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ABSTRACT 
 

Sustainability has become a major issue in most economies, causing many leading 
companies to focus on product recovery and reverse logistics. Remanufacturing is an 
industrial process that makes used products reusable. One of the important aspects in both 
reverse logistics and remanufacturing is the pricing of returned and remanufactured 
products (called cores). In this paper, we focus on pricing the cores and remanufactured 
cores. First we present a mathematical model for this purpose. Since this model does not 
satisfy our requirements, we propose a simulation optimisation approach. This approach 
consists of a hybrid genetic algorithm based on a neural network employed as the fitness 
function. We use automata learning theory to obtain the learning rate required for training 
the neural network. Numerical results demonstrate that the optimal value of the 
acquisition price of cores and price of remanufactured cores is obtained by this approach. 
 

OPSOMMING 
 
Volhoubaarheid het ‘n belangrike saak geword in die meeste ekonomieë, wat verskeie 
maatskappye genoop het om produkherwinning en omgekeerde logistiek te onder oë te 
neem. Hervervaardiging is ‘n industriële proses wat gebruikte produkte weer bruikbaar 
maak. Een van die belangrike aspekte in beide omgekeerde logistiek en hervervaardiging is 
die prysbepaling van herwinne en hervervaardigde produkte. Hierdie artikel fokus op die 
prysbepalingsaspekte by wyse van ‘n wiskundige model. 
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1.  INTRODUCTION 
 
Reverse logistics has received increasing attention during the last decade, both in the real 
world and in academia, as its economic impact has become more important and as 
legislation has become stricter. The Reverse Logistics Executive Council provides the 
following widely accepted definition of reverse logistics (RL): “The process of planning, 
implementing, and controlling the efficient, cost effective flow of raw materials, in-process 
inventory, finished goods, and related information from the point of consumption to the 
point of origin for the purpose of recapturing value or of proper disposal” (Rogers and 
Tibben-Lembke [1]). We can divide the RL issue into different categories based on various 
methods of product recovery, such as re-use, remanufacture, and recycle (see Fig. 1). 
 

 
 

Figure 1: Operational life cycle of a product and RL role (Meade et al. [2]) 
 

Remanufacturing is a recovery option for used products. It involves activities that make 
remanufactured products or major modules marketable again and potentially as good as 
new. Product remanufacturing has developed rapidly in recent decades due to intensified 
environmental legislation and economic concerns. Through remanufacturing, products/ 
components that would otherwise be sent to land-fill or incineration go instead through a 
set of value- and material-recapturing processes, including distribution, inspection, 
disassembly, repair, redistribution, and remarketing or recycling. Remanufacturing allows 
re-usable components and recoverable materials to re-enter the supply chain for future re-
use or new product fabrication (Zhang et al. [3]). 
 
Some remanufacturing cases are widely known, such as the remanufacturing of single use 
cameras (Eastman Kodak and Fuji Film), toner cartridges (Xerox), photocopiers (Fuji Xerox 
in Australia, Netherlands, and UK), commercial cleaning equipment (Electrolux) and brand 
name computers (IBM in France, Germany, USA; HP in Australia). Remanufacturers are 
original equipment manufacturers (OEMs) who have integrated new distribution models such 
as leasing or ‘pay per use’ into remanufacturing strategies (Franke et al. [4]). Other 
remanufacturing practices, such as washing machines (ENVIE, France), personal computers 
(ReUse network, Germany), accumulators (Teldeon, Germany), cordless phones, car 
stereos, FM radios (Topp Companies, USA) and mobile phones (ReCellular, USA; Greener 
Solutions, UK) are less popular, due to the fact that OEMs are not involved, and the 
products are not sold through regular retail channels established by OEMs. 
  
Remanufacturing is generally conducted under two different business strategies: the 
combined model and the dedicated model. Most remanufacturing operations in Europe 
employ the combined model. Under this strategy, remanufacturing is done by the original 
manufacturer, combined with its forward production.  Remanufacturing in North America 
usually adopts the dedicated model, in which remanufacturing is outsourced to dedicated 
third-party remanufacturers (Patel [5]). Despite the increased application of the dedicated 
model in remanufacturing, hardly any theoretical and applied research efforts are directed 
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to the problems associated. Most current research efforts are focused on the combined 
model (Thierry et al. [6]; Connelly and Koshland [7]; Ayres et al. [8]; Ferrer and Guide [9]; 
White et al. [10]). 
 
