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ABSTRACT 
 

This paper considers an optimization problem with a linear objective function under the 
constraints expressed by a system of fuzzy relation equations using max-as (Algebraic Sum) 
composition. First, some properties of minimal solutions of the system with fuzzy relation 
equations and max-as composition are shown. Then, a new algorithm for solving the 
optimization problem is derived. The numerical examples have been provided to illustrate 
the theoretical results. 
 

OPSOMMING 
 
Hierdie artikel bestudeer ‘n optimiseringsprobleem met ‘n lineêre doelwitfunksie en wasige 
randvoorwaardes met ‘n algebraïese somsamestelling. Aanvanklik word sommige 
eienskappe van die minimale oplossings van die wasige vergelykings  en die algebraïese 
samestelling getoon. Daarna word ‘n nuwe algoritme vir die oplossing van die 
optimiseringsprobleem afgelei. Numeriese voorbeelde word voorsien om die teoretiese 
resultate te ondersteun. 
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1. INTRODUCTION 
 
The following linear programming model with fuzzy relation constraints has been 
considered: 

Minimize 



m

i
ii xcxz

1

.)(                                                         (1) 

Subject to: 1x0b;oA i X                                                  (2) 

 

Where, )c , . . . ,c ,(c  c m21  is a m-dimensional vector; ic  represents the cost associated 

with variable ix  for mi ,...,2,1 , and ),...,,( 21 nbbbb   is an n-dimensional vector with 

10  jb . The operation “ o ” in Eq. (2) is an algebraic composition. The resolution of 

the fuzzy relation in Eq. (2) is an interesting and ongoing research topic [1], [2], [3], [4], 
[5]. Many different equations are based on a specific composition. Relations that have been 
used in these equations include max-min, max-average, max-product, and other fuzzy 
compositions. Each of these compositions may not be useful in certain special 
circumstances. For instance, even if we want the fuzzy set with the largest membership to 
have a major impact on the equation and to use the minimum operator, this would be 
impossible. Each of these fuzzy operators has a special property as follows: 
 

),min( ba  is equivalent to the intersection logical operator between them; so " a " and 

"b " ( 1,0  ba ) are fuzzy numbers. The min operator is used for conservative estimates 

so that a value can compensate for the losses of another one. Zimmermann [5] employed 
the average operation to represent the "and" fuzzy operator. baba .(.)   indicates a fuzzy 

product. This operator has a decreasing effect, and is used in cases where two operatives 
are going to debilitate each other. bababa .)(   indicates a fuzzy algebraic sum. 

This operator has an increasing effect, and is used when two operatives are going to 
reinforce each other. In this paper, the following linear programming model with fuzzy 
relation constraints has been considered: 
 

Minimize mm xcxcxcxz ......)( 2211                                            (3)  

Subject to: jbxa jiiji  ,))((max                                                (4) 

         

where 10  ija , 10  jb  ),...,2,1,,...,2,1( njmi  ; the operations ‘.’and ‘+’ 

are multiplication and addition in Eq. (3) respectively, and bababa .)(   is a fuzzy 

algebraic sum in the system (4). 
 
The non-empty feasible solution set of fuzzy relation (Eq. (2)) is generally a non-convex set, 
which can be completely determined by one maximum solution and a finite number of 
minimum solutions. The fuzzy relation equations are used in many problems such as 
medical diagnosis [2], system analysis [6], decision-making [3], Fuzzy control [7], Fuzzy 
modelling [8], and in psychology, economics, sociology, and especially Fuzzy arithmetic [7], 
[9]. 
 
