
South African Journal of Industrial Engineering November 2011 Vol 22(2):107-120

SINGLE FIXED CRANE OPTIMISATION WITHIN A DISTRIBUTION CENTRE

J. Matthews1 & S.E. Visagie2*

1,2 Department of Logistics
University of Stellenbosch, South Africa

114855054@sun.ac.za, 2svisagie@sun.ac.za

ABSTRACT

This paper considersthe optimisation of the movement of a fixed crane operating in a single
aisle of a distribution centre. The crane must move pallets in inventory between docking
bays, storage locations, and picking lines. Both a static and a dynamic approach to the
problem are presented. The optimisation is performed by means of tabu search, ant colony
metaheuristics,and hybrids of these two methods. All these solution approaches were tested
on real life data obtained from an operational distribution centre. Results indicate that the
hybrid methods outperform the other approaches.

OPSOMMING

Die optimisering van die beweging van 'n vaste hyskraan in 'n enkele gang van 'n
distribusiesentrum word in hierdie artikel beskou. Die hyskraan moet pallette vervoer tussen
dokhokke, stoorposisies, en opmaaklyne. Beide 'n statiese en 'n dinamiese benadering tot die
probleem word aangebied. Die optimisering word gedoen met behulp van tabu-soektogte,
mierkolonieoptimisering,en hibriede van hierdie twee metodes. Al die oplossingsbenaderings
is getoets met werklike data wat van 'n operasionele distribusiesentrum verkry is. Die
resultate toon aan dat die hibriedmetodes die beste oplossings lewer.

* Corresponding author

108

1. INTRODUCTION

Distribution centres (DCs) play an important role in the supply chain. DCs may be viewed as a
connecting hub between manufacturers, suppliers, and retailers, and may come in varying
forms intended to deal with different types of and areas in supply chains. Because DCs playa
vital role in the supply chain, it is important to analyse and optimise their internal processes.
In this paper the operation of moving goods within a retail DC is considered.

The operations in this DC mainly deal with orders that may be viewed as requests by retail
stores for a selection of distinct goods inspecific quantities. A central operation within the DC
is order picking,ensuring that goods received are reorganised into batches destined for retail
stores. Order picking is the most cost-intensive and time-consuming operation within the DC
[7]. The order-pick operation usually requires the manual unpacking and re-packing of
individual stock keeping units (SKUs) from larger cartons into smaller cartons to meet the
demand of the retail stores. This operation may rely on the building of a picking line –a set of
SKU types arranged on a designated floor space to be picked and re-packed. Other main
operations in the DC include receiving, storage, and distribution of goods. The physical
movement of pallets and/or cartons is central to all these operations.

The equipment currentlyused to move pallets in the DC under consideration is pump trollies,
fork lifts, and fixed cranes. The cranes are fixed,mounted to the roof and floor of the DC. The
main focus of this paper is on the moving of pallets (also called jobs) by these cranes. The
objective is to determine a job sequence of a crane that minimises the total completion time
of all these jobs. The integration of jobs from different operations,i.e. order picking and
storage, are also considered and compared with the DC’scurrent method.

The DC has a static layout.A schematic representation of the floor plan is shown in Figure 1.
Order picking is handled by picking lines contained at certain levels or floors within the
storage racks (see Figure2).

Figure 1: A schematic representation of the layout (floor plan) of the DC.

Most of the internal deadlines and time constraints relate to setting up and completingthe
picking lines. Picking lines are active for 8 hours a day.However, the DC runs on a 24-hour
basis,usingnight shifts to build and dismantle picking lines and to storenew stock.

The picking lines are positioned below the storage racks (as shown in Figure 2). Cranes are
able to move vertically and horizontally. Each half of the picking line can be servedby a single
crane. In order to get pallets from the floor into storage (levels 5-10), pallets need to be
placed in a docking bay at the base of the storage aisles. Manual pump trolleys are required to
load pallets onto the docking racks. Pallets can also be moved between aisles by means of
these pump trolleys.

The DC’scrane system is responsible for all the movement of the pallets above the floor level.
These crane movements are mainly to store goods and to build and dismantlepicking lines.