There is a growing number of examples of the dedicated model in the electronics industry. 
OEMs such as Dell, Hewlett-Packard, and IBM, and retail stores such as CompUSA and Best 
Buy have outsourced their remanufacturing operations to third party providers like Noranda 
Recycling, Image Microsystems, and Genco. The driving force behind this trend lies in 
dramatically increased volume, complicated return patterns, and the increasingly complex 
material contents of the consumer electronic products. OEMs are no longer capable of 
processing the huge volume of returned post-consumer products effectively and efficiently 
with their own facilities. The advantages of the dedicated outsourcing model include the 
following: third parties are dedicated and therefore more resourceful and efficient in 
collecting and recovering returned products; third party providers have more expertise in 
product recovery processes that result in less waste and potentially the full recovery of 
returned products; and because third party providers are outside companies, there is no 
interference with the original manufacturer’s production line, and thus operations are 
simplified. In this paper we present a dedicated model. 
 
Remanufacturing used products is not a new term, but the scale and unique processes have 
made remanufacturing an important subject in research. In particular, the acquisition of 
used products, called cores, for remanufacturing becomes an important issue. Due to 
increasing pressure from legislation, inherent value cores are being collected for parts and 
material recovery. Before considering any recovery options for the cores, the cores must be 
acquired regardless of their future recovery options. In order to attract the return of cores, 
certain incentives have to be offered. Therefore, one of the important aspects in 
remanufacturing is the pricing of returned and remanufactured products (cores). In this 
paper, we focus on pricing the cores and remanufactured cores. 
 
This paper is organised as follows: Related literature is reviewed in Section 2, and the 
proposed mathematical model and the simulation optimisation approach are given in 
Sections 3 and 4 respectively. Numerical results are presented in Section 5. Section 6 
concludes the paper. 
 
2. LITERATURE REVIEW 
 
2.1 Related research: Remanufacturing and acquisition of product 
 
Fig. 2, taken from Guide and Van Wassenhove [11], shows the relationships between the 
key activities in remanufacturing from a business perspective. Product acquisition is one of 
the few areas that management can proactively influence and, as a result, determine 
whether re-use activities will be economically attractive. Product acquisition is a common 
problem for companies offering remanufactured products in a dynamic market, where 
supply and demand change rapidly and on a global scale. A successful remanufacturing firm 
must carefully manage its product acquisition process. That is, it must buy the right 
quantities of the right qualities for the right prices, to maximise profits. According to Guide 
[12], product acquisition management acts as an interface between RL activities and 
production planning and control activities for firms. There are two commonly used product 
acquisition systems: the waste stream system, and the market-driven system (Guide and 
Van Wassenhove [11]; Guide and Pentico [13]). 
 
In the waste stream, firms – encouraged by legislation – passively accept all product returns 
from the waste stream. On the other hand, the market-driven system employs financial 
incentives to encourage users to return their products to the firm. Several different kinds of 
financial incentive are used by firms in market-driven systems, including deposit systems, 
cash paid for a specified level of quality, and credit toward a new unit (Guide and Van 
Wassenhove [11]). The implementation of different forms of financial incentive, and their 
impact on the performance of the RL activities, are the main research issues in the product 
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acquisition management literature. Klausner and Hendrickson [14] discuss the 
implementation of buy-back programmes in the power tools industry. Guide and Van 
Wassenhove [11] present a real-life case study to illustrate the implementation of a quality-
dependent incentive policy in which pre-determined prices are offered for products with a 
specific nominal quality level. Guide et al. [15], Aras and Aksen [16], and Aras et al. [17] 
determine optimal incentive values under a quality-dependent incentive policy. Aksen et 
al. [18] extend Aras et al. [17] by considering a government-subsidised collection system.  
 
An important aspect of acquisition management is pricing. In the next section, we review 
the literature of pricing in remanufacturing. 
 

