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ABSTRACT

Sustainability has become a major issue in most economies, causing many leading
companies to focus on product recovery and reverse logistics. Remanufacturing is an
industrial process that makes used products reusable. One of the important aspects in both
reverse logistics and remanufacturing is the pricing of returned and remanufactured
products (called cores). In this paper, we focus on pricing the cores and remanufactured
cores. First we present a mathematical model for this purpose. Since this model does not
satisfy our requirements, we propose a simulation optimisation approach. This approach
consists of a hybrid genetic algorithm based on a neural network employed as the fitness
function. We use automata learning theory to obtain the learning rate required for training
the neural network. Numerical results demonstrate that the optimal value of the
acquisition price of cores and price of remanufactured cores is obtained by this approach.

OPSOMMING

Volhoubaarheid het ‘n belangrike saak geword in die meeste ekonomie€, wat verskeie
maatskappye genoop het om produkherwinning en omgekeerde logistiek te onder oé te
neem. Hervervaardiging is ‘n industriéle proses wat gebruikte produkte weer bruikbaar
maak. Een van die belangrike aspekte in beide omgekeerde logistiek en hervervaardiging is
die prysbepaling van herwinne en hervervaardigde produkte. Hierdie artikel fokus op die
prysbepalingsaspekte by wyse van ‘n wiskundige model.
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1. INTRODUCTION

Reverse logistics has received increasing attention during the last decade, both in the real
world and in academia, as its economic impact has become more important and as
legislation has become stricter. The Reverse Logistics Executive Council provides the
following widely accepted definition of reverse logistics (RL): “The process of planning,
implementing, and controlling the efficient, cost effective flow of raw materials, in-process
inventory, finished goods, and related information from the point of consumption to the
point of origin for the purpose of recapturing value or of proper disposal” (Rogers and
Tibben-Lembke [1]). We can divide the RL issue into different categories based on various
methods of product recovery, such as re-use, remanufacture, and recycle (see Fig. 1).
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Figure 1: Operational life cycle of a product and RL role (Meade et al. [2])

Remanufacturing is a recovery option for used products. It involves activities that make
remanufactured products or major modules marketable again and potentially as good as
new. Product remanufacturing has developed rapidly in recent decades due to intensified
environmental legislation and economic concerns. Through remanufacturing, products/
components that would otherwise be sent to land-fill or incineration go instead through a
set of value- and material-recapturing processes, including distribution, inspection,
disassembly, repair, redistribution, and remarketing or recycling. Remanufacturing allows
re-usable components and recoverable materials to re-enter the supply chain for future re-
use or new product fabrication (Zhang et al. [3]).

Some remanufacturing cases are widely known, such as the remanufacturing of single use
cameras (Eastman Kodak and Fuji Film), toner cartridges (Xerox), photocopiers (Fuji Xerox
in Australia, Netherlands, and UK), commercial cleaning equipment (Electrolux) and brand
name computers (IBM in France, Germany, USA; HP in Australia). Remanufacturers are
original equipment manufacturers (OEMs) who have integrated new distribution models such
as leasing or ‘pay per use’ into remanufacturing strategies (Franke et al. [4]). Other
remanufacturing practices, such as washing machines (ENVIE, France), personal computers
(ReUse network, Germany), accumulators (Teldeon, Germany), cordless phones, car
stereos, FM radios (Topp Companies, USA) and mobile phones (ReCellular, USA; Greener
Solutions, UK) are less popular, due to the fact that OEMs are not involved, and the
products are not sold through regular retail channels established by OEMs.

Remanufacturing is generally conducted under two different business strategies: the
combined model and the dedicated model. Most remanufacturing operations in Europe
employ the combined model. Under this strategy, remanufacturing is done by the original
manufacturer, combined with its forward production. Remanufacturing in North America
usually adopts the dedicated model, in which remanufacturing is outsourced to dedicated
third-party remanufacturers (Patel [5]). Despite the increased application of the dedicated
model in remanufacturing, hardly any theoretical and applied research efforts are directed
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to the problems associated. Most current research efforts are focused on the combined
model (Thierry et al. [6]; Connelly and Koshland [7]; Ayres et al. [8]; Ferrer and Guide [9];
White et al. [10]).