109

The current method of the DC is to focus all the efforts of a crane on one of three activities:
building a picking line (moving pallets from storage racks to picking lines), dismantling a
picking line (moving pallets from picking lines to storage racks), or storing a batch of received
pallets (moving pallets from docking bays to storage racks). The DC’s current method requires
a crane to complete a small set of jobs – typically 30 – conforming to a single activity until that
set is complete.The crane driver uses his own discretion to determine the order in which the
jobs within the set are completed. This implies that there is limited or no integration between
the jobs from different activities, and that the optimisation within each set is limited to the
choices of the crane driver. For example, if 20 jobs on a picking line need to be completed
before the picking can begin, and 20 pallets need to be stored from the goods received
floor,the crane would either first complete all 20 jobs for the picking line and then complete
the storage jobs, or vice versa– not a combination of both.

The rest of this paper is structured as follows. Two modelling approaches are introduced to
optimise crane movement in the DC. In Section 2 we introduce a static modelling approach,
where all the jobs that need to be performed are known in advance. This approach is
generalised in Section 3 to add new jobsdynamically. Results from real life instances of the
problem are presented in Section 4. The paper end in Section5 with a discussion of the results
and with recommendations flowing from the results.

Figure 2: A schematic representation of the crane movement associated with building a
picking line, dismantling a picking line, and storing received pallets, resulting in a

building job (thick), a breaking job (medium), and a storage job (thin) respectively.

2. STATIC MODELLING APPROACH

The problem under consideration may be viewed as a dynamic version of an ordering problem
with side constraints [5], or as a sequential ordering problem with deadlines (SOPD) [1]. The
term ‘dynamic’ implies that the available information changes over time. To solve the
dynamic model, a static version of the problem is considered each time a new batch of jobs
enters the system.

2.1 Assumptions

For modelling purposes the following assumptions were made in consultation with the
DC’smanagement [3]:

1. The availability and speed of the pump trolleys allow pallets to be loaded onto docking

bays at such a high rate that cranes do not have to wait for pump trolleys to deliver a
pallet to the docking bay. It is thus assumed that any job has starting and ending positions
only within a storage rack, picking line, or docking bay.

2. Four types of jobs are considered:

110

• storage job: Pallets that are moved from a docking bay to a storage rack.
• building job: Pallets that are moved from a storage rack into a picking line.
• breakdown job: Pallets that are removed from a picking line (after all the picking has

been completed) and placed back into a storage rack.
• replenishment job: Pallets that are moved from a storage rack into a picking line

with picking still in progress.
Figure 2 illustrates the movements needed to perform these jobs. A replenishment job
requires the same crane movements as a building job.

3. The travelling times of cranes are deterministic. Travelling times were measured and a
formula was developed for estimating the expected time needed for a crane to move
between loading bays. The physical loading and off-loading times are added to the travel
times.

4. A job may have at most two direct prerequisites. The first possible prerequisite is the job
that creates the open storage bay at the destination, and the second is the job that first
places the required pallet at the starting destination. These prerequisites occur most
often when a picking line is built or broken. For testing purposes these prerequisites are
determined before optimisation starts.

5. Every job has a strict deadline. For the metaheuristic approachesa job may be completed
after the deadline, although this is heavily penalised. This exception is included because,
in the dynamic problem, deadlines may be broken through the inclusion of new jobs and
delays that occur in real time – for example, when a crane breaks down.

2.2 A mixed-integer programming formulation

A static sequential ordering problem (SOP) may be defined as a set of n jobs that need to be
processed by a machine. Each job requires a specific amount of machine time, and a release
and completion time are associated with it. Certain precedences occur between different
jobs, as well as a set-up cost when changing between two jobs. The objective is to find a
sequence of the jobs such that all the constraints are satisfied and the completion time of the
last job is minimised [1].