 
 

Figure 2: Product recovery management (Guide and Van Wassenhove [11]) 
 
2.2 Related research: Pricing in remanufacturing 
 
The pricing problem is associated with the specific operation of remanufacturing, rather 
than with a generic pricing policy. Researchers have also been focusing on the study of 
remanufacturing for a profit (see Thierry et al. [6]). The literature on the acquisition 
pricing of used products, and the sales pricing of remanufactured parts/products, is rather 
thin. The effectiveness of incentive mechanisms to facilitate the collection of used 
products is crucial to the success of a product recovery programme, and both the structure 
and the amount of incentive required to achieve the desired rate of product recovery are 
important. Although this need has been identified in several studies (Guide and Van 
Wassenhove [11]; Guide [12]), the number of analytical models to support this decision is 
relatively low.  
 
Klausner and Hendrickson [14] present a simple mathematical model that can be used to 
estimate the optimal buy-back price for power tools for Bosch GmbH. Guide et al. [15] 
studied the remanufacturing of cellular phones, and argued that the prices for used phones 
of various quality levels should consider remanufacturing requirements, as the quality of 
returned used phones can differ significantly. Ray et al. [19] develop the optimal pricing or 
trade-in strategy for remanufacturable products, considering the durability and the age 
distribution of products in use. The decision on core prices can be based on the 
deterministic remanufacturing cost for specific quality cores and the price of core products. 
Harrison [20], Ito [21], and Beichelt [22] discuss the Geometric Brownian Motion (GBM), its 
characteristics and applications in different market settings. In the investment market, the 
stock price is a Geometric Brownian Motion (GBM). We believe that the major mathematical 
studies on pricing at remanufacturing have been done by Mitra [23], Vorasayan and Ryan 
[24], Liang, Pokharel, and Lim [25], and Guide, Teunter, and Wassenhove [15]. In Table 1 
we compare four models that are introduced by these researchers. 
 
All the models in Table 1 are single period. In these models, the inventories that have a 
significant effect on prices were not discussed. Also, the purchase prices and selling prices 
were not considered together. In this paper, the proposed mathematical model is a multi-
period model that simultaneously determines the purchase prices, the selling price, and the 
inventories. The studies found in the literature make an unrealistic assumption: they 
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suppose that only one remanufactured product is obtained from each returned product. 
This constraint is removed in the model proposed in Section 3, as it is assumed to acquire 
several parts from each returned product. This indicates the existence of uncertainty about 
the quality of returned products (cores). In the next section the proposed model will be 
described. 
 

Author Objective function Deterministic/Probabilistic 

Mitra Income 
maximisation Probabilistic 

Assumptions: 1) The demand is a linear function of price, 2) The inventories are divided 
into manufactured product and remanufactured product, 3) The quality of 
remanufactured products is classified into two levels, 4) The level of inventories is 
determined, 5) Product will be entirely sold, 6) The number sold a decreasing function 
of price, 7) The unsold remanufactured product can be sold off. 

Author Objective function Deterministic/Probabilistic 
Vorasayan and Ryan Profit  maximisation Probabilistic 

Assumptions: 1) The rate of return has Poisson distribution, 2) Rebuilt time has an 
exponential distribution, 3) Inspection time has an exponential distribution, 4) 
Production time has an exponential distribution, 5) Modeling with open queue network. 

Author Objective function Deterministic/Probabilistic 
Liang, Pokharel and Lim Profit maximisation Deterministic 

Assumptions: 1) There is a time interval [0, T] between core entrance and core product 
exit, 2) The sale price has a GBM pattern, 3) The entire purchased core can be used for 
remanufacturing, 4) There are disassembly, inspection, quality assurance, logistic, 
purchased core, and remanufacturing costs. 

Author Objective function Deterministic/Probabilistic 
Guide, Teunter and 

Wassenhove 
Profit maximisation Deterministic 

Assumptions: 1) There is a balance between demand and return, 2) The rate of return is 
a function of purchase price, 3) Demand is a function of sale price, 4) The number of 
quality classes is confined, 5) Complete testing, 6) There is no fixed cost, 7) The rate of 
return depends on the rate of sale, 8) Model is considered for single period, 9) There 
are no constraints on demand and supply. 

 
Table 1: Major studies in pricing at remanufacturing 

 
3. PROPOSED MATHEMATICAL MODEL 
  
In this section, we propose a non-linear mathematical model to optimise the acquisition 
price of cores, remanufactured cores, and inventory in a remanufacturing system. Our 
model takes advantage of combining the pricing of cores and remanufactured cores with 
inventory control. While conventionally suppliers compete with suppliers, factories with 
factories, distributors with distributors, and retailers with retailers, we change this 
approach in our model. In other words, competition in the market is not between 
companies, but between supply chains. In this paper, the whole supply chain is considered 
instead of only each individual element.  
 