There is a growing number of examples of the dedicated model in the electronics industry.
OEMs such as Dell, Hewlett-Packard, and IBM, and retail stores such as CompUSA and Best
Buy have outsourced their remanufacturing operations to third party providers like Noranda
Recycling, Image Microsystems, and Genco. The driving force behind this trend lies in
dramatically increased volume, complicated return patterns, and the increasingly complex
material contents of the consumer electronic products. OEMs are no longer capable of
processing the huge volume of returned post-consumer products effectively and efficiently
with their own facilities. The advantages of the dedicated outsourcing model include the
following: third parties are dedicated and therefore more resourceful and efficient in
collecting and recovering returned products; third party providers have more expertise in
product recovery processes that result in less waste and potentially the full recovery of
returned products; and because third party providers are outside companies, there is no
interference with the original manufacturer’s production line, and thus operations are
simplified. In this paper we present a dedicated model.

Remanufacturing used products is not a new term, but the scale and unique processes have
made remanufacturing an important subject in research. In particular, the acquisition of
used products, called cores, for remanufacturing becomes an important issue. Due to
increasing pressure from legislation, inherent value cores are being collected for parts and
material recovery. Before considering any recovery options for the cores, the cores must be
acquired regardless of their future recovery options. In order to attract the return of cores,
certain incentives have to be offered. Therefore, one of the important aspects in
remanufacturing is the pricing of returned and remanufactured products (cores). In this
paper, we focus on pricing the cores and remanufactured cores.

This paper is organised as follows: Related literature is reviewed in Section 2, and the
proposed mathematical model and the simulation optimisation approach are given in
Sections 3 and 4 respectively. Numerical results are presented in Section 5. Section 6
concludes the paper.

2. LITERATURE REVIEW
2.1 Related research: Remanufacturing and acquisition of product

Fig. 2, taken from Guide and Van Wassenhove [11], shows the relationships between the
key activities in remanufacturing from a business perspective. Product acquisition is one of
the few areas that management can proactively influence and, as a result, determine
whether re-use activities will be economically attractive. Product acquisition is a common
problem for companies offering remanufactured products in a dynamic market, where
supply and demand change rapidly and on a global scale. A successful remanufacturing firm
must carefully manage its product acquisition process. That is, it must buy the right
quantities of the right qualities for the right prices, to maximise profits. According to Guide
[12], product acquisition management acts as an interface between RL activities and
production planning and control activities for firms. There are two commonly used product
acquisition systems: the waste stream system, and the market-driven system (Guide and
Van Wassenhove [11]; Guide and Pentico [13]).

In the waste stream, firms - encouraged by legislation - passively accept all product returns
from the waste stream. On the other hand, the market-driven system employs financial
incentives to encourage users to return their products to the firm. Several different kinds of
financial incentive are used by firms in market-driven systems, including deposit systems,
cash paid for a specified level of quality, and credit toward a new unit (Guide and Van
Wassenhove [11]). The implementation of different forms of financial incentive, and their
impact on the performance of the RL activities, are the main research issues in the product
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acquisition management literature. Klausner and Hendrickson [14] discuss the
implementation of buy-back programmes in the power tools industry. Guide and Van
Wassenhove [11] present a real-life case study to illustrate the implementation of a quality-
dependent incentive policy in which pre-determined prices are offered for products with a
specific nominal quality level. Guide et al. [15], Aras and Aksen [16], and Aras et al. [17]
determine optimal incentive values under a quality-dependent incentive policy. Aksen et
al. [18] extend Aras et al. [17] by considering a government-subsidised collection system.

An important aspect of acquisition management is pricing. In the next section, we review
the literature of pricing in remanufacturing.

Product
Acquisition
Management

turing ' tured
Operational Products Market

Issues Development

Figure 2: Product recovery management (Guide and Van Wassenhove [11])
2.2 Related research: Pricing in remanufacturing

The pricing problem is associated with the specific operation of remanufacturing, rather
than with a generic pricing policy. Researchers have also been focusing on the study of
remanufacturing for a profit (see Thierry et al. [6]). The literature on the acquisition
pricing of used products, and the sales pricing of remanufactured parts/products, is rather
thin. The effectiveness of incentive mechanisms to facilitate the collection of used
products is crucial to the success of a product recovery programme, and both the structure
and the amount of incentive required to achieve the desired rate of product recovery are
important. Although this need has been identified in several studies (Guide and Van
Wassenhove [11]; Guide [12]), the number of analytical models to support this decision is
relatively low.

