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ABSTRACT 

 
This paper presents a new procedure for controlling process variability where (i) the 
quality of the process is determined by more than one quality characteristic, and (ii) the 
correlations among those quality characteristics must be taken into consideration. The 
ability of this procedure to detect an abrupt shift of covariance structure is an 
improvement on the standard practice based on generalised variance. An experience of 
the production process of the B-complex vitamin is reported to illustrate the merit of the 
proposed procedure.  
 

OPSOMMING 
 
Die metodes van ’n nuttige gehaltebeheerprosedure vir die bepaling van 
gehaltebeheerverlies wat ’n chemiese produk met meervoudige gehalte-eienskappe besit, 
word beskryf teen die agtergrond van kovariasie. Die prosedure word getoets in die 
praktyk by die vervaardiging van ’n gegewe chemiese produktipe. Aspekte van voordele en 
nadele van die metode word ook gewetensgetrou behandel. 
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1.  INTRODUCTION 
 
‘Reduce process variability’ is the basic philosophy used in any manufacturing industry to 
improve the quality of the process and its products. It is common practice to materialise 
that philosophy and to visualise the history of process variability using a control chart. This 
chart is one of the ‘magnificent seven’ tools in all quality improvement initiatives, 
alongside the histogram, check sheet, cause-and-effect diagram, Pareto chart, scatter plot, 
and stratification. (See, for example, Rooney et al. [6] for further discussion of these 
tools.) All of them can be found in any standard book on statistical quality control. 
Nowadays, of these tools only control charting is a dynamic research area, especially in 
multivariate process control. By ‘multivariate process’ is meant a process where (i) its 
quality is determined by more than one quality characteristic, and (ii) the correlations 
between such quality characteristics must be taken into consideration. 
 
This paper deals with Shewhart type control charting for detecting abrupt variability change 
in a multivariate normal process. The process refers to any multivariate process where all 
the quality characteristics together follow a multivariate normal distribution, a distribution 
model often used in this setting. Statistically, the variability of this process is represented 
in the form of a rectangular covariance matrix. It is a symmetric matrix of p rows and p 
columns where (i) p is the number of quality characteristics, (ii) the k-th diagonal element 
is the variance of the k-th quality characteristic and (iii) the element at the i-th row and j-
th column is the covariance of the i-th and j-th quality characteristics. 
 
Many Shewhart type control charting procedures are available for detecting abrupt change 
in multivariate normal process variability. One of the most widely-used control charts is the 
generalised variance-based chart, which can be found in the literature on multivariate 
process control. For certain recent developments of the generalised variance-based control 
charting procedure, see Mason et al. [5], who eliminate the condition that the number of 
observations must be greater than the number of quality characteristics in Phase II control 
charting. See also Djauhari [3] who presents a method for removing the bias in the control 
limits of the generalised variance chart and Alt and Smith [1] for further generalised 
variance-based control charting procedures. However, careful attention is needed when 
using a generalised variance control chart or a generalised variance-based control chart, 
since generalised variance – which is algebraically defined as the determinant of the 
covariance matrix – is only a scalar simplification of the complex covariance structure of 
quality characteristics. Geometrically, generalised variance can be interpreted in terms of 
the volume of a p-dimensional parallelotope defined by p quality characteristics under 
study (Anderson [2]). Based on this interpretation, process variability is measured in terms 
of the volume of the parallelotope: the larger the volume, the larger the process 
variability; and the smaller the volume, the smaller the process variability. 
 
According to the above interpretation, a generalised variance chart will not detect a 
change in covariance structure if there is no change in the determinant of the covariance 
matrix – or, equally, no change in the volume of the p-dimensional parallelotope. Therefore 
such a chart by itself is not sufficient for the situation. To improve the performance of this 
control charting procedure in what follows, a new procedure is introduced by combining a 
generalised variance chart and a vector variance chart. The latter chart, based on vector 
variance as a measure of process variability, has recently been presented in Djauhari et al. 
[4].  
 