The model consists of a supplier, factories },...,2,1{ M , a collection and disassembly centre, a 
distributor (central warehouse), and customers. It is remarkable that returned products 
(cores) are shipped from these three channels: manufacturer, distributor, and customer. It 
means that a product may be returned either after being used by the customer, or as 
defective in production or distribution processes. There is one centralised facility for 
collection and disassembly of cores to different factories. In our model, cores are sent to a 
collection and disassembly centre and sorted according to quality. Cores can be completely 
disassembled to primal parts. 
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The central warehouse receives the demand for remanufactured cores that the factories 
have manufactured. Each factory can manufacture either all or part of demand. For each 
product the bill of materials is known. Factories acquire the materials and the parts from 
suppliers or from the collection and disassembly centre. They should determine the 
quantity of materials purchased in each period. After production in the factories, 
remanufactured cores are sent to the central warehouse. Upon reception, remanufactured 
cores are sent to customers. The central warehouse contains only final products, but it is 
allowed to be out of stock in the event that product levels are not sufficient to meet the 
demand. We assume that there are stock-out costs. Our model considers that cores are 
returned to the collection and disassembly centre, where they will be classified based on 
their quality. In our model, we examine the case of remanufacturer which acquires cores in 
k quality classes. The first class has high quality, and the last class has low quality. With 
respect to their quality, they will be disassembled; and the resultant parts are prepared to 
be shipped to the factories, where they will be used in remanufacturing. 
  
The production time is affected by uncertainty in the quantity and quality of cores. 
Therefore, one product can be produced by different processes. Cores are collected from 
customers via paying an acquisition price itkf  per used product i in quality group k at period 

t to the final user. We present the supply for cores with quality group k from the customer 
channel as a linear function of acquisition price paid to customers and, thus, have 

itkitkitkitk fCF   , where 0,0  itkitk  . Also, we model the demand for remanufactured cores 

as a linear function of the corresponding price, and thus we have 

itit pbad  where 0, ba .  

Our model discusses the following decisions: 
 
a) Pricing of the cores and the remanufactured cores. 
b) Determining the amount of inventories. 
c) Determining the amount of purchased materials from the suppliers.  
d) Determining the process for production. 
 
The following indexes are used in the proposed model: 
 
a: the number of manufacturing processes; },...,2,1{ A  

i: the number of product types; },...,2,1{ N  

j: the number of factories; },...,2,1{ M  

t: the number of programming periods; },...,2,1{ T  

k: the number of quality groups; },...,2,1{ K  

p: the number of materials or parts; },...,2,1{ P  

l: the number of collection centres; },...,2,1{ L  
 
3.1 Parameters 
 
We consider the following parameters: 
 

:aijtC Cost of a unit production i in the factory j by process a at period t 

:aipMR Number of the material (part) p for producing a unit of product i by process a 

:ijH Cost of holding a unit of remanufactured core i in the factory j 

:itW Cost of holding a unit of remanufactured core i in the central warehouse at period t 

:jptL Cost of holding a unit of material (part) p in the factory j at period t 

:itS Cost of shortage of a unit of remanufactured core i at period t 

:jptR Cost of purchasing a unit of material (part) p in the factory j at period t 



 137

:ijtTR Cost of transporting a unit of remanufactured core i shipped from the factory j to the 

central warehouse at period t 
:ijSS Safety stock of remanufactured core i in the factory j 

:jpV Safety stock of material (part) p in the factory j 

:jtU Available time for remanufacturing in the factory j at period t 

:aiPT Required time for producing a unit of remanufactured core i by process a 

:ijB  Maximum inventory of remanufactured core i in the factory j 

:ipCF  Amountof material (part) p that is obtained from core i 

:jpMI Maximum inventory of material (part) p in the factory j 

:pjtG Cost of transporting a unit of material (part) p from the collection and disassembly 

centre to the factory j at period t 
:ptHC Cost of holding a unit of material (part) p at period t in the collection and 

disassembly centre  
:itd Demand for remanufactured core i at period t )( itit pbad   

:pCa  Holding capacity of material (part) p in the collection and disassembly centre 