In the first effort in this direction, the fuzzy relation equations were studied by Sanchez 
[10], considering max–min composition. Later Pedrycz [6] studied max-product fuzzy 
relation equations. Di Nola et al. [11] showed that the solution set of Eq. (2) can be 
determined completely by a unique maximum solution and a finite number of minimal 
solutions [12]. Wu & Guu [13] proposed the necessary condition for optimal solution of the 
problems with positive cost coefficients in the objective function. Based on this necessary 
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condition, three rules have been applied in simplifying the finding of optimal solutions. 
However, as mentioned in the first example of this article, in some cases these rules are 
not effective. Finally, after reducing the size of the problem, the rest of the problem can 
be solved by a branch and bound method. Although the authors of this paper update the 
upper bound of the branch and bound method – when a better bound is generated and 
causes the number of the nodes in this method to be reduced - it still requires a relatively 
time-consuming process to solve the branch and bound problem. Wu [14] considered the 
fuzzy relation equation with max-average composition. He proposed six rules that are very 
effective in reducing the problem size . However, using these rules does not develop an 
algorithmic framework that can begin from a starting point and add value to all the 
variables. These rules only reduce the size of the problem. After these rules are 
implemented, some uncertain variables may have remained; these variables may be 
resolved using the branch and bound method. Khorram, Ghodousian & Molai [15] 
investigated a minimization problem with a linear objective function subjected to fuzzy 
relation equations with max-as composition. They characterised the feasible solution set 
and then introduced two efficient procedures for solving the problem. They considered the 
constraint part of the system (4) which consists of fuzzy relation equations with max-as 
composition. These scientists decomposed the problem into two sub-problems: the non-
negative, and the non-positive cost coefficients in the objective function. According to 
their procedure, the sub-problem formed by non-positive coefficients was solved by 
maximum solution. Then, the variables with non-positive coefficients were removed from 
the objective function, and two algorithms were proposed to solve the sub-problem. Such 
problems were formed by the remaining variables, the non-negative coefficients in the 
objective function under the original constraint. Finally, they combined the two solutions 
derived from those two sub-problems to yield an optimal solution for (1)-(2) problem. 
Following the previous studies, the algorithm presented in this paper is a needless heuristic 
from the traditional methods; and by using the augmented matrix and assigning values to 
all variables in each step of the algorithm, this will lead to an efficient and complete 
answer at the end of the stages. High-quality solutions from this algorithm are evident from 
the examples given at the end of the paper, and can be compared with similar algorithms 
that deal with this subject [15]. In this research, at first the necessary condition is provided 
for an optimal solution of (3)-(4) problem. Then an augmented matrix is used to capture the 
contribution of each variable in the objective function yielded by employing the necessary 
condition. Finally, a new algorithm is presented for solving (3)-(4) model. As the mentioned 
matrix and algorithm help to find optimal solutions, the (3)-(4) problem is not decomposed 
into two sub-problems, and no rules are needed to reduce the problem size.  
 
2. PRELIMINARY PROPERTIES FOR MAX-AS COMPOSITION  
 

Let },10:{ IixRxX i
m  , },..,2,1{ mI   and },..,2,1{ nJ  , as the 

feasible solution of the system (4) is denoted by }o:{],[ bAXRxbAX m   to 

characterise ],[ bAX ; ],[ bAXx   is said to be the maximum solution if 

],[),()( bAXxxzxz  
; similarly, ],[ bAXx   is the minimum solution; if for x  

in ],[ bAX  we have )()( xzxz
 , then )()( xzxz

 . Here, the following lemmas and 

theorems are presented, which are required in the subsequent sections. 
 
2.1 Lemma 1 
 

If in the j-th equation jij ba   holds for Ii in the system (4), then the solution 

set ),( bAX is empty. 
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2.1.1 Proof 
 
Suppose that ],[ bAX  is not empty; therefore we must have: 

jiijiijIi bxaxa  }.{max ; Jj  to satisfy the constraints. It is evident that at 

the j-th equation we have }.max{. iijiijiijiij xaxaxaxa  ; Ii . This leads 

to: jiijiij bxaxa  . or )1/()( ijijji aabx  due to 10  ix , if 

jij ba  ; Ii  in the system (4), then 0)1/()(  ijijj aab  thus 0ix  and no 

solution for ),( bAXx can satisfy the j-th equation in the system (4). 

 
2.2  Lemma 2 
 

If 1ija , then ix  has no effect. 

 
2.2.1 Proof 
 

Noticing that 0 ijj ab , we have 1jb , as a result subjected to the system (4) 

0ix . By Lemmas 1 and 2, one can easily acquire if 0jb and 0ija for Ii in Eq. 

(2), then the solution set ),( bAX is empty. On the other hand, if 0jb and 0ija for 

all Ii , then the j-th equation becomes: 
 
 

 

Since 10  ix , xi should be zero for all Ii , if any solution exists in ),( bAX . 

Therefore, this study assumes: Jjbj  ,0 ; Ø),( bAX ; jij ba  and 1ija  for 

all ., JjIi   

 
According to and Higashi & Klir [12], once Ø),( bAX , the optimum points can be 

completely determined by a maximum and a finite number of minimum solutions. The 
maximum solution of the fuzzy relation equations with max-as composition can be easily 
derived by applying the following operation (Khorram et al. [15]): 

IiijaAX  )]ob([minob jJj


                                                 (5) 

 

Where  
















1

1

11

:ob j
j

ij

ijj

j

ij bif
a

ab
bif

a  

 
2.3 Definition 1 
 

For any solution ),()( bAXxx Iii    in the system (4), ix  is the binding variable if 

jiijiij bxaxa  .  holds for some Jj .  