Klausner and Hendrickson [14] present a simple mathematical model that can be used to
estimate the optimal buy-back price for power tools for Bosch GmbH. Guide et al. [15]
studied the remanufacturing of cellular phones, and argued that the prices for used phones
of various quality levels should consider remanufacturing requirements, as the quality of
returned used phones can differ significantly. Ray et al. [19] develop the optimal pricing or
trade-in strategy for remanufacturable products, considering the durability and the age
distribution of products in use. The decision on core prices can be based on the
deterministic remanufacturing cost for specific quality cores and the price of core products.
Harrison [20], Ito [21], and Beichelt [22] discuss the Geometric Brownian Motion (GBM), its
characteristics and applications in different market settings. In the investment market, the
stock price is a Geometric Brownian Motion (GBM). We believe that the major mathematical
studies on pricing at remanufacturing have been done by Mitra [23], Vorasayan and Ryan
[24], Liang, Pokharel, and Lim [25], and Guide, Teunter, and Wassenhove [15]. In Table 1
we compare four models that are introduced by these researchers.

All the models in Table 1 are single period. In these models, the inventories that have a
significant effect on prices were not discussed. Also, the purchase prices and selling prices
were not considered together. In this paper, the proposed mathematical model is a multi-
period model that simultaneously determines the purchase prices, the selling price, and the
inventories. The studies found in the literature make an unrealistic assumption: they
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suppose that only one remanufactured product is obtained from each returned product.
This constraint is removed in the model proposed in Section 3, as it is assumed to acquire
several parts from each returned product. This indicates the existence of uncertainty about
the quality of returned products (cores). In the next section the proposed model will be
described.

Author Objective function Deterministic/Probabilistic
Mitra .Ingom.e Probabilistic
maximisation

Assumptions: 1) The demand is a linear function of price, 2) The inventories are divided
into manufactured product and remanufactured product, 3) The quality of
remanufactured products is classified into two levels, 4) The level of inventories is
determined, 5) Product will be entirely sold, 6) The number sold a decreasing function
of price, 7) The unsold remanufactured product can be sold off.
Author Objective function Deterministic/Probabilistic
Vorasayan and Ryan Profit maximisation Probabilistic
Assumptions: 1) The rate of return has Poisson distribution, 2) Rebuilt time has an
exponential distribution, 3) Inspection time has an exponential distribution, 4)
Production time has an exponential distribution, 5) Modeling with open queue network.
Author Objective function Deterministic/Probabilistic
Liang, Pokharel and Lim Profit maximisation Deterministic
Assumptions: 1) There is a time interval [0, T] between core entrance and core product
exit, 2) The sale price has a GBM pattern, 3) The entire purchased core can be used for
remanufacturing, 4) There are disassembly, inspection, quality assurance, logistic,
purchased core, and remanufacturing costs.

Author Objective function Deterministic/Probabilistic
Guide, Teunter and Profit maximisation Deterministic
Wassenhove

Assumptions: 1) There is a balance between demand and return, 2) The rate of return is
a function of purchase price, 3) Demand is a function of sale price, 4) The number of
quality classes is confined, 5) Complete testing, 6) There is no fixed cost, 7) The rate of
return depends on the rate of sale, 8) Model is considered for single period, 9) There
are no constraints on demand and supply.

Table 1: Major studies in pricing at remanufacturing
3. PROPOSED MATHEMATICAL MODEL

In this section, we propose a non-linear mathematical model to optimise the acquisition
price of cores, remanufactured cores, and inventory in a remanufacturing system. Our
model takes advantage of combining the pricing of cores and remanufactured cores with
inventory control. While conventionally suppliers compete with suppliers, factories with
factories, distributors with distributors, and retailers with retailers, we change this
approach in our model. In other words, competition in the market is not between
companies, but between supply chains. In this paper, the whole supply chain is considered
instead of only each individual element.

The model consists of a supplier, factories {1,2,...,M}, a collection and disassembly centre, a
distributor (central warehouse), and customers. It is remarkable that returned products
(cores) are shipped from these three channels: manufacturer, distributor, and customer. It
means that a product may be returned either after being used by the customer, or as
defective in production or distribution processes. There is one centralised facility for
collection and disassembly of cores to different factories. In our model, cores are sent to a
collection and disassembly centre and sorted according to quality. Cores can be completely
disassembled to primal parts.
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The central warehouse receives the demand for remanufactured cores that the factories
have manufactured. Each factory can manufacture either all or part of demand. For each
product the bill of materials is known. Factories acquire the materials and the parts from
suppliers or from the collection and disassembly centre. They should determine the
quantity of materials purchased in each period. After production in the factories,
remanufactured cores are sent to the central warehouse. Upon reception, remanufactured
cores are sent to customers. The central warehouse contains only final products, but it is
allowed to be out of stock in the event that product levels are not sufficient to meet the
demand. We assume that there are stock-out costs. Our model considers that cores are
returned to the collection and disassembly centre, where they will be classified based on
their quality. In our model, we examine the case of remanufacturer which acquires cores in
k quality classes. The first class has high quality, and the last class has low quality. With
respect to their quality, they will be disassembled; and the resultant parts are prepared to
be shipped to the factories, where they will be used in remanufacturing.