:ipk Probability of obtaining a unit of material (part) p through disassembling a unit of core 

i with quality k 
:iptkDC Cost of disassembling material (part) p from core i at period t with quality k 

:itklf  Acquisition price of core i with quality k at period t from the collection centre l 

:tlF  Cost of changing the sale place of core from the current centre to centre l at period t 

:itkCF Number of core i delivered by the customer to the collection and disassembly centre 

with quality k at period t )( itkitkitkitk fCF    

:itkDF Number of core i delivered by the central warehouse to the collection and 

disassembly centre with quality k at period t 
:ijtkMF Number of core i delivered by the manufacturer to the collection and disassembly 

centre with quality k at period t 
 
3.2 Variables 
 
We consider the following variables: 
 

:aijtX Number of remanufactured core i produced in the factory j by process a at period t 

:jptXP  Amount of purchased material (part) p for use in the factory j at period t 

:ijtXQ Number of remanufactured core i shipped from the factory j to the central warehouse 

at period t 
:ijtII Amount of remanufactured core i inventory in the factory j at the end of period t 

:jptM  Amount of material (part) p inventory in the factory j at the end of period t 

:itYB  Amount of remanufactured core i shortage at period t in the central warehouse 

:itYI  Amount of remanufactured core i surplus at period t in the central warehouse 

:jptO  Amount of material (part) p shipped from the collection and disassembly centre to the 

factory j at period t 
:ptIIN  Amount of material (part) p inventory at period t in the collection and disassembly 

centre 
:itkf Acquisition price of core i with quality k at period t 

:itp Price of remanufactured core i at period t 
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In this model we have two objective functions: maximisation of revenue, and minimisation 
of costs. Therefore, the objective function is proposed as: 
 
Minimise Z= - W1 (revenue) + W2 (costs) (1) 

 
Where W1 is the weight of the first objective function (revenue), and W2 is the weight of 
the second objective function (costs). 

]

)(

[])([

1 11 1 1

1 1 11 1 11 1 11 11 1

1 1 11 1 11 1 1 1 1

1 1 1 1
2

1 1
1





 



   

        

        

    









P

p

T

t
ptpt

m

j

P

p

T

t
jptjpt

m

j

n

i

T

t
ijtijt

m

j

P

p

T

t
jptjpt

m

j

P

p

T

t
jptjpt

n

i

T

t
itit

n

i

T

t
itit

m

j

n

i

T

t
ijtij

n

i

T

t

K

k
itkitk

T

t

n

i

P

p

K

k
iptk

m

j
ijtkitkitkipk

A

a

m

j

n

i

T

t
aijtaijt

n

i

T

t
ititit

IINHCOG

XQTRMLXPRYIWYBS

IIHfCFDCMFDFCF

XCWpYIdWZMin


 (2) 

 
3.3 Constraints 
 
We consider the following constraints: 
 
1) Inventory equation for materials (parts) in the collection and disassembly centre 
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(6) Inventory equation for remanufactured cores 
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(8) Inventory capacity for the remanufactured cores in the factory 
TtmjniBIISS ijijtij ,...,1,,...,1,,...,1;   (11) 

(9) Stock out or inventory units in the central warehouse 
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(10) Production capacity 
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(11) Maximum of the acquisition price  
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(12) Minimum of the price of remanufactured core 
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In pricing cores of various qualities, we have to pay attention to the fact that the vendor of 
cores can sell these products to other collection centres if their purchasing price is higher 
than ours. However, this choice has some costs for the vendor, such as transportation costs 
to more distant collection centres. So our price for cores should be lower than the prices of 
other vendors, along with the cost of changing the sale place from our centre to their 
centres )( tlF . This subject is presented in constraint 12. For the sake of brevity, we do not 

explain the other constraints. Since this model does not consider many uncertainties, we 
propose an effective simulation optimisation approach in the next section. 
 
4. SIMULATION OPTIMISATION: AN EFFECTIVE APPROACH FOR CONSIDERING 
UNCERTAINTY IN A REMANUFACTURING SYSTEM 
 
The problem of determining the best combination of input variables with the complex form 
of the objective function often arises in practice. Due to the complicated analysis, it is not 
possible, or at best it is difficult, to build a mathematical model of the problem studied. In 
such cases, model simulation is the only way to estimate the objective value. So far, 
simulation optimisation has been widely researched, and many approaches have been 
developed. Our proposed simulation optimisation is illustrated in Fig. 3. 

