problem. However, the inclusion of 
release times was now taken into account. A job was assigned a release time and a deadline in 
accordance with the management philosophy. 
 
A scenario may be classified according to a level of job completion percentage, which 
indicates the required percentage of the previously entered jobs that need to be completed 
before a new set of jobs may enter the system. If this percentage approaches 0%, the problem 
becomes a static problem; and if the percentage approaches 100%, the problem becomes one 
where the DC's current method is used. Therefore a total of five cases are considered:those of 
0%, 30%, 50%, and 70% relative to the DC's current method (100%). 
 
From the results in Table 6, it can be seen that the dynamic system used to schedule the jobs 
of the crane yields faster overall completion times. On average an improvement of 7% is 
realised, which may be translated to an improvement of about 50 minutes in a 12-hour shift. 
The low improvement for data set F4 may be attributed to the combination of jobs. 
 

 

 

 

 

 

Table 6: Percentage improvement of total completion times using dynamic reoptimisation 
in comparison with the case where the job completion rate is 100%, which represents the 

DC’s method. 

5. CONCLUSION AND RECOMMENDATIONS 

In Section 2 the SOPD was used to model a static scenario, and an exact formulation for the 
problem was supplied. The solution time needed for an exact solution is too long, and so the 
development of metaheuristic methods for solving this problem was introduced. Tabu search 
and ant colony metaheuristic methods, as well as hybrids of these methods, were considered. 
A dynamic model was developed, based on the solution methods previously obtained, where 
the release times of the jobs are taken into account. As soon as new jobs enter the system or 
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a job is completed, the system refreshes the current information and resolves the problem. 
Both static and dynamic scenarios were generated in order to compare solutions that use job 
integration with those of the DC’s current method. 
 
The results shown in Section4 indicate that ant colony algorithms were not as effective as 
tabu search, but hybrids of the two methods yield better results when considering scenarios 
based on the real-life data supplied by the DC. The results obtained from the static model 
were conclusive: the DC’s method is not optimal, with integration producing gains as large as 
20%. The results based on realistic dynamic scenarios show an average of 7% improvement on 
the DC’s method. 
 
It is recommended that a dynamic optimisation system be introduced into the operational 
software currently in use by the DC. The results indicate that the use of the presented 
algorithms could save up to 1 hour per 12-hour shift. 
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