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ABSTRACT

This paper considers an optimization problem with a linear objective function under the
constraints expressed by a system of fuzzy relation equations using max-as (Algebraic Sum)
composition. First, some properties of minimal solutions of the system with fuzzy relation
equations and max-as composition are shown. Then, a new algorithm for solving the
optimization problem is derived. The numerical examples have been provided to illustrate
the theoretical results.

OPSOMMING

Hierdie artikel bestudeer ‘n optimiseringsprobleem met ‘n lineére doelwitfunksie en wasige
randvoorwaardes met ‘n algebraiese somsamestelling. Aanvanklik word sommige
eienskappe van die minimale oplossings van die wasige vergelykings en die algebraiese
samestelling getoon. Daarna word ‘n nuwe algoritme vir die oplossing van die
optimiseringsprobleem afgelei. Numeriese voorbeelde word voorsien om die teoretiese
resultate te ondersteun.
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1. INTRODUCTION

The following linear programming model with fuzzy relation constraints has been
considered:

Minimize z(x) = ) _¢,.x, (1)
i=1
Subject to: XoA =b; 0<x, <1 ()

Where, ¢=(c,,C,,...,C, ) is a m-dimensional vector; ¢, represents the cost associated
with variable x; for i =1,2,...,m, and b = (b,,b,,...,b,) is an n-dimensional vector with

0< b/. <1. The operation “0 ” in Eq. (2) is an algebraic composition. The resolution of

the fuzzy relation in Eq. (2) is an interesting and ongoing research topic [1], [2], [3], [4],
[5]. Many different equations are based on a specific composition. Relations that have been
used in these equations include max-min, max-average, max-product, and other fuzzy
compositions. Each of these compositions may not be useful in certain special
circumstances. For instance, even if we want the fuzzy set with the largest membership to
have a major impact on the equation and to use the minimum operator, this would be
impossible. Each of these fuzzy operators has a special property as follows:

min(a,b) is equivalent to the intersection logical operator between them; so "a" and

"b" (0 < a,b<1)are fuzzy numbers. The min operator is used for conservative estimates
so that a value can compensate for the losses of another one. Zimmermann [5] employed
the average operation to represent the "and" fuzzy operator. a(.)b = a.b indicates a fuzzy
product. This operator has a decreasing effect, and is used in cases where two operatives
are going to debilitate each other. a(+)b = a +b — a.b indicates a fuzzy algebraic sum.

This operator has an increasing effect, and is used when two operatives are going to
reinforce each other. In this paper, the following linear programming model with fuzzy
relation constraints has been considered:

Minimize z(X) = ¢,.x, + ¢,.X, +...+ ¢, .X,, 3)

Subject to: max, (a;(+)x;) =b;,Vj (4)

where 0<qa, <1, 0<b, <1 (i=L2,.,m,j=1.2,.,n); the operations ‘.’and ‘+’

are multiplication and addition in Eq. (3) respectively, and a(+)b =a+b—a.b is a fuzzy
algebraic sum in the system (4).

The non-empty feasible solution set of fuzzy relation (Eq. (2)) is generally a non-convex set,
which can be completely determined by one maximum solution and a finite number of
minimum solutions. The fuzzy relation equations are used in many problems such as
medical diagnosis [2], system analysis [6], decision-making [3], Fuzzy control [7], Fuzzy
modelling [8], and in psychology, economics, sociology, and especially Fuzzy arithmetic [7],

[9].