The release times for the jobs will not be considered in the static problem; however, release
times will affect the dynamic problem. The following mixed-integer programming model for
this revised SOPD without release times is based on a formulation by Maffioli &
Sciomachen[11]. Let





otherwise0
 jobby followed is job if1

=
ji

xij

 and begins jobat which time thebe iwi

 cycle. e within th job ofposition thebe ipi

The following parameters are used in the model. Let

, job to job from move tocrane for the it takes time thebe jicij

 completed, be to jobfor it takes time thebe isi

 , job of timestartinglatest thebe iui

 and jobs, ofnumber total theben

 time).completion totalhan the(greater tnumber largeany be∗M

In terms of the defined symbols, the objective is to

 ijij

n

j

n

i
xc∑∑

1=1=

minimise (1)

111

 subject to

 nixij

n

j
,1,2,=1=

1=

∑ (2)

 njxij

n

i
,1,2,=1=

1=

∑ (3)

 njniMxwcsw ijjijii ,2,3,= and ,1,2,=)(1 ∗−≤−++ (4)

 niuw ii ,1,2,= ≤ (5)

 1=1p (6)

 njninnxpp ijji ,2,3,= and ,1,2,=1 −≤+− (7)

 jipp ji job of teprerequisi a is jobn whe < (8)

 njnixij ,1,2,= and ,1,2,={0,1} ∈ (9)

 .,1,2,=0, nipw ii ≥ (10)

The objective function in (1) minimises the total time travelled between all the jobs.
Constraint sets (2) and (3) ensure that each job is completed only once. Constraint set (4)
allocates a start time to each job, ensuring that a job starts only once its predecessor has
finished. Constraint set (5) ensures that all the deadlines are met. Job 1is considered a
dummy job in that all distances to and from it are 0, and it is forced to be the first job in the
cycle by constraint (6). Each job is assigned a position in the cycle, and subtours are
eliminated by constraint set (7). The prerequisite relationships are handled by constraint set
(8), ensuring that if job i is a prerequisite of job j then job i would be executed before

job j .

2.3 Solution approaches to the SOPD in the literature

The SOPD may be described as a combination of two variants of the travelling salesman
problem (TSP):TSP with precedence (TSPP), and the asymmetrical TSP with time windows
(ATSPTW). A study of exact solution approaches to ATSPTWs by Ascheuer et al. [2] suggests
that ATSPTWs of order 40>n require computation times that are too long to use in a
dynamic context. The computation time involved when using an exact solution
re-optimisation approach is too large for the given problem, as the rate at which the cranes
move requires a solution within a few minutes. So metaheuristics need to be considered to
reduce the computation time.Landrieu et al.[9] suggest using tabu search as a solution
approach. Their results shows considerably lower computation times for problems of order

90<n , with the best solutions obtained having values at most 1% above the optimal. A
second type of meatheuristics suggested by Cheng & Mao [3] is that of an ant colony
algorithm. The data gathered by Cheng & Mao [3] showed, however, that there is a chance
that the algorithm might not find feasible solutions for the given test cases.

A threshold accepting heuristic was developed by Nikolakopoulos & Sarimveis [16] for
ASTPTWs and SOPs. The heuristic is based on local search techniques with some variational
forms of simulated annealing. This algorithm was tested using test cases by Reinelt [17] with
good results for both SOP and ASTPTW. This algorithm is out-performed with respect to SOPS
by a heuristic algorithm specifically designed for SOPs by Gambradella & Dorigo [6] – a
hybridisation of an ant colony algorithm and local search heuristics. The algorithm was also
tested using test cases from Reinelt [17], with most of the known upper bounds being
improved in reasonable time. A genetic algorithm was applied by Moon et al. [13] to a
travelling salesman problem with precedence constraints (TSPP), which is similar to a SOP.
The proposed method showed good results for small- to medium-sized problems; however,
larger problems (i.e. 50>n), which will be required for the crane system, were not handled
effectively.

112

Similar types of TSP variants – such as single vehicle routing problems (SVRP) and its variants,
machine scheduling (MS),and more complex multiple vehicle routing problems (VRP) and
variants – have been handled with metaheuristic methods. The most flexible of the heuristics
is tabu search, with tabu implementations for most TSP variants [8, 9, 11]. Two metaheuristic
methods – tabu search and ant colony algorithms – were developed and implemented on the
basis of the results found in the literature.

2.4 Tabu search

The specific SOPD considered here has two main types of constraints: those for precedence
and those for deadlines. The algorithm must search for possible solutions or job sequences
that conformfirst to precedence constraints, secondto deadlines or to minimising the penalty
for missing deadlines, and finally to minimising the total run time of the crane.