Djauhari et al. [4] illustrate the advantage of a vector variance chart relative to a 
generalised variance chart by comparing them in terms of the average run length based on 
a certain shift in covariance structure. In general, however, there are many situations 
where generalised variance is not able to differentiate two different covariance matrices, 
while vector variances can differentiate between two different covariance matrices. 
Conversely, there are situations where generalised variance is able to differentiate 
between them while vector variance is not. The following three hypothetical covariance 
matrices may be considered. 
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These matrices represent three differing covariance structures. The variance of the first 
and the second variables, and also the correlation coefficient between them represented by 
Σ1, are totally different from those represented by Σ2  and Σ3 . However, Σ1 and Σ2  

have the same generalised variance but a different vector variance. On the other hand, Σ1 

and Σ3  have the same vector variance but a different generalised variance.  

 
The above properties show that if generalised variance is not able to detect abrupt shifts in 
a covariance structure, vector variance could possibly do so, and vice versa. It is these 
properties that suggest combining a generalised variance chart and a vector variance chart; 
one chart is used after the other. The ability of this control charting procedure to detect 
the shift in covariance structure will be better than one based on a generalised variance 
chart alone.  
 
The combination procedure is used to control the variability of a B-complex vitamin 
production process in a pharmaceutical company. The result is satisfactory, and is reported 
here. To begin the discussion, the next section reports the experience in using a 
generalised stand-alone variance chart. The third section offers an analysis to see whether 
or not this control charting procedure is convincing. The result of this analysis motivates 
the use of a vector variance chart as another control charting procedure. This is presented 
in the fourth section. A new procedure will then be introduced to handle the limitation of 
the generalised variance chart. Additional remarks close this paper.  
 
2.  GENERALISED VARIANCE CHART IN CONTROLLING B-COMPLEX PRODUCTION PROCESS 
 
In what follows, the discussion is focused on Phase I process control. For this purpose, 
suppose m independent samples drawn from a multivariate normal process are available. 
Denote kS  as the covariance matrix of sample k of p rows and p columns; k = 1, 2, …, m, 

and S  their average. A generalised variance chart consists of plotting the determinant of 

kS , denoted by Sk , the lower control limit (LCL), and the upper control limit (UCL). If 

LCL is found to be negative, it is common to set it to 0. The control limits are used as the 
cut-off values to decide whether or not an out-of-control signal occurs. An out-of-control 
signal is declared to occur at sample k if Sk  is not in the control region. To calculate 

these control limits, the following formula, which ensures lack of biased is used (see 
Djauhari [3]). 
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Here  
1


p

k
n k  =        1 2n n ..... n p  and the probability of false alarm, i.e., the 

probability that an out-of-control signal will occur even though the process is in-control, is 
0.0027. 
 
The above control charting procedure controls the production process variability of B-
complex vitamin tablets in a pharmaceutical company (whose name is not revealed to 
preserve confidentiality). The relevant functionary at that company provided data of m = 
15 independent samples, where the number of observations in each sample is n = 12 and 
the number of quality characteristics of p = 2 – i.e., the ‘mass’ and ‘hardness’ of the tablet. 
From this data, the covariance matrix and the generalised variance of each sample have 
been established. The results are presented in Table 1 and Table 2.  

 
Sample 

k kS  
Sample

k kS  

1 0.24692 0.09532 9 0.28159 0.03339 
 0.09532 0.40818  0.03339 0.58811 

2 0.35937 -0.03545 10 0.08235 -0.02020 
 -0.03545 0.29879  -0.02020 0.14636 

3 0.08390 -0.01620 11 0.04546 0.04427 
 -0.01620 0.19114  0.04427 0.34606 

4 0.52692 0.04270 12 0.17106 -0.04770 
 0.04270 0.49515  -0.04770 0.16568 

5 1.22232 -0.39477 13 0.27015 0.20255 
 -0.39477 0.27091  0.20255 0.24205 

6 0.53114 -0.09150 14 0.38228 0.10867 
 -0.09150 0.26788  0.10867 0.46811 

7 0.81990 0.32914 15 0.78926 0.41982 
 0.32914 0.35174  0.41982 0.50424 

8 0.02674 -0.03480    
 -0.03480 0.43659    

 
Table 1:  Covariance matrices 

 
 