The production time is affected by uncertainty in the quantity and quality of cores.
Therefore, one product can be produced by different processes. Cores are collected from
customers via paying an acquisition price f,, per used product i in quality group k at period
t to the final user. We present the supply for cores with quality group k from the customer
channel as a linear function of acquisition price paid to customers and, thus, have
CE, =0, + LS, Wheree,,>0,6,>0. Also, we model the demand for remanufactured cores
as a linear function of the corresponding price, and thus we have
d, =a—-bxp, wherea,b>0.

Our model discusses the following decisions:

a) Pricing of the cores and the remanufactured cores.

b) Determining the amount of inventories.

) Determining the amount of purchased materials from the suppliers.
d) Determining the process for production.

The following indexes are used in the proposed model:

a: the number of manufacturing processes; {1,2...., 4}
i: the number of product types; {1,2,..., N}

j: the number of factories; {1,2,..., M’}

t: the number of programming periods; {1,2,..., T}

k: the number of quality groups; {1,2,..., K}

p: the number of materials or parts; {1,2...., P}

(: the number of collection centres; {1,2,..., L}

3.1 Parameters
We consider the following parameters:

C,;. : Cost of a unit production i in the factory j by process a at period t

MR, :Number of the material (part) p for producing a unit of product i by process a
H,;:Cost of holding a unit of remanufactured core i in the factory j

W, :Cost of holding a unit of remanufactured core i in the central warehouse at period t
L,, : Cost of holding a unit of material (part) p in the factory j at period t

S, : Cost of shortage of a unit of remanufactured core i at period t
R, :Cost of purchasing a unit of material (part) p in the factory j at period t
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TR, : Cost of transporting a unit of remanufactured core i shipped from the factory j to the

central warehouse at period t

SS, : Safety stock of remanufactured core i in the factory j

v, :Safety stock of material (part) p in the factory j

U, :Available time for remanufacturing in the factory j at period ¢
PT,

ai

B, : Maximum inventory of remanufactured core i in the factory j

:Required time for producing a unit of remanufactured core i by process a

CF,,: Amountof material (part) p that is obtained from core i
MI, :Maximum inventory of material (part) p in the factory j
G, :Cost of transporting a unit of material (part) p from the collection and disassembly

centre to the factory j at period t
HC, :Cost of holding a unit of material (part) p at period t in the collection and

disassembly centre

d, :Demand for remanufactured core i at period t (d;, =a—bxpi)

Ca, : Holding capacity of material (part) p in the collection and disassembly centre

7, - Probability of obtaining a unit of material (part) p through disassembling a unit of core
i with quality k

DG, : Cost of disassembling material (part) p from core i at period t with quality k

[ - Acquisition price of core i with quality k at period t from the collection centre !

F,: Cost of changing the sale place of core from the current centre to centre [ at period t
CF,, :Number of core i delivered by the customer to the collection and disassembly centre
with quality k at period t (CE, =0, +8,,.fix)

DF, :Number of core i delivered by the central warehouse to the collection and
disassembly centre with quality k at period t

MEF,,, : Number of core i delivered by the manufacturer to the collection and disassembly

centre with quality k at period ¢t
3.2 Variables
We consider the following variables:

X, :Number of remanufactured core i produced in the factory j by process a at period t
XP,,: Amount of purchased material (part) p for use in the factory j at period ¢
X0, :Number of remanufactured core i shipped from the factory j to the central warehouse

at period t
11, : Amount of remanufactured core i inventory in the factory j at the end of period ¢

M., : Amount of material (part) p inventory in the factory j at the end of period ¢
YB, : Amount of remanufactured core i shortage at period t in the central warehouse

YI, : Amount of remanufactured core i surplus at period t in the central warehouse

0,, : Amount of material (part) p shipped from the collection and disassembly centre to the
factory j at period t