Ii

xi


 .0}00max{
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The set };.| {:)( JjbxaxajxJ jiijiiji   denotes the binding set for ix .  

 
2.4 Lemma 3 
 

Let Iiixx  )(


 be the maximum solution and Iiixx  )( the solution of in the system 

(4); if ix  is binding in the j-th equation, then ix


 is also binding there.  

 
2.4.1 Proof 
 

For any solution of ),()( bAXxx Iii   , there are 

,}.{ jiijiijIi bxaxaMax  Jj  . Hence, jiijiij bxaxa  .  holds for any 

value of variable ix , implying that Jjbxaxa jiijiij  ;.


. Now, if ix  is binding in 

the j-th equation, then jiijiij bxaxa  . ; Jj  . Moreover, ii xx
 exists for any 

solution of X . Therefore, the following inequality will be derived: 

:ˆ.. jiijiijiijiijj bxaxaxaxab  
 

 

This result suggests jiijiij bxaxa  
. . Hence, ix


 is also binding in the j-th equation.  

 
2.5 Theorem 1 
 

For any optimal solution, ),( bAXx , if ix  is a binding variable, then ii xx
 . 

 
2.5.1 Proof 
 

For any solution of ),()( bAXxx Iii   , there are ;}.{ jiijiij bxaxaMax   

Jj   since ix  is a binding variable, jiijiij bxaxa  .  for some Jj . By Lemma 

(5), ix


 is also binding at the j-th equation. Hence, iiijiij bxaxa  
. . Now, 

consider ii xx
 , that implies jiijiijiijiijj bxaxaxaxab  

.. , which is 

impossible. Therefore ii xx
 . 

 
2.6 Theorem 2 
 

Let x


 be an optimal solution of problem (3)–(4). Therefore, 0ix


 or ii xx
  . 

 
2.6.1 Proof 
 

If ix


is not a binding variable, we can assign 0 to ix


.On the other hand, if ix


 is a binding 

variable, then ii xx
   by Theorem1.  

 
2.7 Theorem 3 

Let Iiixx  )(


 as the maximum solution of Eq. (5). For any optimal solution of 

),()( bAXxx Iii  


of (3)-(4) problem, the i-th component of x


 is one of the 

following situations: 
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1) If 0ic , then ii xx
  ; 

2) If 0ic , then 0ix


or ii xx
  ; 

3) If 0ic  and x  is a binding variable, then ii xx
  ; 

4) If 0ic and x  is not a binding variable, then ix


can be any value in ];0[ ix


. 

 
The  proof of this theorem   may be found in Wu [14].  
 
3. A NEW ALGORITHM FOR SOLVING (3)-(4) MODEL 
 
Based on the results obtained in section 2, an augmented matrix is employed in this study 
to solve the general case of (3)-(4) problem with a max-as composition. A new algorithm is 
suggested for finding an optimal solution using this augmented matrix. According to 

Theorem 2, each component of the optimal solution x


can be composed of either 0ix


 

or ii xx
   for all Ii . Furthermore, Theorem 1 shows that for any solution of 

),()( bAXxx Iii   , if ix  be a binding variable, then ii xx
 . Based on these 

properties, the objective is to select proper binding variables in order to derive the optimal 

solution for (3)-(4) problem. The maximum solution Iiixx  )(  and binding set 

)( ixJ


provide useful information in searching for all binding variables. Hence, the search 

is limited to )( ixJ


 and the augmented matrix )(1 ijpAug   for },...,2,1{ mi  and 

}1,...,2,1{  nj  is defined as:  

 
 
         
                                                   (6) 
  
 
 

 

The numerical elements in the i-th row of 1Aug  correspond to the contributions in the 

objective function by setting ii xx
 . Notably, if ii xx

  is not a binding variable but has 

the non-negative cost coefficient 0ic , then the elements in the i-th row of 1Aug  are 

Jjpij  ; . In the developed procedure for finding the optimal solution, the 

following index sets are denoted for matrix 1Aug : 

 

IixcpnjAugJ iiiji  }.|},...,2,1{{:){ 1


 and 

}.,...,2,1{}.|{:)( ij1 njxcpIiAugI iij  
  

 

The index set )( 1AugI j  shows that the possible variables of X  may be selected as a 

binding variable or a nonbinding variable with a negative coefficient in the j-th equation. 

