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ABSTRACT

This paper presents a new procedure for controlling process variability where (i) the
quality of the process is determined by more than one quality characteristic, and (ii) the
correlations among those quality characteristics must be taken into consideration. The
ability of this procedure to detect an abrupt shift of covariance structure is an
improvement on the standard practice based on generalised variance. An experience of
the production process of the B-complex vitamin is reported to illustrate the merit of the
proposed procedure.

OPSOMMING
Die metodes van ’'n nuttige gehaltebeheerprosedure vir die bepaling van
gehaltebeheerverlies wat 'n chemiese produk met meervoudige gehalte-eienskappe besit,
word beskryf teen die agtergrond van kovariasie. Die prosedure word getoets in die
praktyk by die vervaardiging van 'n gegewe chemiese produktipe. Aspekte van voordele en
nadele van die metode word ook gewetensgetrou behandel.
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1. INTRODUCTION

‘Reduce process variability’ is the basic philosophy used in any manufacturing industry to
improve the quality of the process and its products. It is common practice to materialise
that philosophy and to visualise the history of process variability using a control chart. This
chart is one of the ‘magnificent seven’ tools in all quality improvement initiatives,
alongside the histogram, check sheet, cause-and-effect diagram, Pareto chart, scatter plot,
and stratification. (See, for example, Rooney et al. [6] for further discussion of these
tools.) All of them can be found in any standard book on statistical quality control.
Nowadays, of these tools only control charting is a dynamic research area, especially in
multivariate process control. By ‘multivariate process’ is meant a process where (i) its
quality is determined by more than one quality characteristic, and (ii) the correlations
between such quality characteristics must be taken into consideration.

This paper deals with Shewhart type control charting for detecting abrupt variability change
in a multivariate normal process. The process refers to any multivariate process where all
the quality characteristics together follow a multivariate normal distribution, a distribution
model often used in this setting. Statistically, the variability of this process is represented
in the form of a rectangular covariance matrix. It is a symmetric matrix of p rows and p
columns where (i) p is the number of quality characteristics, (ii) the k-th diagonal element
is the variance of the k-th quality characteristic and (iii) the element at the i-th row and j-
th column is the covariance of the i-th and j-th quality characteristics.

Many Shewhart type control charting procedures are available for detecting abrupt change
in multivariate normal process variability. One of the most widely-used control charts is the
generalised variance-based chart, which can be found in the literature on multivariate
process control. For certain recent developments of the generalised variance-based control
charting procedure, see Mason et al. [5], who eliminate the condition that the number of
observations must be greater than the number of quality characteristics in Phase Il control
charting. See also Djauhari [3] who presents a method for removing the bias in the control
limits of the generalised variance chart and Alt and Smith [1] for further generalised
variance-based control charting procedures. However, careful attention is needed when
using a generalised variance control chart or a generalised variance-based control chart,
since generalised variance - which is algebraically defined as the determinant of the
covariance matrix - is only a scalar simplification of the complex covariance structure of
quality characteristics. Geometrically, generalised variance can be interpreted in terms of
the volume of a p-dimensional parallelotope defined by p quality characteristics under
study (Anderson [2]). Based on this interpretation, process variability is measured in terms
of the volume of the parallelotope: the larger the volume, the larger the process
variability; and the smaller the volume, the smaller the process variability.

According to the above interpretation, a generalised variance chart will not detect a
change in covariance structure if there is no change in the determinant of the covariance
matrix - or, equally, no change in the volume of the p-dimensional parallelotope. Therefore
such a chart by itself is not sufficient for the situation. To improve the performance of this
control charting procedure in what follows, a new procedure is introduced by combining a
generalised variance chart and a vector variance chart. The latter chart, based on vector
variance as a measure of process variability, has recently been presented in Djauhari et al.

[4].

Djauhari et al. [4] illustrate the advantage of a vector variance chart relative to a
generalised variance chart by comparing them in terms of the average run length based on
a certain shift in covariance structure. In general, however, there are many situations
where generalised variance is not able to differentiate two different covariance matrices,
while vector variances can differentiate between two different covariance matrices.
Conversely, there are situations where generalised variance is able to differentiate
between them while vector variance is not. The following three hypothetical covariance
matrices may be considered.
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Z1=[3 9J,ZZ=(5 2}and23=(ﬁ 1]. (1)

These matrices represent three differing covariance structures. The variance of the first
and the second variables, and also the correlation coefficient between them represented by
2¢, are totally different from those represented by X; and 3. However, Z; and 2

have the same generalised variance but a different vector variance. On the other hand, %4
and X3 have the same vector variance but a different generalised variance.