IIN,, : Amount of material (part) p inventory at period t in the collection and disassembly

centre
S “Acquisition price of core i with quality k at period t

p, :Price of remanufactured core i at period t
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In this model we have two objective functions: maximisation of revenue, and minimisation
of costs. Therefore, the objective function is proposed as:

Minimise Z= - W1 (revenue) + W2 (costs) (1)

Where W1 is the weight of the first objective function (revenue), and W2 is the weight of
the second objective function (costs).

n_ T A m n T
MinZ =W, > (d, =YL)p J+ WD > 3> CoiX
=l t=1 a=1 j=1 i=l t=1
n T K m n T
+ZZZZ pk (C itk +DE1k +ZME//1()D iptk + ZZCE/k itk +ZZZHA/'I]U1
t=1 i=1 p=1 k=1 Jj=1 i=l t=1 k=1 j=1 i=l =1 (2)
n_ T n_ T m_ P T m_ P T
N S IBAY D WYL A D DR XP, D DD LM+ ZZZTRWXQW
=l t=1 i=l t=1 J=1 p=l t=1 J=1 p=l t=1 J=1 i=l t=1
m_ P T P T
+ZZZG./MOJW +ZZHCPIHNM]
Jj=l p=1 t=1 p=1 t=1

3.3 Constraints
We consider the following constraints:

1) Inventory equation for materials (parts) in the collection and disassembly centre
n K
IIN ,, =1IIN ., + zz”ipk (@i + By [ )CF, + zzﬁzpk (DFy + ZMka )CF, = ZO 3)
i=l k=1 i=l k=1
sp=L. P t=1,.T
(1) Control of shipment

Zom, <IN, ;p=lL..P,t=1..T (4)

(2) Inventory capacity for the materials (parts) in the collection and disassembly centre

IIN, <Ca, ;p=L.,P,t=1..,T ) (5)

(3) Inventory equation for the materials (parts) in the factory

M, =M, ,+XP, {ZZM aip a,,,} ot 3 J=beem t=1L.T, p=L..n (6)
i=l a=1

(4) Inventory capacity for the materials (parts) in the factory

V<M, <M,  ;j=l..m,t=1..T,p=1..P (7)

(5) Control of the materials (parts)

ZZM o Xy SM oy +XP, s j=leam t=1..T, p=1..P (8)

a=1 i=l

(6) Inventory equation for remanufactured cores

I, =11, +ZXM X0, - ZM e si=lean, j=lom,t=1..T 9)

(7) Shipment control

ZXW,HIW ) _XQU,+ZM e si=lean, j=lom, t=1..T (10)

(8) Inventory capacity for the remanufactured cores in the factory
SS; <, <B; si=len, j=L.m,t=1L..T (11)

ijt =
(9) Stock out or inventory um'ts in the central warehouse

YI,,., +YB (,l)+ZXQW d, ZDF,,,(—YI,.,+YB“ si=leon,t=1,.T (12)

i
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(10) Production capacity

A n
> > PT,X,,<U, j=lem, t=1..T (13)
a=1 i=1
(11) Maximum of the acquisition price
Fu< S +F, i=leon,t=1...T k=1,...K,[=1,.L (14)

(12) Minimum of the price of remanufactured core

,
Py 2 R, +max{C,, }+ TR, i=lon, t=1,.T,j=1..m (15)
p=1

In pricing cores of various qualities, we have to pay attention to the fact that the vendor of
cores can sell these products to other collection centres if their purchasing price is higher
than ours. However, this choice has some costs for the vendor, such as transportation costs
to more distant collection centres. So our price for cores should be lower than the prices of
other vendors, along with the cost of changing the sale place from our centre to their
centres (F,). This subject is presented in constraint 12. For the sake of brevity, we do not

explain the other constraints. Since this model does not consider many uncertainties, we
propose an effective simulation optimisation approach in the next section.

4. SIMULATION OPTIMISATION: AN EFFECTIVE APPROACH FOR CONSIDERING
UNCERTAINTY IN A REMANUFACTURING SYSTEM

The problem of determining the best combination of input variables with the complex form
of the objective function often arises in practice. Due to the complicated analysis, it is not
possible, or at best it is difficult, to build a mathematical model of the problem studied. In
such cases, model simulation is the only way to estimate the objective value. So far,
simulation optimisation has been widely researched, and many approaches have been
developed. Our proposed simulation optimisation is illustrated in Fig. 3.