The augmented matrix )(2 ijqAug   for },...,2,1{ mi  and }1,...,2,1{  nj is 

defined as: 
 
 
 













otherwise

nj

nj

for

forxJjifxc

p
iii

ij 1

},...,2,1{)ˆ(

{}

ˆ.


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                                                        (7) 
              
 
 
 

 

where for rows below the i-th row of matrix 2Aug , iK is defined as follows:  

};,..,2,1);()( |{ 22 miAugJAugJIsK isi


  

 
m


 is the last row of the matrix. The following steps of the algorithm will be carried out to 
solve the problem: 
 

 
1. Compute the vector b oA by Eq. (5). Then control the consistency of the system (4) by 

verifying whether bA oˆ x ; if it is inconsistent, then stop. Otherwise, set the 

maximum solution .obAx   
 

2. Compute jI  for each Jj . 

 

3. Generate the augmented value matrix 1Aug .  

 

4. From the (current) matrix 1Aug  compute the index sets }{  iji pJjJ for 

all variables ix . 

 
5. Arrange the rows of matrix values in descending order, (if necessary) as follows: 

imimjijiiji xcxcxc


...... 2211    

6. If 0ijp , then ii xx
  and delete i-th row and j-th column. Repeat step 7 for all of 

the rows with 0ijp .  

7. (Generating the matrix 2Aug ) Update the augment column with equations (7). 

 
Now, attribute the variables from the bottom upwards; therefore, each time go to the last 
row and repeat the following steps.  
 

 
Run the following steps until all variables give an amount. 
 

8. If },...,2,1{; njqij  then 0ix , and delete i-th row. 

 

9. Let mm xx 
 . Thus, delete m~ -th rows and j-th columns for }0;{  jmqJj  . 

 

10.  If {})1( nmq  , let 0sx  for
mKs  .  

 
11. If all variables reflect an amount, then stop. 
 













otherwise

nj

nj

for

forxJj

K

ifxc

q
i

i

ii

ij 1

},...,2,1{)ˆ(ˆ.


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4. NUMERICAL EXAMPLES  
  
In this section, two examples are considered.  
  
4.1 Example 1 
 
Consider the residents of three different regions. One tourism centre is located in each one 
of these areas. The tourism centre director of region C decides to cover the three regions 
as much as possible by improving the quality of tourism in his own region. He thinks that 
the following criteria may be useful to convince the residents of these three areas: 

1. The prestige of region C as a tourism destination. 
2. The traffic network, including air, rail, and road. 
3. The tourism facilities and attractions. 

He asks the centre's experts to determine the current status of tourism zone C, considering 
the above-mentioned criteria in each of the three regions. The experts prepare the 
membership matrix as follows: 
 


















4.55.4.

4.3.4.

3.4.2.

A

 
 

where " ija " indicates the membership of i-th criteria in j-th region. For instance, the 

prestige of region C for residents of region A is 0.2; for region B it is 0.4; and for residents 
in his own area (C) it is 0.3. Therefore the tourism prestige of region C is lower in region A 
than in the other regions. 
 
The institute’s director believes that if he can raise at least one of the above criteria in the 
areas A, B, and C respectively, to 0.6, 0.7 and 0.6 (b vector), then region C can gain the 
upper hand. 
 
He believes that by doing the following activities, he can promote the quality of the 
criteria that will be considered. 
1. Marketing and advertising: anticipating the tourists' needs and their varied requests, in 

which their satisfaction is the most important principle to be considered. ( 1x ) 

2. Transit infrastructure and competition with neighbouring regions, especially in the 

tourism areas ( 2x ) 

3. Tourism centres include hotels, cultural centres (amphitheatres, exhibitions, etc), sports 
centres (tennis courts, cycling and walking tracks, golf courts, etc), nature parks and 

amusement parks. ( 3x ) 

),,( 321 xxxX   shows the amounts by which each factor needs to upgrade. We 

have (4,7,5)  c   where, ic  represent the cost associated with variable ix  for 3,2,1i . 

He would like to know how to expand these activities in order to become the main tourism 
centre among its competitors, at the minimum cost. 
 
Optimisation model for this problem is as follows: 
 

Consider 321 574min xxxz                      

               Subject to: ,o bAx         ],1,0[ix  
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 Where   


















4.55.4.

4.3.4.

3.4.2.