 
 

Figure 3: Proposed simulation optimisation approach  
 

4.1 Simulation model 
 
In order to have an effective approach to considering the uncertainty in a remanufacturing 
system, the following requirements need to be satisfied in the model:  
 

 Uncertainty in return time, quality, and quantity of returned cores. 
 Uncertainty in process times (inspection, disassembly and remanufacturing

 processes). 
 Uncertainty in waiting time at the central warehouse. 
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Instead of using the mathematical model that was introduced in section 3, we propose the 
simulation optimisation approach, in which appropriate data is generated for training the 
neural network by a simulation model (see Fig. 4.). As shown in this figure, the above 
requirements can be satisfied. As with the mathematical model, here we consider the 
quantity of returned cores and demand for remanufactured cores as a linear function of the 
acquisition price of cores and the price of remanufactured cores respectively. Return, 
process, and waiting time are modeled by random variables, as shown in Fig. 4.  
 
For a given acquisition price of cores and price of remanufactured cores, the overall cost 
(introduced in the mathematical model) is obtained in the simulation model. The total cost 
is broken down into five general cost categories: 
 
TC= CC + CL + CM + CH + CF (16) 

 
Where:  

 
 CC is the product collection cost. This includes the purchasing cost of used products 

from customers and the transportation cost during the collection process.  
 CL is the logistics cost. This is incurred during distribution and redistribution of the 

collected cores. When the receiving inventory is full, redistribution cost is incurred in 
the re-transportation of cores to other remanufacturing facilities.  

 CM is the remanufacturing processing cost. This includes labour costs, materials costs, 
and utilities costs, which are incurred in machine operating, lines switch and setup, 
and line and operator idling.  

 CH is the inventory holding cost, which is incurred by holding cores in the inventory 
area and the production line.  

 CF is the fixed cost of running the factory regardless of the production level. This 
includes general utilities, air-conditioning, insurance, and facility depreciation. 

 
By running the simulation model as often as required, we can generate enough data to train 
the neural network. 

 

 
Figure 4: A general simulation model  

 
4.2 Hybrid genetic algorithm-neural network method 
 
The target neural network is trained using a given data set. This set, which consists of input 
and corresponding output vectors, is obtained from the simulation model that has been 
explained in Section 4.1. In addition to the given data set, another parameter, a learning 
rate, is required for neural network training that is obtained in section 4.3. The trained 
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neural network works as the fitness function in the context of the genetic algorithm 
employed in this paper. The importance of genetic algorithms (GAs) as powerful tools for 
optimisation has been widely shown with a variety of applications (see Paul and Canave 
[26]; Lee et al. [27]; Wang [28]). The GA in this paper optimises the acquisition price of 
cores and the price of remanufactured cores as decision variables to minimise the overall 
cost of the remanufacturing system. Obtaining the optimised acquisition price of cores and 
remanufactured cores in the GA, they are fed into a simulation model to acquire inventory 
levels in the remanufacturing system. Optimisation is performed as in algorithm 1. 

 
Algorithm 1: Hybrid GA-NN-VSLA 
 
Begin 

1. Initialisation 
1.1 Parameter setting(Pc, Pm, Stop criteria, Pop size, Selection strategy, 
Crossover op, Mutation op, Num Gen) 
1.2 Initialisation population (Randomly) 

2. Fitness evaluation(Neural network- Variable structure learning automata) 
Repeat/*New generation/* 
3. Individual selection for the mating pool(size of mating pool=Pop size) 
4. For each consecutive pair apply crossover with probability Pc 
5. Mutate children (for each new-born apply mutation with probability Pm) 
6. Replace the current population by the resulting mating pool   
7. Fitness evaluation(Neural network- Variable structure learning automata) 
Until stopping criteria is met 
End for 

End 
 
4.3 Learning automata 
 
Learning automata (LA) is an abstract model that can perform some function. Each selected 
function is evaluated by a random environment, and one response is sent to LA. LA uses this 
response, and the function for the next stage is selected. The relationship between LA and 
the random environment is shown in Fig. 5. 