The above properties show that if generalised variance is not able to detect abrupt shifts in
a covariance structure, vector variance could possibly do so, and vice versa. It is these
properties that suggest combining a generalised variance chart and a vector variance chart;
one chart is used after the other. The ability of this control charting procedure to detect
the shift in covariance structure will be better than one based on a generalised variance
chart alone.

The combination procedure is used to control the variability of a B-complex vitamin
production process in a pharmaceutical company. The result is satisfactory, and is reported
here. To begin the discussion, the next section reports the experience in using a
generalised stand-alone variance chart. The third section offers an analysis to see whether
or not this control charting procedure is convincing. The result of this analysis motivates
the use of a vector variance chart as another control charting procedure. This is presented
in the fourth section. A new procedure will then be introduced to handle the limitation of
the generalised variance chart. Additional remarks close this paper.

2. GENERALISED VARIANCE CHART IN CONTROLLING B-COMPLEX PRODUCTION PROCESS

In what follows, the discussion is focused on Phase | process control. For this purpose,
suppose m independent samples drawn from a multivariate normal process are available.
Denote Sy as the covariance matrix of sample k of p rows and p columns; k =1, 2, ..., m
and S their average. A generalised variance chart consists of plotting the determinant of
Sk » denoted by [Sk|, the lower control limit (LCL), and the upper control limit (UCL). If

LCL is found to be negative, it is common to set it to 0. The control limits are used as the
cut-off values to decide whether or not an out-of-control signal occurs. An out-of-control

signal is declared to occur at sample k if \Sk\ is not in the control region. To calculate

these control limits, the following formula, which ensures lack of biased is used (see
Djauhari [3]).

L[5

2b2 and UCL = 3| LI zbz ; 2)
b3 b3 + by b3 b3 + by

1 p
where: 1. by = (n-
<n-1p}1
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Here [](n-k) = (n-1)(n-2) ..... (n—p) and the probability of false alarm, i.e., the
k=1

probability that an out-of-control signal will occur even though the process is in-control, is

0.0027.

The above control charting procedure controls the production process variability of B-
complex vitamin tablets in a pharmaceutical company (whose name is not revealed to
preserve confidentiality). The relevant functionary at that company provided data of m =
15 independent samples, where the number of observations in each sample is n = 12 and
the number of quality characteristics of p = 2 - i.e., the ‘mass’ and ‘hardness’ of the tablet.
From this data, the covariance matrix and the generalised variance of each sample have
been established. The results are presented in Table 1 and Table 2.

Sample Sample

k Sk K Sk

1 0.24692 0.09532 9 0.28159 0.03339
0.09532 0.40818 0.03339 0.58811

2 0.35937 -0.03545 10 0.08235 -0.02020
-0.03545 0.29879 -0.02020 0.14636

3 0.08390 -0.01620 1 0.04546 0.04427
-0.01620 0.19114 0.04427 0.34606

4 0.52692 0.04270 12 0.17106 -0.04770
0.04270 0.49515 -0.04770 0.16568

5 1.22232 -0.39477 13 0.27015 0.20255
-0.39477 0.27091 0.20255 0.24205

6 0.53114 -0.09150 14 0.38228 0.10867
-0.09150 0.26788 0.10867 0.46811

7 0.81990 0.32914 15 0.78926 0.41982
0.32914 0.35174 0.41982 0.50424

8 0.02674 -0.03480
-0.03480 0.43659

Table 1: Covariance matrices

Sample \Sk\ Sample \Sk\

k k

1 0.09170 9 0.16449
2 0.10612 10 0.01165
3 0.01578 11 0.01377
4 0.25910 12 0.02606
5 0.17526 13 0.02436
6 0.13391 14 0.16714
7 0.18006 15 0.22173
8 0.01047

Table 2: Generalised variances

To construct the generalised variance chart, where the control limits defined in (2) were
S, calculate first its determinant ‘5‘ and the constants by, by, b3, and by . From Table
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1 obtain \ﬂ = 0.13267. Furthermore, m = 15, n = 12 and p = 2, and from equation (2) by =

0.90909, b, =0.34561, b3 = 0.99394, and by = 0.02417. Hence, LCL = - 0.11123 which is

set to 0 and UCL = 0.35392. Figure 1 shows the generalised variance chart for data in Table
2. The horizontal axis gives the sample number, and the vertical axis the generalised
variance. The figure shows that all sample generalised variances are in the control region.
This is an indication that, according to the generalised variance chart, no out-of-control
signal occurs.