In the first effort in this direction, the fuzzy relation equations were studied by Sanchez
[10], considering max-min composition. Later Pedrycz [6] studied max-product fuzzy
relation equations. Di Nola et al. [11] showed that the solution set of Eq. (2) can be
determined completely by a unique maximum solution and a finite number of minimal
solutions [12]. Wu & Guu [13] proposed the necessary condition for optimal solution of the
problems with positive cost coefficients in the objective function. Based on this necessary
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condition, three rules have been applied in simplifying the finding of optimal solutions.
However, as mentioned in the first example of this article, in some cases these rules are
not effective. Finally, after reducing the size of the problem, the rest of the problem can
be solved by a branch and bound method. Although the authors of this paper update the
upper bound of the branch and bound method - when a better bound is generated and
causes the number of the nodes in this method to be reduced - it still requires a relatively
time-consuming process to solve the branch and bound problem. Wu [14] considered the
fuzzy relation equation with max-average composition. He proposed six rules that are very
effective in reducing the problem size . However, using these rules does not develop an
algorithmic framework that can begin from a starting point and add value to all the
variables. These rules only reduce the size of the problem. After these rules are
implemented, some uncertain variables may have remained; these variables may be
resolved using the branch and bound method. Khorram, Ghodousian & Molai [15]
investigated a minimization problem with a linear objective function subjected to fuzzy
relation equations with max-as composition. They characterised the feasible solution set
and then introduced two efficient procedures for solving the problem. They considered the
constraint part of the system (4) which consists of fuzzy relation equations with max-as
composition. These scientists decomposed the problem into two sub-problems: the non-
negative, and the non-positive cost coefficients in the objective function. According to
their procedure, the sub-problem formed by non-positive coefficients was solved by
maximum solution. Then, the variables with non-positive coefficients were removed from
the objective function, and two algorithms were proposed to solve the sub-problem. Such
problems were formed by the remaining variables, the non-negative coefficients in the
objective function under the original constraint. Finally, they combined the two solutions
derived from those two sub-problems to yield an optimal solution for (1)-(2) problem.
Following the previous studies, the algorithm presented in this paper is a needless heuristic
from the traditional methods; and by using the augmented matrix and assigning values to
all variables in each step of the algorithm, this will lead to an efficient and complete
answer at the end of the stages. High-quality solutions from this algorithm are evident from
the examples given at the end of the paper, and can be compared with similar algorithms
that deal with this subject [15]. In this research, at first the necessary condition is provided
for an optimal solution of (3)-(4) problem. Then an augmented matrix is used to capture the
contribution of each variable in the objective function yielded by employing the necessary
condition. Finally, a new algorithm is presented for solving (3)-(4) model. As the mentioned
matrix and algorithm help to find optimal solutions, the (3)-(4) problem is not decomposed
into two sub-problems, and no rules are needed to reduce the problem size.

2. PRELIMINARY PROPERTIES FOR MAX-AS COMPOSITION

let X ={xeR":0<x, <Liel}, [={L2,..,m} and J ={1,2,.,n}, as the
feasible solution of the system (4) is denoted by X[A4,b] = {x € R" : Xod = b} to
characterise X[A,b]; x € X[A,b] is said to be the maximum solution if
z(x) < z(x),Vx € X[4,b]; similarly, x € X[A,b] is the minimum solution; if for x

in X[A,b] we have z(x) < z(X), then z(x) = z(X) . Here, the following lemmas and
theorems are presented, which are required in the subsequent sections.

2.1 Lemma 1

If in the j-th equation a; >bj holds for i € I in the system (4), then the solution
set X (A,b) is empty.
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2.1.1 Proof

Suppose  that  X[A4,b] is not empty; therefore we must have:
max,_{a; +x,—a;.x;} =b;; Vje€J to satisfy the constraints. It is evident that at

the j-th equation we have a, +x, —a;.x; <max{a; + x, —a,.x,} ; Vi €l . This leads
to: a; +x,—a,;.x; <bor x; <(b;—a,)/(1-a;)due  t00<x,<I, if
a;>b;;Viel in the system (4), then (b, —a;)/(1—a;) <0 thus x; <0 and no

solution for x € X (A4,b) can satisfy the j-th equation in the system (4).
2.2 Lemma 2

If a, = 1, then X, has no effect.

2.2.1 Proof

Noticing that bj —a; >0, we have bj. =1, as a result subjected to the system (4)
X, = 0. By Lemmas 1 and 2, one can easily acquire if bj =0and a; > Ofor i € IinEq.
(2), then the solution set X (A,b) is empty. On the other hand, if bj =(0and a; = 0 for

alli € I, then the j-th equation becomes:

max{x;, +0-0} =0.

iel

SinceO < x, <1, xi should be zero for alli € I, if any solution exists in X(A4,b).
Therefore, this study assumes: b, > 0,Vj e J; X(4,b)#0; a;, <b,and a, <1 for
aliel,Vjeld.