 

 
 

Figure 5: The relationship between LA and random environment 
 

Environment is denoted by the triple set E≡{α, β, c} where α ≡{α1, α2,…, αr}, β ≡{ β1, β2,…, 
β m} and c ≡{c1, c2,…, cr} represents input, output, and fine probability respectively. If β is a 
set with two members, then we can say that the environment is a P-type. Also, the binary 
parameter β is considered as a fine/reward indicator. We denote a fine by β =1 and a 
reward by β=0. In a Q-type environment, β has a discrete value in range [0, 1], and in an S-
type environment, β is a random variable in range [0, 1]. Moreover, ci shows the 
unfavourable result probability of αi function. In other words, ci = prob {β (k) =1|α (k) =αi}. 
In a stationary environment, ci has a fixed value, and in a non-stationary environment it 
varies over time. Therefore there are two types of LAs: fixed structure learning automata 
(FSLA), and variable structure learning automata (VSLA). While for FSLA cis are fixed, they 
are variable for VSLA.  
 
LA can be used to adjust neural network parameters. In this paper, we adjust the neural 
network learning rate via VSLA. The neural network acts as environment. Learning rate (LR) 
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and output error of the neural network are considered as input and output respectively (see 
Fig.6). 

 

 
 

Figure 6: The relationship between VSLA and neural network 
 

At first, the weights of the neural network mentioned in Section 4.2 are generated 
randomly. In fact, each learning rate varies based on the considered functions in the VSLA. 
We consider function set α={ αi(RVi,FVi)|i=1,2,…,N} and corresponding selecting probability 
set P={Pi|i=1,2,…,N}, where each αi is associated with probability Pi. Moreover, RVi and FVi 
denote the values of the reward and fine in function αi. The selecting probability set is 
updated after a number of iterations, named automata periods and denoted by AutoT. 
Adjusting the learning rate is performed as in algorithm 2. 

 
Algorithm 2: VSLA  
 
1. Set n=1 and AutoT=a. Initialise selecting probability set P={Pi| Pi(n)=1/N,i=1,2,…,N}, 

LR(n) and  define function set α={ αi(RVi,FVi)|i=1,2,…,N}.  
2. Based on set P, realise one function in α, αj(n). 
3. Do {Train neural network with LR(n)}. 
4. Obtain the corresponding output error E(n). 
5. If E(n) ≤ E0 then LR (n+1)= LR (n)•RV. 
6. Else LR (n+1)= LR (n)•FV. 
7. if n%AutoT=0 
8. Ej(n)=min(E(n- AutoT:n)). 
9. If Ej(n) ≤ E0 then Pj(n+1)= Pj(n)•RV. 
10. Else Pj(n+1)= Pj(n)•FV. 
11. Define RR=(1- Pj(n+1))/(1- Pj(n)). 
12. Pi(n+1)= Pi(n) •RR for all i≠j. 
13. Based on set P, realise one function in α, αj(n). 
14. end if 
15. n=n+1. 
16. While (n ≤ epoch number). 

 
Fig. 7 demonstrates how the selecting probability set is updated. After each AutoT of this 
algorithm, one αi is realised based on the current selecting probability, as in line 13. After 
the learning, the neural network calculates the corresponding output error Ej. At line 10 
and 11, probability Pj is renewed based on this error. If Ej is less than a predetermined 
value (E0), Pj is multiplied by a reward value, RV>1. Otherwise, it is multiplied by a fine 
value, 0<FV<1. Based on this modification, the selecting probability values are changed 
accordingly, as in lines 11 and 12. 
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Figure 9: The neural network 
 

Automata functions that determine RV and FV parameters are given in Table 2. 
 

Function 1 2 3 4 5 6 7 8 9 10 
RV 1.04 1.04 1.04 1.05 1.05 1.05 1.06 1.06 1.06 1.07 
FV 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 

 
Table 2: Automata functions 

 
Output error for the bounded and unbounded LR is shown in Fig. 10 and Fig. 11 
respectively.  
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Figure 10: Output error and bounded LR  
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As shown in Fig. 10, the value of output error converges to 0.1269 after approximately 500 
epochs. As a result, the learning rate always increases up to its upper bound.    
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Figure 11: Output error and unbounded LR  

 
For the case of the unbounded learning rate in Fig. 11, while convergence occurs after 
more epochs (approximately 1,000 epochs) compared with Fig. 10, the output error is 
0.0671, which is smaller than in the bounded case. In addition, the learning rate 
demonstrates decaying oscillation. The neural network trained with bounded LR is used as a 
fitness function in the GA. The parameters of the GA are as follows:  
 

Pc=0.4, Pm=0.2, Stop criteria=difference between best solution in different generation, 
Pop size=50, Selection strategy=roulette wheel selection, Crossover op=uniform, 
Mutation op=swap, Encoding= real numbers, and Evaluation function=NN-VSLA. 
 