The solution is represented as an ordered set J of jobs, with job iJ performed before job

kJ if ki < . The neighbourhood for this algorithm consists of all solutions that can be
attained by a switch of two jobs (switch move) or the insertion of one job from its original
position into a new one (insertion move). The inverse move of a switch move is the switch
move, while the inverse of an insertion is the insertion of the same job, but with the position
being the original position before the insertion. The tabu search makes use of an active tabu
list as discussed in Józefowska et al. [8], where the number of iterations for which a move
remains tabu is equal to the tabu list size or tenure. The tabu tenure is a percentage (10%) of
the number of jobs, and is changed dynamically as the problem changes (for example, when
new jobs are added to the problem), allowing for easier use in the dynamic problem.

The initial solution conforms to the precedence constraints. A solution may be found by
starting with a job that has no precedence (such a job should always exists for the problem to
be feasible), and then selecting jobs that have no unselected precedence nodes. In order to
ensure precedence feasibility, neighbours will only be considered that conform to these
constraints.

The deadline constraints do not necessarily hold in the initial solution. The tabu search will
seek out solutions with a lower deadline penalty until a solution is found that fulfils the
constraints. The penalty of breaking deadlines is calculated as the sum of the total delay for
each job that does not meet its deadline. Once a solution is found that meets all the
deadlines, the algorithm attempts to minimise the starting time of the last job, and hence
total run time, without breaking the precedence and deadline constraints. The aspiration
level consists of multiple goals – namely, deadlines and run times.This allows the algorithm to
move towards infeasible solutions with respect to deadlines if a local optimum is reached. A
similar structure using a relaxation of goal functions was used by Cordeau & Laporte [4] for a
multi-vehicle dial-a-ride problem in order to allow the algorithm to move through infeasible
neighbourhoods. It is also important that the tabu search is able to handle infeasible
solutions, because they may be created when new jobs are added or when real time delays
(for example, a breakdown) occur.

2.5 Ant colony algorithms

SOPs may be presented graph theoretically by a weighted connected digraph),(EV , with a

set of vertices V and a set of edges E between the nodes, where the vertices may be seen
as a job and the weight of an edge as the distance between two jobs. In the algorithm each
ant k traverses the graph and constructs a cycle of n stages during each iteration t . The
path between vertices i and j for each ant depends on several elements. The first is a list

of destinations not yet visited when ant k is currently at destination i , represented as set
k
iD . This defines the possible movements in each step. The visibility of an edge, which is the

reciprocal of the distance of that edge, is used to direct ants towards close destinations.
Pheromone quantities on each edge of a trail, called the intensity of the trail, direct ants to

113

previously attractive paths. Each vertex iV has a set iR of predecessors associated with it.
The random proportional transition rule used in the model may be stated as










∉

∉∈
⋅

⋅

∑
∈

,if0

 and if
)())((

)())((

=)(
k
i

k
ii

k
i

ijil
k
iDl

ijij

k
ij

Dj

DRDj
t

t

tp
βα

βα

ητ
ητ

 (11)

where)(tpk
ij is the probability that ant k traverses edge),(ji at iteration t , α and

β are two parameters controlling the relative importance of the trail intensity,)(tijτ , and

the visibility, ijη [2]. When 0=α , only visibility is taken into consideration, and when

0=β only pheromone trails are considered.

After a cycle, an ant leaves a quantity)(tk
ijτ∆ of pheromone on its route. This quantity of

pheromone is calculated by means of the formula







∈/

∈
∆

),(),(if0

)(),(if
)(=)(

tTji

tTji
tL

Q
t

k

k
kk

ijτ (12)

where)(tT k is the path traversed by ant k during iteration t ,)(tLk is the length of the

path, and Q is a parameter [2].

A form of ‘evaporation’ for the sub-optimal solutions when updating the trails is

,)()(1=1)(ijijij tt ττρτ ∆+⋅−+ (13)

 where)(=
1=

tk
ij

m

kij ττ ∆∆ ∑ [2].