UCL = 0.35939
0.3 1
Generated |, |
variance SK
0.1

1 2 3 4 5 6 7 8 9 07 11 12 13 14 15

Figure 1: Generalised variance chart

3. LIMITATION OF GENERALISED VARIANCE CHART

According to the generalised variance chart in Figure 1, there is no identifiable cause of the
process variability. Is this really so? This question is commonly asked by quality
professionals when they are considering a control chart. To answer this question, as
generalised variance is the product of all eigenvalues of the covariance matrix, which is
assumed positive definite, it is recommended to conduct a comparison study of the fifteen
sets, each of which consists of two eigenvalues.

Considering the covariance matrices in Table 1 anew, denote A; the j-th eigenvalue of the

k-th covariance matrix Sg; k=1, 2, ... ,15and j =1 and 2. As p = 2, we call the first and

second eigenvalues for the larger and smaller eigenvalues respectively. For each covariance
matrix presented in Table 1, the eigenvalues are summarised in Table 3.

Eigenvalues Eigenvalues

Sample First Second Sample First Second
1 0.45240 0.20270 9 0.59170 0.27799
2 0.37571 0.28245 10 0.15220 0.07651
3 0.19352 0.08155 11 0.35245 0.03907
4 0.55659 0.46548 12 0.21617 0.12057
5 1.36482 0.12841 13 0.45913 0.05307
6 0.55982 0.23919 14 0.54203 0.30835
7 0.98971 0.18193 15 1.09009 0.20340
8 0.43950 0.02381

Table 3: Eigenvalues of covariance matrices
Graphically, the columns ‘First Eigenvalues’ and ‘Second Eigenvalues’ in this table can be

represented in Figure 2 in the form of a combined run chart. The solid line is the run chart
for Ay and the dashed line is for A, .
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Figure 2: Run chart of the k two eigenvalues

The figure is more informative than Table 3. The figure of the run chart of Ayq shows a
dispersed situation. It is more dispersed than that of Ag; . This run chart is a powerful tool

for seeing a strong indication that the covariance structure has actually shifted during the
process. Considering the run of Ay, the value of Ag5; (the fifth point from the left at the

solid line) at a glance is relatively large compared with the other points. It is natural, then,
to ask whether or not the covariance structure has actually shifted at sample 5 - although,
according to the generalised variance chart in Figure 1, it is not an unusual point. This will
be explored in greater depth in the next section by using vector variance as a further
measure of process variability.

4. VECTOR VARIANCE CHART

A vector variance chart (see Djauhari et al. [4]) is another Shewhart-type chart that may be
used to detect an abrupt change in process variability. Vector variance and generalised
variance are two different measures of process variability. If generalised variance is the
determinant of the covariance matrix, vector variance is the trace (usually denoted by ‘Tr’)
of the squared covariance matrix - i.e., the sum of all diagonal elements of that matrix. To

calculate the vector variance of sample k, Tr(SI%), one need not find the matrix SI% . In

practice, it is calculated as the sum of squares of all elements of S .

A vector variance chart plots the value of Tr(SI%) and the control limits LCL* and UCL".
These control limits (see Djauhari et al. [4]) are given by:

0 _ andUCL* = 6+3——, 3)

n-1 n-1

LCL*= 6-3

where LCL" is set to 0 if it is negative, and the probability of a false alarm is 0.0027, and

-1
1.6 = n_+1 1+; Tr(gz), and
m(n-1)

-1
2. 5% = 8n gy, 12 12 > Tr(§4)
n-1| m(n-1) {m(n—1)}
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are estimates of the mean and variance of Tr(SI%) based on m independent samples
respectively. Furthermore, to calculate the statistics Tr(§2) and Tr(§4) one only needs
to find the matrix S2 . The sum of all diagonal elements of SZ is Tr(fz), and the sum of
the squares of all its elements is Tr(§4) . Based on the vector variance chart defined in (3),

it is provisionally declared that an out-of-control signal at sample k occurs if Tr(SI%) is less

than LCL* or greater than UCL*.