According to and Higashi & Klir [12], once X (A4,b) # @, the optimum points can be

completely determined by a maximum and a finite number of minimum solutions. The
maximum solution of the fuzzy relation equations with max-as composition can be easily
derived by applying the following operation (Khorram et al. [15]):

X = Aob =[min(a,0b,)],, (5)
1 if b =1

Where a,ob. :=|b,—a; .
TRV — if b, <1

2.3 Definition 1

For any solution X =(x,),.; € X(4,D) in the system (4), X, is the binding variable if

a, +x;, —a;.x; =b; holds for some j € J .
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Theset J(x;)={j|a, +x, —a,;.x, =b,;;Vj € J} denotes the binding set for x, .
2.4 Lemma 3

Let x =(x;),_, be the maximum solution and X = (Xx;),_, the solution of in the system

(4); if X, is binding in the j-th equation, then )?i is also binding there.
2.4.1 Proof

For any solution of x = (x;),_; € X(4,D), there are

Max, {a; +x;,—a,;.x;} =b;, Vj €J. Hence, a;+x,—a,.x, <b, holds for any
value of variable x; , implying that a, + X, — aij.)?l. < bj;Vj € J . Now, if x, is binding in
the j-th equation, then a; tx,—a;.x < bj ; Vj € J . Moreover, x; < )?l. exists for any

solution of X . Therefore, the following inequality will be derived:
b,=a,+x —a;x; <a,+x,—a;x; <b,

This result suggests a; + X, — aij.)?i = b, . Hence, X, is also binding in the j-th equation.
2.5 Theorem 1

For any optimal solution, x € X (4,b), if x, is a binding variable, then x; = X, .

2.5.1 Proof

For any solution of x =(x;),., € X(4,b), there are Max{a, +x,—a,.x;} =b;
Vj € J since x; is a binding variable, a; + X, —a;.X; = bj for some j € J . By Lemma
(5), X, is also binding at the j-th equation. Hence, a; +X, - aij.)?l. =b.. Now,

consider X; < X;, that implies bj =a,+Xx,—a;x; <a; +Xx,—a;x; = b., which is

j )

impossible. Therefore X, = X, .

2.6 Theorem 2

(
)

Let X be an optimal solution of problem (3)-(4). Therefore, )fl. =0 orx =

2.6.1 Proof

If X,is not a binding variable, we can assign 0 to X, .On the other hand, if X, is a binding

variable, then X; = X, by Theorem1.

2.7 Theorem 3
Let X =(X;),., as the maximum solution of Eq. (5). For any optimal solution of
X =(X,),.; € X(A4,b) of (3)-(4) problem, the i-th component of X is one of the
following situations:
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1)1fc; <0, thenX, = X;;
2
3

Ifc, >0, then X, = 0orX, =X;;
If ¢, =0 and x is a binding variable, then X, = X;;
4)If ¢; =0and x is not a binding variable, then X,can be any value in[0; X, ].

)
)
)
)

The proof of this theorem may be found in Wu [14].
3. A NEW ALGORITHM FOR SOLVING (3)-(4) MODEL

Based on the results obtained in section 2, an augmented matrix is employed in this study
to solve the general case of (3)-(4) problem with a max-as composition. A new algorithm is
suggested for finding an optimal solution using this augmented matrix. According to

Theorem 2, each component of the optimal solution X can be composed of either )fl. =0

or X =)?i for alli € /. Furthermore, Theorem 1 shows that for any solution of

x=(x,),,; € X(4,b), if x, be a binding variable, thenx, = X,. Based on these
properties, the objective is to select proper binding variables in order to derive the optimal
solution for (3)-(4) problem. The maximum solution Xx = (xi)iel and binding set

J()?l.) provide useful information in searching for all binding variables. Hence, the search
is limited to J(X;) and the augmented matrix Aug, = (p,) for i €{l,2,...,m}and
j €{l,2,...,n +1} is defined as:

c¢.x, if jeJ(X) forj={12,..,n}
p=| 0 for j=n+1
@ otherwise

The numerical elements in the i-th row of Aug, correspond to the contributions in the
objective function by setting X, = )?i. Notably, if x, = )?i is not a binding variable but has
the non-negative cost coefficientc, = 0, then the elements in the i-th row of Aug, are
Py = ¢;Vj €J. In the developed procedure for finding the optimal solution, the

following index sets are denoted for matrix Aug, :

J{dug) ={j e {l,2,...,n} | p; = ¢, x;}Vi el and
I.(Aug)) ={iel| p; =c.x}Vjei{l2,.,n}.