A new variant on the ant colony system was implemented in order to handle deadline
constraints. The first method adjusted the visibility parameters, taking deadlines into
account, as well as penalising any route that breaks deadlines. The new visibility is
recalculated as

,1=
jij

ij ud
λη ⋅ (14)

where ijd is the distance between job i and j , ju is the deadline associated with job j
and λ is a parameter controlling the influence of deadlines. An increase in λ decreases

the effect of the deadlines. A route is penalised by allowing for the value of)(tijτ to become

negative. If a route does not conform to a deadline, each edge),(ji on the route will

assume a negative)(tijτ .

A second variant based on the method developed by Cheng & Mao [3] for TSPTW proposes to

use an adjusted random proportional transition rule. For an ant at job i , let jw be the time

at which the ant arrives at job i ; then ijG = ij wu − is the slack associated with the

114

deadline of job j . A nonlinear relationship

,
))((exp1

1=
µδ −+ ij

ij G
g (15)

holds between ijg and ijG where µ is the average of all ijG and δ is a scaling

parameter to adjust the limits of ijg . The new random proportional transition rule is given as










∉

∉∈
⋅⋅

⋅⋅

∑
∈

, if0

 and if
)()())((

)()())((

=)(
k
i

k
ii

k
i

ijijil
k
iDl

ijijij

k
ij

Dj

DRDj
gt

gt

tp
γβα

γβα

ητ
ητ

 (16)

where γ is a parameter controlling the relative importance of the slack associated with the
deadlines.

All the parameters were configured by means of experimentation. Combinations of values for
all the parameters were tested individually, using a number of representative data based on
historical data as well as benchmark instances for SOPs [17]. The best combination of
parameters was used.

2.6 Hybrid algorithms

A study done by Gambradella & Dorigo [6] suggested using ant colony algorithms in
conjunction with local search heuristics. The ant colony algorithm can find good solutions
faster thanthe tabu search, and the tabu search is better suited for smaller local
improvements. Therefore two hybrid methods, HB1 and HB2, were developed in order to use
the properties of tabu search methods and ant colony algorithms. The first method attempts
to assist the tabu search method by generating a relatively good initial solution quickly:first it
runs an ant colony algorithm, and then passes the resulting solution to a tabu search method
as the current solution.

The second method calls the tabu and ant methodssequentially. An ant colony algorithm is
run, and the solution is passed to a tabu search. Once the tabu search is complete, the initial
pheromone levels of the ant colony algorithm are adjusted, and the ant colony algorithm is
called again. This process continues until a stopping criterion is met. The initial pheromones
are adjusted by means of the formula

,(0))(1=(0)
Z
QMijij +⋅− τρτ (17)

where M is a scaling parameter effecting the change in the initial pheromone levels for the
new instance of the ant colony algorithm, and Z is the length of the route generated by the
previous tabu search. As M increases, the effect of the previous iteration on the initial
pheromones is increased.

3. DYNAMIC MODELLING APPROACH

During a typical working day in the DC, jobs become available at different times as trucks
arrive, picking lines are completed or planned, and functioning picking lines are replenished.
This continuous inclusion and completion of jobs adds a dynamic element to the problem that
needs to be handled.

115

A common approach to solving dynamic SOPs and their variants is to make use of existing
algorithms designed for static problems. According to Ichoua et al. [7], these adaptations of
static algorithms may be divided into three categories: fast local update procedures,
re-optimisation procedures, and hybrid procedures.

A re-optimisation procedure is selected to model the dynamic system, and the tabu search is
selected for the re-optimisation, as the algorithms using ant colony methods require
parameter changes depending on the number of jobs and length of deadlines. Although the
two hybrid methods marginally outperform the tabu search when applied to the DC scenarios,
the computational effort of reconfiguring parameters does not justify the insignificant gain.
In order for a re-optimisation procedure to be used, a system needs to be developed that can
collect the changing information and generate a new static problem. A decision support
system,the ‘dynamic real time job scheduler’, was developed and coded in order tohandle
the dynamic elementsin real time.

The first process that the job scheduler must handle is the inclusion of additional jobs in the
system. The job insertion process attempts to insert a new job into the best position, such
that the new job does not break deadlines. This is achieved by searching for the latest
feasible positionthat meets the prerequisites, where the new job does not break its deadline
constraints. If such a position does not exist, the job is placed in the position that minimises
the penalty of the broken deadline. This will ensure that emergency jobs receive high priority
even if the deadline has passed. If a new job has a low priority, it will be placed at the end of
the current schedule. Upon completion of a job the job release process is induced. The first
job in the current schedule is removed, and the information is sent to the crane.