A  

 And        )6.7.6.(b  

 
Steps 1 and 2: 
 

The )
3

1
,

3

1
,

7

3
(x  can be easily found by equation (5). Here, },3,2{1 I  }3{2 I  and 

}.3,2,1{3 I  

 
Step 3: 

 

















{}

{}

{}

3
5

3
5

3
5

3
7

3
7

7
12

3

2

1

1 


x

x

x

Aug             

 
Step 4: 

},3{1 J },3,1{2 J }3,2,1{3 J . 

 
Step 5 : 

descending

x

x

x

Aug 

















{}

{}

{}

3
5

3
5

3
5

7
12

3
7

3
7

3

1

2

1 


 

 
 Step 6: not applicable in this example. 
 
Step 7:  

 descending

x

x

x

Aug 

















{}

{}

}1{

3
5

3
5

3
5

7
12

3
7

3
7

3

1

2

2 


 

For 2x : }1{2 K  ; because 21 JJ  . 

 
Now, attribute the variables from bottom to top. Therefore, in each step, go to the last 
row and assign a value to the related variable. 
 
Step 8:  not applicable in this example.  
 

Step 9: 
3

1
33  xx


 delete 3-th rows and j-th columns for }0;{ 3  jqJj . 

Therefore, 01 x  and 02 x . Then ).,0,0( 3
1x  Thus the institute director must 

upgrade the third activity to 0.33, to gain the upper hand among the regions. 
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4.2 Example 2 
 

Consider Min 7654321 7.3.5.4.2 xxxxxxxz   

 
Subject to: boA X , 

         ],1,0[ix       

 

where  































3
1

5
3

15
1

15
7

5
1

5
1

8
5

8
3

5
1

4
1

5
1

8
5

7
1

4
1

6
1

4
1

7
4

3
1

5
2

5
1

3
1

2
1

5
2

6
1

4
1

2
1

4
1

4
1

7
1

2
1

7
2

7
3

7
1

00

A  

 

and  4.7.5.6.4.b   

Step 1: First, the )1,.2,.2,.2,.1,.33,.3(.x  can easily be found.  

 
Step 2:  

},6,1{1 I },1{2 I },6,2,1{3 I },6,5{4 I }7,4,3,1{5 I . 

 

Step 3: The augmented value matrix ( 1Aug ): 

 


































{}

{}

{}

{}

{}

{}

{}

1.

2.2.2.

6.

1

1.

32.1

6.6.6.6.

7

6

5

4

3

2

1

1











x

x

x

x

x

x

x

Aug
 

 
Step 4:  

},5,3,2,1{1 J },3{2 J },5{3 J },5{4 J },4{5 J },4,3,1{6 J }5{7 J . 
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Step 5:   
 



































{}

{}

{}

{}

{}

{}

{}

32.1

6.

1.

1.

2.2.2.

6.6.6.6.

1

2

5

3

7

6

1

4

1











x

x

x

x

x

x

x

Aug
 

 

Step 6: For some };5,3,2{;0,  ipJj ij  ;33.22  xx


;1.33  xx


  

2.55  xx


. 

Delete i-th rows and j-th columns for }0;{  jmmJj   

 
Step 7: The matrix will be: 
 























{}

{}

}6{

{}

2.

6.6.

7

6

1

4

2






x

x

x

x

Aug  

 

Step 8: According to the step 8 of the algorithm, mentioned in section 3, ;04 x 07 x . 

 

Step 9: ;2.66  xx


 

 
 











{}

}6{

2.

6.6.

6

1
2 x

x
Aug   

3.11  xx


 

 

Step 10: Where }6{1 K   so:  6x  is 0;  

 
Thus, )0,0,2,.0,1,.33,.3(.x with an objective value 42.1)( xz


. 

 
4.3 Remark 
 
The numerical example has been solved by using the example data of Khorram et al. [15], 
and the solution has been obtained as follows: 

)0,2,.2,.0,1,.33,.3(.x  

The corresponding objective value for solution x


 is -1.22 – obviously not the optimal 
solution. In this paper, to obtain a feasible solution, two elements of the matrix are 
changed as below:  

6
1

6
5

32 : A ; 5
2

5
3

33 : A . 
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The variable 3x  is nonbinding in both the second and the third equations. Therefore this 

change has no effect on the final solution. 
 
5. CONCLUSIONS  
 
In this paper, the maximum points are used for determining the minimum points after 
considering the feasible solution space. In the developed algorithm, it is not necessary to 
decompose the problem into two sub-problems, nor to use some rules to reduce the 
problem size.  
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