The best solution at each generation, which is inversely proportional to the cost function in 
GA, is shown in Fig. 12. The final optimised solution at generation 8 is given in Table 3. 
 

Acquisition 
price of 

cores with 
low  

quality 

Acquisition 
price of 

cores with 
normal 
quality 

Acquisition 
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cores with 
very high 
quality 

Price of 
remanufactured 

cores 

Overall 
Cost 

0.35 1.26 1.5 3.5 19.37 3089.1 
 

Table 3: Final solution 
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Figure 12: Best solution in each generation  
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Table 4 shows different configurations of the neural network along with corresponding 
errors. The final optimised solutions of these configurations are given in Table 5. 
    

Network 
configuration 

Neurons 
in 

different 
layers 

Activation 
function Epochs AutoT 

LR

Error 
limited unlimited 

NC1 5-8-4-1 sig- sig sig-
lin 1500 10 • 0.1269 

NC2 5-8-4-1 
sig- sig sig-

lin 15000 40 •  0.0832 

NC3 5-8-4-1 sig- sig sig-
lin 15000 40  • 0.0671 

NC4 5-8-4-1 sig- ssig 
sig- lin 1500 10 • 0.0951 

NC5 5-8-4-1 
sig- ssig 
sig- lin 1500 10 • 0.0808 

NC6 5-8-4-1 sig- ssig 
sig- lin 

15000 40 • 0.1243 

 
Table 4: Network configuration and their errors (NN-VSLA results) 

 

Network 
configuration 

Acquisition 
price of 

cores with 
low  

quality 

Acquisition 
price of 

cores with 
normal 
quality 

Acquisition 
price of 

cores with 
high 

quality 

Acquisition 
price of 

cores with 
very high 
quality 

Price of 
remanufactured 

cores 

Overall 
Cost 

NC1 0.35 1.26 1.50 3.5 19.37 3089.1 
NC2 0.20 0.61 1.12 3.5 20 3088.96 
NC3 0.25 0.40 1.50 2.89 20 3082.66 
NC4 0.29 0.33 1.04 2.13 18.40 3404.75 
NC5 0.37 1.36 2.84 3.34 18.14 3404.75 
NC6 0.29 0.84 1.02 1.33 18.11 3404.75 

 
Table 5: Network configuration and their final solution (GA results) 

 
Observing different configurations in both tables, we see that NC3 with the smallest output 
error achieves the smallest overall cost value. 
 
6. CONCLUSION  
 
Remanufacturing is a recovery option for used products in reverse logistics. 
Remanufacturing is the process by which used products are recovered, processed, and sold 
as new ones. It introduces a host of issues related to product design, production planning, 
inventory control, logistics, information systems, marketing, pricing, and quality control. As 
remanufacturing requires a continuous supply of used products, an economic incentive is 
required to attract customers to return their used products (called cores), and the problem 
of pricing a core becomes an important issue. Thus, the devising of a core pricing policy is 
critical to remanufacturing, as it is also the beginning of the remanufacturing.  
 
Such a pricing problem is analogous to pricing an option that can be used to sell the 
remanufactured cores. Uncertainty in the problem of remanufacturing pricing prevents the 
mathematical model from satisfying the necessary requirements. We have dealt with this 
problem by using a simulation optimisation approach that leads to an improved acquisition 
price for cores and for remanufactured cores. This approach, by employing a GA based on 
an NN as fitness function, can overcome the complexity and uncertainty of this problem 
more effectively. Moreover, the automata theory has been a powerful tool for neural 
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network training. Using an unbounded learning rate in learning automata leads to achieving 
less network error and a more appropriate price. Likewise, regarding the complexity of 
pricing problems in remanufacturing systems and of optimising prices, the use of a Meta 
heuristic algorithm is suggested. In this paper, widely applied Meta heuristic and simulation 
algorithms were combined and applied, which led to the effective modeling of 
uncertainties embedded in pricing. 
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