Probleml TSolution
Optimizer
Genetic Algorithm [
\ Simulator
Proposal of a - Performance
solution 5 analysis
14 4
IS
B
Y
Analyzer
Sieeen] Neural Network —
8 H
ER oH
Training haH EH
process & £
— Optimization - VSLA . O
process v

Figure 3: Proposed simulation optimisation approach

4.1 Simulation model

In order to have an effective approach to considering the uncertainty in a remanufacturing
system, the following requirements need to be satisfied in the model:

e Uncertainty in return time, quality, and quantity of returned cores.
Uncertainty in process times (inspection, disassembly and remanufacturing
processes).

e Uncertainty in waiting time at the central warehouse.

139



Instead of using the mathematical model that was introduced in section 3, we propose the
simulation optimisation approach, in which appropriate data is generated for training the
neural network by a simulation model (see Fig. 4.). As shown in this figure, the above
requirements can be satisfied. As with the mathematical model, here we consider the
quantity of returned cores and demand for remanufactured cores as a linear function of the
acquisition price of cores and the price of remanufactured cores respectively. Return,
process, and waiting time are modeled by random variables, as shown in Fig. 4.

For a given acquisition price of cores and price of remanufactured cores, the overall cost
(introduced in the mathematical model) is obtained in the simulation model. The total cost
is broken down into five general cost categories:

TC=CC+CL+CM+CH+CF (16)
Where:

e (CCis the product collection cost. This includes the purchasing cost of used products
from customers and the transportation cost during the collection process.

e CL is the logistics cost. This is incurred during distribution and redistribution of the
collected cores. When the receiving inventory is full, redistribution cost is incurred in
the re-transportation of cores to other remanufacturing facilities.

e (M s the remanufacturing processing cost. This includes labour costs, materials costs,
and utilities costs, which are incurred in machine operating, lines switch and setup,
and line and operator idling.

e (CH is the inventory holding cost, which is incurred by holding cores in the inventory
area and the production line.

e CF is the fixed cost of running the factory regardless of the production level. This
includes general utilities, air-conditioning, insurance, and facility depreciation.

By running the simulation model as often as required, we can generate enough data to train
the neural network.
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Figure 4: A general simulation model
4.2 Hybrid genetic algorithm-neural network method
The target neural network is trained using a given data set. This set, which consists of input
and corresponding output vectors, is obtained from the simulation model that has been
explained in Section 4.1. In addition to the given data set, another parameter, a learning
rate, is required for neural network training that is obtained in section 4.3. The trained
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neural network works as the fitness function in the context of the genetic algorithm
employed in this paper. The importance of genetic algorithms (GAs) as powerful tools for
optimisation has been widely shown with a variety of applications (see Paul and Canave
[26]; Lee et al. [27]; Wang [28]). The GA in this paper optimises the acquisition price of
cores and the price of remanufactured cores as decision variables to minimise the overall
cost of the remanufacturing system. Obtaining the optimised acquisition price of cores and
remanufactured cores in the GA, they are fed into a simulation model to acquire inventory
levels in the remanufacturing system. Optimisation is performed as in algorithm 1.

Algorithm 1: Hybrid GA-NN-VSLA

Begin
1. Initialisation
1.1 Parameter setting(Pc, Pm, Stop criteria, Pop size, Selection strategy,
Crossover op, Mutation op, Num Gen)
1.2 Initialisation population (Randomly)
2. Fitness evaluation(Neural network- Variable structure learning automata)
Repeat/*New generation/*
3. Individual selection for the mating pool(size of mating pool=Pop size)
4. For each consecutive pair apply crossover with probability Pc
5. Mutate children (for each new-born apply mutation with probability Pm)
6. Replace the current population by the resulting mating pool
7. Fitness evaluation(Neural network- Variable structure learning automata)
Until stopping criteria is met
End for
End

4.3 Learning automata

Learning automata (LA) is an abstract model that can perform some function. Each selected
function is evaluated by a random environment, and one response is sent to LA. LA uses this
response, and the function for the next stage is selected. The relationship between LA and
the random environment is shown in Fig. 5.

o(n)
> Random environment

Learning automata (LA) |«

B(n)

Figure 5: The relationship between LA and random environment

Environment is denoted by the triple set E={qa, B, c} where a ={a,, ay,..., a;}, B ={ B4, B,,...,
B m} and c ={c4, cy,..., C/} represents input, output, and fine probability respectively. If B is a
set with two members, then we can say that the environment is a P-type. Also, the binary
parameter B is considered as a fine/reward indicator. We denote a fine by B =1 and a
reward by B=0. In a Q-type environment, B has a discrete value in range [0, 1], and in an S-
type environment, B8 is a random variable in range [0, 1]. Moreover, c; shows the
unfavourable result probability of q; function. In other words, ¢; = prob {8 (k) =1|a (k) =a;}.
In a stationary environment, ¢; has a fixed value, and in a non-stationary environment it
varies over time. Therefore there are two types of LAs: fixed structure learning automata
(FSLA), and variable structure learning automata (VSLA). While for FSLA cis are fixed, they
are variable for VSLA.