In order to test the performance of the dynamic realtime job scheduler, a simulator was
coded with a virtual systems operator and a virtual crane. The virtual systems operator sends
new orders in real time to the job scheduler with information about prerequisites and
deadlines. The virtual crane requests a job from the scheduler when it is empty, and while it
has a job, it will process the job until the required job completion time has elapsed.

A small example to illustrate what happens during the dynamic process is given. It is based on
the sample of data given in Table 1.

Table 1: Data used to illustrate the process of dynamic optimisation. The release time
(the time at which a job is entered into the system) and the list of future jobs are in

reality not known in advance.

Assume that the crane is busy with job 0J , the time is 10:15, and the list of pending jobs is

1J - 2J - 3J . Let the crane finish job 0J at 10:18. The next job (1J) is then given to the

crane, and the list of pending jobs changes to 2J - 3J . At 10:20 job 4J enters the system,
and because of its deadline it is placed at the top of the list, resulting in a pending job list of

4J - 2J - 3J . Once job 1J is completed, job 4J is sent to the crane. The crane is still busy

with job 4J when jobs 5J and 6J enter the system at 10:30. The pending job list is now

2J - 3J - 4J - 5J - 6J . Re-optimisation then takes place while job 4J is performed, resulting

in a pending job list of 3J - 5J - 2J - 6J at 11:32 when job 4J is completed.

116

4. RESULTS

Different test instances were run for each of the four algorithms (i.e. tabu search, ant colony,
HB1, and HB2) and individual solution qualities were compared in order to determine the best
solution method. A set of benchmark problems, developed by Stecco et al. [17] of size

100>n , was used to estimate parameters. All testing was performed on an Intel Pentium
Core 2 Duo 2.4 Ghz processor with 1Gb RAMrunning Microsoft Windows XP with Service Pack 3,
and the code was programmed in JAVA 1.6 [6, 10].

4.1 Static modelling results

Test data sets making use of historical data from the DC were used to compare the algorithms
with the DC’scurrent method. These data sets were generated using real data captured by the
DC over several days. Four types of scenarios were generated after consultation with the DC
manager, incorporating only two different activities [3]. The combinations of these activities
are: building and breaking two consecutive picking lines on the same level (BBS), building and
breaking two different picking lines (BBD), building a picking line with storage of goods (BS),
and building picking lines where the picking line is situated in another aisle and the pallets
need to be moved to the floor (FS). For the BBS scenario,the old leftover stock from a previous
picking line must be replaced by new stock for the next picking line. A pallet of new stock may
only be placed in the picking line once the old stock (if any) has been removed from the
required bay.

Scenarios were generated by pairing two sets of jobs, each associated with different activities
(see assumption 2) from the same historical data set to create a single set of jobs1. These
initial scenarios were run with the exclusion of deadlines (generating SOP instances) as well as
with binding deadlines (generating SOPD instances). The exact solutions to the scenarios
without deadlines may thus be viewed as lower bounds for the scenarios with binding
deadlines. Both ant colony algorithms for SOPD presented in Section2.5 were tested, with
similar results. The maximum run time for each algorithm is 90 seconds, as this is the duration
of a typical job. In an attempt to compare the results with an exact solution, the SOP
scenarios were all solved to optimality using Lingo 11 [4]. The scenarios with binding
deadlines were not solved, but the exact solutions for the scenarios without deadlines were
used as lower bounds. The results were also compared with those calculated based on the
DC’scurrent method discussed in Section 1. These individual sets were, however, optimised
independently using the formulation (1) – (10), resulting in a best case scenario of that used in
practice.

From the results in Figure 3, it can be seen that the ant colony algorithm has the worst
performance for all instances, with especially poor performance for the instances with
deadlines. The DC's method is shown to be inferior to the tabu search and hybrid methods.
The ant colony at times performs worse than the DC’s method. The percentage gain
throughcombining the two types of jobs involved in building a picking line and breaking down
another one is given in Table 2.