Sample 
k 

Sk  Sample
k 

Sk  

1 0.09170 9 0.16449 
2 0.10612 10 0.01165 
3 0.01578 11 0.01377 
4 0.25910 12 0.02606 
5 0.17526 13 0.02436 
6 0.13391 14 0.16714 
7 0.18006 15 0.22173 
8 0.01047   

 
Table 2:  Generalised variances 

 
To construct the generalised variance chart, where the control limits defined in (2) were 

S ,  calculate first its determinant S  and the constants 1b , 2b , 3b , and 4b . From Table 



 211

1 obtain S  = 0.13267. Furthermore, m = 15, n = 12 and p = 2, and from equation (2)  1b  = 

0.90909, 2b  = 0.34561, 3b  = 0.99394, and 4b  = 0.02417. Hence, LCL = – 0.11123 which is 

set to 0 and UCL = 0.35392. Figure 1 shows the generalised variance chart for data in Table 
2. The horizontal axis gives the sample number, and the vertical axis the generalised 
variance. The figure shows that all sample generalised variances are in the control region. 
This is an indication that, according to the generalised variance chart, no out-of-control 
signal occurs. 
 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 
Figure 1: Generalised variance chart 

 
 
3.  LIMITATION OF GENERALISED VARIANCE CHART 
 
According to the generalised variance chart in Figure 1, there is no identifiable cause of the 
process variability. Is this really so? This question is commonly asked by quality 
professionals when they are considering a control chart. To answer this question, as 
generalised variance is the product of all eigenvalues of the covariance matrix, which is 
assumed positive definite, it is recommended to conduct a comparison study of the fifteen 
sets, each of which consists of two eigenvalues.  
 
Considering the covariance matrices in Table 1 anew, denote kjλ  the j-th eigenvalue of the 

k-th covariance matrix kS ; k = 1, 2, ……, 15 and j = 1 and 2. As p = 2, we call the first and 

second eigenvalues for the larger and smaller eigenvalues respectively. For each covariance 
matrix presented in Table 1, the eigenvalues are summarised in Table 3. 

 
 

Sample 
Eigenvalues 

Sample 
Eigenvalues 

First Second First Second 
1 0.45240 0.20270 9 0.59170 0.27799 
2 0.37571 0.28245 10 0.15220 0.07651 
3 0.19352 0.08155 11 0.35245 0.03907 
4 0.55659 0.46548 12 0.21617 0.12057 
5 1.36482 0.12841 13 0.45913 0.05307 
6 0.55982 0.23919 14 0.54203 0.30835 
7 0.98971 0.18193 15 1.09009 0.20340 
8 0.43950 0.02381  

 
Table 3: Eigenvalues of covariance matrices 

 
Graphically, the columns ‘First Eigenvalues’ and ‘Second Eigenvalues’ in this table can be 
represented in Figure 2 in the form of a combined run chart. The solid line is the run chart 
for 1kλ  and the dashed line is for 2kλ . 

 

UCL = 0.35939 

Generated 
variance SK 

0.1 

0.2 

0.3 
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are estimates of the mean and variance of  2
kTr S  based on m independent samples 

respectively. Furthermore, to calculate the statistics  2Tr S  and  4Tr S  one only needs 

to find the matrix 2S . The sum of all diagonal elements of 2S  is  2Tr S , and the sum of 

the squares of all its elements is  4Tr S . Based on the vector variance chart defined in (3), 

it is provisionally declared that an out-of-control signal at sample k occurs if  2
kTr S  is less 

than LCL* or greater than UCL*.  
 
To construct the vector variance chart for data in Table 1, first calculate the vector 
variance of each sample. The results are presented in Table 4. 
 