The index set /;(Aug,) shows that the possible variables of X may be selected as a
binding variable or a nonbinding variable with a negative coefficient in the j-th equation.
The augmented matrix Aug, =(g,) for i€ {l,2,..,m{and je{l2,.,n+1}is

defined as:
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4y

¢.x, if jeJ (&) for j={12,..,n} e
=| K, for j=n+1

1

@ otherwise

where for rows below the i-th row of matrix Aug,, K, is defined as follows:

Ki = {S € [ |J5(Aug2) < Jz(Augz)ﬂl = 1’2737;;1},

m is the last row of the matrix. The following steps of the algorithm will be carried out to
solve the problem:

Compute the vector 40 b by Eq. (5). Then control the consistency of the system (4) by
verifying whether X0 A =b; if it is inconsistent, then stop. Otherwise, set the
maximum solution X = A0b.

Compute /; foreach j € J .
Generate the augmented value matrix Aug, .

From the (current) matrix Aug, compute the index sets J, ={j e J |pl.j # ¢} for
all variables X, .

Arrange the rows of matrix values in descending order, (if necessary) as follows:
CopjXig > CpgjXig > o> Cpp X,
prij <0, then X; = )Acl. and delete i-th row and j-th column. Repeat step 7 for all of
the rows with p,, <0.

(Generating the matrix Aug2 ) Update the augment column with equations (7).

Now, attribute the variables from the bottom upwards; therefore, each time go to the last
row and repeat the following steps.

10.

11.

Run the following steps until all variables give an amount.

If g, =$;Vj €{l,2,...,n} thenx; =0, and delete i-th row.
Letx, =X, . Thus, delete 77 -th rows and j-th columns for {Vj € J;¢,; > 0} .

fGsni1) {},let x, =0 forg e K-

If all variables reflect an amount, then stop.

61



4. NUMERICAL EXAMPLES
In this section, two examples are considered.
4.1 Example 1

Consider the residents of three different regions. One tourism centre is located in each one
of these areas. The tourism centre director of region C decides to cover the three regions
as much as possible by improving the quality of tourism in his own region. He thinks that
the following criteria may be useful to convince the residents of these three areas:

1. The prestige of region C as a tourism destination.

2. The traffic network, including air, rail, and road.

3. The tourism facilities and attractions.
He asks the centre's experts to determine the current status of tourism zone C, considering
the above-mentioned criteria in each of the three regions. The experts prepare the
membership matrix as follows:

2 4 3
A=14 3 4
4 55 4

where " a,; " indicates the membership of i-th criteria in j-th region. For instance, the

prestige of region C for residents of region A is 0.2; for region B it is 0.4; and for residents
in his own area (C) it is 0.3. Therefore the tourism prestige of region C is lower in region A
than in the other regions.

The institute’s director believes that if he can raise at least one of the above criteria in the
areas A, B, and C respectively, to 0.6, 0.7 and 0.6 (b vector), then region C can gain the
upper hand.

He believes that by doing the following activities, he can promote the quality of the
criteria that will be considered.
1. Marketing and advertising: anticipating the tourists' needs and their varied requests, in

which their satisfaction is the most important principle to be considered. ( X, )
2. Transit infrastructure and competition with neighbouring regions, especially in the
tourism areas ( X, )

3. Tourism centres include hotels, cultural centres (amphitheatres, exhibitions, etc), sports
centres (tennis courts, cycling and walking tracks, golf courts, etc), nature parks and

amusement parks. ( X;)
X=(x],x2,x3) shows the amounts by which each factor needs to upgrade. We

have c =(4,7,5) where, c, represent the cost associated with variable x; for i =1,2,3.

He would like to know how to expand these activities in order to become the main tourism
centre among its competitors, at the minimum cost.