Figure 4 illustrates the performance of all the algorithms, as well as the method used by the
DC for instances where a picking line is broken and a new one is built. The results are similar
to Figure 3, in that the ant colony algorithm performs poorly and the DC's method is improved
by the tabu search and hybrid methods. Table 3 shows large improvements on the DC's
method, suggesting that this particular combination of jobs should be grouped together in
practice.

From the results based on instances where a picking line is built and a set of pallets isstored
(Figure 5),there is an improvement in the ant colony performance; however, the
improvements on the DC's method and the exact solution are minimal for all algorithms. Table
4 illustrates the low improvements on the DC's method, suggesting that improvements may be
less, compared with other combinations, if these job types are combined in practice.

1BBS1_68_D indicates data set 1 of type BBS and size 68 with binding deadlines.

117

Figure 3: A plot of the total completion times by each algorithm for the DC data sets,
where a picking line is built and a different picking line is broken down.

Table 2: Percentage improvement of total completion times with respect to the
DC’scurrent method, using scenarios with building and breaking down

different picking lines.

Figure 4: A plot of the total completion times by each algorithm for the DC data sets,
where two succeeding picking lines are broken down and built.

Table 3: Percentage improvement of total completion times forthe DC’smethod,using
scenarios with building and breaking down the same picking line.

118

Figure 5: A plot of the total completion times by each algorithm for the DC data sets,
where a picking line is built and a set of pallets isstored.

Table 4: Percentage improvement of total completion times for the DC’s method,using
scenarios with building a picking line as well as the storage of goods.

The results shown in Figure 6 illustrate the improvements made on the DC's method, as well as
the poor performance of the ant colony algorithm when a set of storage jobs iscombined with
building a picking line in another aisle, where all the pallets are required to go to the floor
first. The significant improvements presented in Table 5 suggest the combination of these job
types in practice.

Figure 6: A plot of the total completion times by each algorithm for the DC data sets,
where a picking line is built in another aisle and a set of pallets isstored.

119

Table 5: Percentage improvement of total completion times with respect to the
DC’smethod,where a picking line is built in another aisle and a set of pallets is stored.

The DC’s method,where no job integration is used, was tested against the optimisation with
full integration. The data suggests that improvements may be achieved by combining
different job types, with gains of up to 20% for certain combinations. The scenarios that
combine storage jobs with building a picking line in another aisle, as well as simultaneously
building and breaking two succeeding picking lines, show the largest improvements.

4.2 Dynamic modelling results

Real-time instances were generated using real data from the DC over several days. Similar
instanceswith varying dynamic levels were compared with the DC’s method. All testing was
again performed on an Intel Pentium Core 2 Duo 2.4 Ghz processor with 1Gb RAM running
Microsoft Windows XP with Service Pack 3, and the code was programmed in JAVA [10].

Scenarios were generated in a similar fashion to the static problem. However, the inclusion of
release times was now taken into account. A job was assigned a release time and a deadline in
accordance with the management philosophy.

A scenario may be classified according to a level of job completion percentage, which
indicates the required percentage of the previously entered jobs that need to be completed
before a new set of jobs may enter the system. If this percentage approaches 0%, the problem
becomes a static problem; and if the percentage approaches 100%, the problem becomes one
where the DC's current method is used. Therefore a total of five cases are considered:those of
0%, 30%, 50%, and 70% relative to the DC's current method (100%).

From the results in Table 6, it can be seen that the dynamic system used to schedule the jobs
of the crane yields faster overall completion times. On average an improvement of 7% is
realised, which may be translated to an improvement of about 50 minutes in a 12-hour shift.
The low improvement for data set F4 may be attributed to the combination of jobs.

Table 6: Percentage improvement of total completion times using dynamic reoptimisation
in comparison with the case where the job completion rate is 100%, which represents the

DC’s method.

5. CONCLUSION AND RECOMMENDATIONS

In Section 2 the SOPD was used to model a static scenario, and an exact formulation for the
problem was supplied. The solution time needed for an exact solution is too long, and so the
development of metaheuristic methods for solving this problem was introduced. Tabu search
and ant colony metaheuristic methods, as well as hybrids of these methods, were considered.
A dynamic model was developed, based on the solution methods previously obtained, where
the release times of the jobs are taken into account. As soon as new jobs enter the system or

120

a job is completed, the system refreshes the current information and resolves the problem.
Both static and dynamic scenarios were generated in order to compare solutions that use job
integration with those of the DC’s current method.