LA can be used to adjust neural network parameters. In this paper, we adjust the neural
network learning rate via VSLA. The neural network acts as environment. Learning rate (LR)
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and output error of the neural network are considered as input and output respectively (see
Fig.6).
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Figure 6: The relationship between VSLA and neural network

At first, the weights of the neural network mentioned in Section 4.2 are generated
randomly. In fact, each learning rate varies based on the considered functions in the VSLA.
We consider function set a={ a;(RV;,FV;)|i=1,2,...,N} and corresponding selecting probability
set P={P;|i=1,2,...,N}, where each q; is associated with probability P;. Moreover, RV; and FV;
denote the values of the reward and fine in function a;. The selecting probability set is
updated after a number of iterations, named automata periods and denoted by AutoT.
Adjusting the learning rate is performed as in algorithm 2.

Algorithm 2: VSLA

1. Set n=1 and AutoT=a. Initialise selecting probability set P={P;| P;(n)=1/N,i=1,2,...,N},
LR(n) and define function set a={ a;(RV;,FV;)|i=1,2,...,N}.

2. Based on set P, realise one function in a, aj(n).

3. Do {Train neural network with LR(n)}.

4. Obtain the corresponding output error E(n).

5. If E(n) < Eg then LR (n+1)= LR (n)«RV.

6. Else LR (n+1)=LR (n)eFV.

7. if n%AutoT=0

8. Ej(n)=min(E(n- AutoT:n)).

9. If Ej(n) < Eg then P;(n+1)= P;(n)«RV.

10. Else Pj(n+1)= Pj(n)<FV.

11. Define RR=(1- Pj(n+1))/(1- Pj(n)).

12. Pj(n+1)=P;(n) «RR for all i=j.

13. Based on set P, realise one function in a, a;(n).

14. end if

15. n=n+1.

16. While (n < epoch number).

Fig. 7 demonstrates how the selecting probability set is updated. After each AutoT of this
algorithm, one q; is realised based on the current selecting probability, as in line 13. After
the learning, the neural network calculates the corresponding output error E;. At line 10
and 11, probability P; is renewed based on this error. If E; is less than a predetermined
value (Eo), P; is multiplied by a reward value, RV>1. Otherwise, it is multiplied by a fine
value, 0<FV<1. Based on this modification, the selecting probability values are changed
accordingly, as in lines 11 and 12.
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Figure 7: Update the selecting probability set

5. NUMERICAL RESULTS

We consider an example with the following configuration to evaluate the performance of
the proposed approach. First, a data set with 140 entries is generated by the simulation
model (see Fig. 8). The simulation model is developed in Arena 10.0, provided by Rockwell

Software. Input data into the neural network is normalised by the following equation in
order to lie in the range (0,0.9):

Normalised_data_vector=(data_vector*0.8+max[data_vector]*0.1-
min[data_vector]*0.9)/( max[data_vector]- min[data_vector])
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Figure 8: The simulation model

(17)

This generated data is used to train the neural network. The structure of the employed
neural network is given in Fig. 9. As can be seen, this network has three layers with 5, 8
and 4 neurons respectively. The activation functions in these layers are considered as
sigmoid, except for the output layer, which is linear. We can consider LR as either upper
bounded, in the range (0, 3) in this case, or unbounded. We use a back propagation
algorithm for learning.
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Acquisition price of cores
with low quality

Price of remanufactured

Figure 9: The neural network

Automata functions that determine RV and FV parameters are given in Table 2.

Function 1 2 3 4 5 6 7 8 9 10
RV 1.04 | 1.04 | 1.04 | 1.05 | 1.05 | 1.05 | 1.06 | 1.06 | 1.06 | 1.07
FV 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6

Table 2: Automata functions

Output error for the bounded and unbounded LR is shown in Fig. 10 and Fig. 11

respectively.