Optimisation model for this problem is as follows:

Consider min z = 4x, + 7x, + 5x,

Subject to: xo04 = b, x;, €[0,1],
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2 4 3
Where A=|.4 3 4
4 55 4
And b=(6 .7 .6)

Steps 1 and 2:

311
The X = (7,5,5) can be easily found by equation (5). Here, I, ={2,3}, I, ={3} and
I, ={1,2,3}
Step 3
x(¢ ¢ 2|4
Aug, = x, % ¢ % {}
6\ 3 310
Step 4:

J =3}, J, ={13}, J, ={1,2,3}.

Step 5 :
i e 3|8

Aug =x|¢ ¢ 2 | {}  descending
x\3 3 3|6

Step 6: not applicable in this example.

Step 7:
(3 ¢ 3|

Aug,=x|¢ ¢ 2+ | {} d descending
6y 3 3| U

Forx,: K, ={l} ; because J, C J,.

Now, attribute the variables from bottom to top. Therefore, in each step, go to the last
row and assign a value to the related variable.

Step 8: not applicable in this example.

1 .
Step9: x; =X, = 3 delete 3-th rows and j-th columns for {Vj € J;q;, > 0}.

Therefore, X, =0 and x, =0. Then X =(0,0,3). Thus the institute director must
upgrade the third activity to 0.33, to gain the upper hand among the regions.
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4.2 Example 2
Consider Min z = 2.x, —4.x, —x; +5.x, = 3.x5 + x, + 7x,

Subject to: XoA =b,

x; €[0,1],

1l 3 2 1 1

7 7 7 2 7

1 1 1

0 v+ 7 70

1 1 2 1 1

5 6 5 2 3

-|LXr 2 1 4 1
where A=|5 < 3 5 5
1 1 1 5 1

6 4 7 8§ 3

1z 1 3 5 1

f 5 8 8§ 3

1l 7 1 3 1

5 15 15 5 3

andb=(4 6 5 .7 4)
Step 1: First, the x =1(.3,.33,.1,.2,.2,.2,.1) can easily be found.

Step 2:
Il = {156}3 ]2 = {1}7 ]3 = {1:2’6}9 14 = {596}5 15 = {173:457} .

Step 3: The augmented value matrix (Augl ):

x(.6 .6 .6 ¢ 6 | {}
N9 ¢ 132 ¢ {
s ¢ ¢ 4 -114
Augi=x ¢ ¢ ¢ ¢ 1 | {
s\ ¢ ¢ 6 ¢4 14
X2 ¢ 2 2 ¢ |
x\¢g ¢ ¢ ¢ 1|4

Step 4:
Ji=1,235}, J, =3}, Sy =458, J, = {58, Js = {4), S =134, J; = {55
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uig ¢ ¢ ¢ 1 |0
x|.6 6 .6 ¢ 6 |4
X|2 ¢ 2 2 ¢ | {}
Augi=x,1 ¢ ¢ ¢ ¢ 1 | {
s ¢ ¢ ¢ —110
x| ¢ ¢ -6 ¢4 |1
x\¢g ¢ =132 ¢ ¢ |

Step 6: For some j € J,p, <0;i€{2,3,5}; x, =x, =33, x, =x; =.1;
X; =X =.2.

Delete i-th rows and j-th columns for {Vj € J;m,;; <0}

Step 7: The matrix will be:

(9 ¢ {3
x|6 6|6
S PR
x\¢ ¢ {3

Step 8: According to the step 8 of the algorithm, mentioned in section 3, x, = 0; X, = 0.

Step 9: X, =X, =.2;

Step 10: Where K, = {6} so: X, isO0;

Thus, X =(.3,.33,.1,0,.2,0,0) with an objective value z(x) = —1.42.

4.3 Remark

The numerical example has been solved by using the example data of Khorram et al. [15],
and the solution has been obtained as follows:

¥=(3,.33,.1,0,.2,.2,0)

The corresponding objective value for solution X is -1.22 - obviously not the optimal
solution. In this paper, to obtain a feasible solution, two elements of the matrix are
changed as below:

.5 1. .3 2
Ay A5
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The variable X, is nonbinding in both the second and the third equations. Therefore this
change has no effect on the final solution.

5. CONCLUSIONS

In this paper, the maximum points are used for determining the minimum points after
considering the feasible solution space. In the developed algorithm, it is not necessary to
decompose the problem into two sub-problems, nor to use some rules to reduce the
problem size.
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