The results shown in Section4 indicate that ant colony algorithms were not as effective as
tabu search, but hybrids of the two methods yield better results when considering scenarios
based on the real-life data supplied by the DC. The results obtained from the static model
were conclusive: the DC’s method is not optimal, with integration producing gains as large as
20%. The results based on realistic dynamic scenarios show an average of 7% improvement on
the DC’s method.

It is recommended that a dynamic optimisation system be introduced into the operational
software currently in use by the DC. The results indicate that the use of the presented
algorithms could save up to 1 hour per 12-hour shift.

6. REFERENCES

[1] Alcaide, D., Rodriguez-Gonzalez, A. & Sicilia, J. 2003. An approach to solve a
hierarchicalstochastic sequential ordering problem, Omega, 31(3), 169-187.

[2] Ascheuer, N., Fischetti, M. & Grötschel, M. 2001. Solving the asymmetrical travelling salesman
problem with time windows by branch-and-cut, Mathematical Programming, 90(3), 475-506.

[3] Cheng, C. & Mao, C. 2007.A modified ant colony system for solving the travelling sales-man problem
with time windows, Mathematical and Computer Modelling, 46(9-10), 1225-1235.

[4] Cordeau, J. & Laporte, G. 2003. A tabu search heuristic for the static multi-vehicle dial a ride
problem, Transportation Research Part B, 37(6), 579-594.

[5] Domingo, E. 2009. Manager at PEP distribution centre, Kuilsriver, South Africa [personal
communication], contactable at <krvmgr@pepstores.com>.

[6] Gambradella, L. & Dorigo, M. 2000. An ant system hybridized with a new local search for the
sequential ordering problem, INFORMS Journal on Computing, 12(3), 237-255.

[7] Ichoua, S., Gendreau, M. & Potvin, J. 2007.Planned route optimization for real-time vehicle
routing. In Dynamic fleet management, concepts, systems, algorithms and case studies, chapter 1,
1-18. Springer, New York.

[8] Józefowska, J., Waligóra, G. & Weglarz, J. 2002. Tabu list management methods for a
discrete-continuous scheduling problem, European Journal of Operational Research, 137,288-302.

[9] Landrieu, A., Mati, Y. & Binder, Z. 2001. A tabu search heuristic for the single vehicle pickup and
delivery problem with time windows, Journal of Intelligent Manufacturing, 12(5-6), 497-508.

[10] Lindo Systems. Lingo 11 [online, cited May 1st, 2009],http://www.lindo.com/.
[11] Mafoli, F. & Sciomachen, A. 1997. A mixed-integer model for solving ordering problems with side

constraints, Annals of Operations Research, 69(0), 277-297.
[12] Microsoft Windows XP [online, cited May 1st, 2009], available from http://www.microsoft.com/.
[13] Moon, C., Kim, J., Choi, C. & Seo, Y. 2002. An efficient genetic algorithm for the travelling

salesman problem with precedence constraints, European Journal of Operational Research, 140(3),
606-617.

[14] Mulcahy, D.E. 1994. Warehouse distribution and operations handbook. McGrawHill, U.S.A.
[15] Nanry, W. & Barnes, J. 2000. Solving the pickup and delivery problem with time windows using

reactive tabu search, Transportation Research Part B, 34(2), 107-121.
[16] Nikolakopoulos, A. & Sarimveis, H. 2007. A threshold accepting heuristic with intense local search

for the solution of special instances of the travelling salesman problem, European Journal of
Operations Research, 177(3), 1911-1929.

[17] Reinelt, G. 1995. Tsplib [online, cited May 1st, 2009], available from:
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

[18] Stecco, G., Cordeau, J.F. & Moretti, E. 2009. A tabu search heuristic for a sequence-dependent and
time-dependent scheduling problem on a single machine, Journal of Scheduling,112(1), 3-16.

[19] Sun Microsystems. JAVA [online, cited May 1st, 2009], available from http://java.sun.com/.
[20] Valls, V., Perez, M. & Quintanilla, M. 1998. A tabu search approach to machine scheduling,

European Journal of Operational Research, 106(2-3), 277-300.