Output Error

0 500 1000 1500
Epochs

Learning Rate

0 10 20 30 40 50
Epochs

Figure 10: Output error and bounded LR
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As shown in Fig. 10, the value of output error converges to 0.1269 after approximately 500
epochs. As a result, the learning rate always increases up to its upper bound.
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Figure 11: Output error and unbounded LR

For the case of the unbounded learning rate in Fig. 11, while convergence occurs after
more epochs (approximately 1,000 epochs) compared with Fig. 10, the output error is
0.0671, which is smaller than in the bounded case. In addition, the learning rate
demonstrates decaying oscillation. The neural network trained with bounded LR is used as a
fitness function in the GA. The parameters of the GA are as follows:

Pc=0.4, Pm=0.2, Stop criteria=difference between best solution in different generation,
Pop size=50, Selection strategy=roulette wheel selection, Crossover op=uniform,
Mutation op=swap, Encoding= real numbers, and Evaluation function=NN-VSLA.

The best solution at each generation, which is inversely proportional to the cost function in
GA, is shown in Fig. 12. The final optimised solution at generation 8 is given in Table 3.

Acquisition | Acquisition | Acquisition | Acquisition
price of price of price of price of Price of overall
cores with | cores with | cores with | cores with | remanufactured
. . Cost
low normal high very high cores
quality quality quality quality
0.35 1.26 1.5 3.5 19.37 3089.1

Table 3: Final solution

0.95

Best solution

Generation

Figure 12: Best solution in each generation




Table 4 shows different configurations of the neural network along with corresponding
errors. The final optimised solutions of these configurations are given in Table 5.

Neurons LR
Network in Activation
configuration | different | function Epochs | AutoT limited | unlimited Error
layers
NC1 5-8-4-1 | S8 LS8 | 1500 10 . 0.1269
NC2 5-8-4-1 | S8 US| 15000 | 40 . 0.0832
NC3 5-8-4-1 | 31 f:rg] 81 15000 | 40 . 0.0671
NC4 5-8-4-1 | 183518 | 4500 10 . 0.0951
sig- lin
NC5 5-8-4-1 | '8 %918 1500 10 . 0.0808
sig- lin
NC6 5.8-4.4 | Sigssig | 15000 | 40 . 0.1243
sig- lin
Table 4: Network configuration and their errors (NN-VSLA results)
Acquisition | Acquisition | Acquisition | Acquisition
Network price of price of price of price of Price of Overall
: : cores with | cores with | cores with | cores with | remanufactured
configuration ; : Cost
low normal high very high cores
quality quality quality quality
NC1 0.35 1.26 1.50 3.5 19.37 3089.1
NC2 0.20 0.61 1.12 3.5 20 3088.96
NC3 0.25 0.40 1.50 2.89 20 3082.66
NC4 0.29 0.33 1.04 2.13 18.40 3404.75
NC5 0.37 1.36 2.84 3.34 18.14 3404.75
NC6 0.29 0.84 1.02 1.33 18.11 3404.75

Table 5: Network configuration and their final solution (GA results)

Observing different configurations in both tables, we see that NC3 with the smallest output
error achieves the smallest overall cost value.

6. CONCLUSION

Remanufacturing is a recovery option for used products in reverse logistics.
Remanufacturing is the process by which used products are recovered, processed, and sold
as new ones. It introduces a host of issues related to product design, production planning,
inventory control, logistics, information systems, marketing, pricing, and quality control. As
remanufacturing requires a continuous supply of used products, an economic incentive is
required to attract customers to return their used products (called cores), and the problem
of pricing a core becomes an important issue. Thus, the devising of a core pricing policy is
critical to remanufacturing, as it is also the beginning of the remanufacturing.

Such a pricing problem is analogous to pricing an option that can be used to sell the
remanufactured cores. Uncertainty in the problem of remanufacturing pricing prevents the
mathematical model from satisfying the necessary requirements. We have dealt with this
problem by using a simulation optimisation approach that leads to an improved acquisition
price for cores and for remanufactured cores. This approach, by employing a GA based on
an NN as fitness function, can overcome the complexity and uncertainty of this problem
more effectively. Moreover, the automata theory has been a powerful tool for neural
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network training. Using an unbounded learning rate in learning automata leads to achieving
less network error and a more appropriate price. Likewise, regarding the complexity of
pricing problems in remanufacturing systems and of optimising prices, the use of a Meta
heuristic algorithm is suggested. In this paper, widely applied Meta heuristic and simulation
algorithms were combined and applied, which led to the effective modeling of
uncertainties embedded in pricing.
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