Sample 
k  2

kTr S  Sample 
k  2

kTr S  

1 0.24575 9 0.42739 
2 0.22094 10 0.02902 
3 0.04410 11 0.12574 
4 0.52646 12 0.06127 
5 1.87921 13 0.21362 
6 0.37061 14 0.38888 
7 1.01263 15 1.22968 
8 0.19375 

 
Table 4: Vector variances 

 
Then calculate the control limits. To do this, from Table 1 consecutively calculate S , its 

square 2S , the sum of all diagonal elements of 2S , and the sum of squares of all elements 

of 2S , obtaining  2Tr S  = 0.27444 and  4Tr S  = 0.33666. Therefore, θ̂  = 0.32045 and η̂  

= 1.65464 and thus, from equation (3), LCL* = – 1.17623 which is set to 0 and UCL* = 
1.81712. Based on these results, the vector variance chart for data is shown in Figure 3. 
The control chart shows that the fifth sample point is beyond the control region. Its vector 
variance is greater than the upper control limit UCL*. Thus, according to the vector 
variance chart, an out-of-control signal occurs at sample 5, as indicated by the run chart of 
the first eigenvalue in Figure 2. 
 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 
Figure 3: Vector variance chart 

UCL 
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5.  PROPOSED PROCEDURE 
 
Section 2 and Section 4 show that the generalised variance chart does not give any out-of-
control signal during the process, while the vector variance chart does. In practice, it is 
also possible to come across a situation where the generalised variance chart signals an out-
of-control state but the vector variance chart does not. These properties show that if one 
chart is not able to detect an abrupt shift in covariance structure, the other chart could 
possibly do so.  Due to these properties, the following procedure is proposed where both 
charts are used in turn. The procedure consists of two steps: 
 
1. Select one of the two charts – a generalised variance chart or a vector variance chart. 

Suppose one selects a generalised variance chart. If this chart does not give any out-of-
control signal, then go to the second step. Otherwise, an out-of-control signal occurs. 

2. Use the alternative chart. In this case use a vector variance chart. If this chart does not 
signal an out-of-control state, then one may more confidently declare that an 
assignable cause has not occurred. Otherwise, an out-of-control signal occurs.  

 
The procedure is presented in Figure 4 in the form of a flowchart, where GV and VV stand 
for generalised variance and vector variance respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Flowchart of the proposed procedure 

Start: Suppose we 
select GV chart 

Use GV chart to control the 
process variability 

Out-of-control  
signal occurs? 

Out-of-control  
signal occurs? 

Use VV chart to control the 
process variability further 

Confidently say that no 
assignable cause occurs Determine the root causes 

Further analysis 

No

No

Yes 

Yes 
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6.  ADDITIONAL REMARKS 
 
When the covariance structure shifts abruptly, the ability of the proposed procedure to 
detect that shift will be better than the generalised variance chart alone. Furthermore, 
considering equations (2) and (3), this procedure appears complicated. But in fact it is easy 
to implement, even by using very familiar software for non-statisticians such as Microsoft 
Excel. In this paper, all calculations and drawings were done using this software.   
 
The use of the proposed procedure in controlling B-complex vitamin production process 
variability shows the situation where generalised variance chart does not signal any shift of 
covariance structure, while the vector variance chart does. In practice, one may find 
examples where a generalised variance chart signals an out-of-control state but a vector 
variance chart does not. Thus this procedure will decrease the probability that an out-of-
control signal does not occur even though the process variability has shifted. In other 
words, we can be more confident that there is no assignable cause in the process if both 
charts do not signal any of out-of-control state. Although the experience reported in the 
previous sections is in a pharmaceutical company with p = 2, the procedure can be used in 
any manufacturing industry with larger p.  
 
This paper ends with an important warning: the procedure proposed above is not free of 
limitations. It might happen that an out-of-control signal does not occur even though the 
covariance structure has actually shifted. As a hypothetical example of this situation, we 
compare Σ1 in (1) with the following covariance matrix: 

 

Σ4  = 
 
  
 

10 3

3 3
. 

 
The two matrices Σ1 and Σ4 , which represent two different covariance structures, have 

the same generalised variance and the same vector variance. The problem of finding a 
procedure that is able to eliminate the error of not signaling an out-of-control state when 
the process variability has abruptly shifted is a research topic for the future.  
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