To construct the vector variance chart for data in Table 1, first calculate the vector
variance of each sample. The results are presented in Table 4.

San;(ple -,—,.(SI%) San;(ple Tr(SI%)

1 0.24575 9 0.42739
2 0.22094 10 0.02902
3 0.04410 11 0.12574
4 0.52646 12 0.06127
5 1.87921 13 0.21362
6 0.37061 14 0.38888
7 1.01263 15 1.22968
8 0.19375

Table 4: Vector variances

Then calculate the control limits. To do this, from Table 1 consecutively calculate S, its
square 52 , the sum of all diagonal elements of 52 , and the sum of squares of all elements
of SZ, obtaining Tr(gz) = 0.27444 and Tr(§4) = 0.33666. Therefore, 6 =0.32045 and 7

= 1.65464 and thus, from equation (3), LCL* = - 1.17623 which is set to 0 and UCL* =
1.81712. Based on these results, the vector variance chart for data is shown in Figure 3.
The control chart shows that the fifth sample point is beyond the control region. Its vector
variance is greater than the upper control limit UCL*. Thus, according to the vector
variance chart, an out-of-control signal occurs at sample 5, as indicated by the run chart of
the first eigenvalue in Figure 2.

UCL

1 2 3 4 5 6 7 8 9 0 1M1 12 13 14 15
Figure 3: Vector variance chart

213



5. PROPOSED PROCEDURE

Section 2 and Section 4 show that the generalised variance chart does not give any out-of-
control signal during the process, while the vector variance chart does. In practice, it is
also possible to come across a situation where the generalised variance chart signals an out-
of-control state but the vector variance chart does not. These properties show that if one
chart is not able to detect an abrupt shift in covariance structure, the other chart could
possibly do so. Due to these properties, the following procedure is proposed where both
charts are used in turn. The procedure consists of two steps:

1. Select one of the two charts - a generalised variance chart or a vector variance chart.
Suppose one selects a generalised variance chart. If this chart does not give any out-of-
control signal, then go to the second step. Otherwise, an out-of-control signal occurs.

2. Use the alternative chart. In this case use a vector variance chart. If this chart does not
signal an out-of-control state, then one may more confidently declare that an
assignable cause has not occurred. Otherwise, an out-of-control signal occurs.

The procedure is presented in Figure 4 in the form of a flowchart, where GV and VV stand
for generalised variance and vector variance respectively.

Start: Suppose we
select GV chart

A 4

Use GV chart to control the
process variability >

Out-of-control
signal occurs?

A 4

Use VV chart to control the
process variability further ——»

Yes

Out-of-control
signal occurs?

A 4 A 4

Confidently say that no

assignable cause occurs Determine the root causes

Further analysis

Figure 4: Flowchart of the proposed procedure
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6. ADDITIONAL REMARKS

When the covariance structure shifts abruptly, the ability of the proposed procedure to
detect that shift will be better than the generalised variance chart alone. Furthermore,
considering equations (2) and (3), this procedure appears complicated. But in fact it is easy
to implement, even by using very familiar software for non-statisticians such as Microsoft
Excel. In this paper, all calculations and drawings were done using this software.

The use of the proposed procedure in controlling B-complex vitamin production process
variability shows the situation where generalised variance chart does not signal any shift of
covariance structure, while the vector variance chart does. In practice, one may find
examples where a generalised variance chart signals an out-of-control state but a vector
variance chart does not. Thus this procedure will decrease the probability that an out-of-
control signal does not occur even though the process variability has shifted. In other
words, we can be more confident that there is no assignable cause in the process if both
charts do not signal any of out-of-control state. Although the experience reported in the
previous sections is in a pharmaceutical company with p = 2, the procedure can be used in
any manufacturing industry with larger p.

This paper ends with an important warning: the procedure proposed above is not free of
limitations. It might happen that an out-of-control signal does not occur even though the
covariance structure has actually shifted. As a hypothetical example of this situation, we
compare Zq in (1) with the following covariance matrix:

Z=[10J§J
Tl o)

The two matrices X4 and X4, which represent two different covariance structures, have

the same generalised variance and the same vector variance. The problem of finding a
procedure that is able to eliminate the error of not signaling an out-of-control state when
the process variability has abruptly shifted is a research topic for the future.
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