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ABSTRACT 

 
This paper considers the bi-criteria scheduling problem of simultaneously minimising the 
total completion time and the number of tardy jobs with release dates on a single machine. 
Since the problem had been classified as NP-Hard, two heuristics (HR9 and HR10) were 
proposed for solving this problem. Performance evaluations of the proposed heuristics and 
selected solution methods (HR7 and BB) from the literature were carried out on 1,100 
randomly generated problems ranging from 3 to 500 jobs. Experiment results show that HR7 
outperformed HR10 when the number of jobs (n) is less than 30, while HR10 outperformed 
HR7 for n≥ 30.  
 

OPSOMMING 
 
In hierdie artikel word die bi-kriteria-skeduleringsprobleem bestudeer waar die totale 
voltooiingstyd en die aantal take wat laat is op ‘n enkele masjien geminimiseer moet word. 
Verskeie heuristieke word voorgestel en getoets om sodoende die beste benadering te 
identifiseer. 
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1. INTRODUCTION 
 
Scheduling is concerned with the allocation of tasks (jobs) to processors (machines) with 
the aim of optimising (minimising or maximising) a set of objectives. When it is desired to 
minimise (or maximise) only one objective at a time, the resulting problem is tagged as a 
single criterion scheduling problem. It is called a bi-criteria scheduling problem when it is 
desired to optimise two criteria (objectives) at a time, while it is called a multi-criteria 
(multi-objectives) scheduling problem whenever we seek to optimise three or more criteria 
at a time. Scheduling objectives provide the basis on which the performances of solution 
methods to scheduling problems can be evaluated. 
 
A schedule is completely defined by the sequence (order) in which the jobs (tasks) are to be 
processed on the machines (processors) and the time at which the processing of each job 
may start and end on the machines. The total cost of a schedule is not a function of one 
objective, but rather a function of two or more objectives [4]. Since realising this fact, 
many researchers [6, 13, 15, 21, 22, 23] have worked on bi-criteria and multi-criteria 
scheduling problems. The effort put into single criterion scheduling problems since the 
pioneering work of Johnson [7] has paid off. Today a number of solution methods proposed 
for the bi-criteria and multi-criteria scheduling problems have been either a direct 
modification or an amalgamation of solution methods to single criterion scheduling 
problems [19, 23]. 
 
Many variants of bi-criteria and multi-criteria scheduling problems have been studied by 
many researchers. Essentially there are four techniques for combining the criteria [6, 26], 
which may be categorised as either hierarchical minimisation or simultaneous minimisation. 
The hierarchical minimisation technique involves a situation in which one criterion is more 
important than the other. The criterion that is less important is minimised, subject to the 
constraint that the more important criterion is less or equal to a predetermined constant 
(for a minimisation problem).  
 
The simultaneous minimisation approach involves minimising all the criteria at the same 
time. There are three variants of this approach: priori, interactive, and posteriori 
techniques.  
 
In the priori approach, the criteria are combined into a scalar function. Each criterion is 
assigned a weight (which denotes the relative importance of the criterion) by the Decision 
Maker (DM). The analyst then constructs solutions that minimise the scalar function.  
 
In the interactive (or progressive) approach, a set of solutions that represents trade-offs on 
the values of the criteria is sought. Partial preference information (trade-offs) is provided 
by the DM, while the analyst constructs solutions based on the DM’s partial preference. The 
obtained solutions are presented to the DM, who can either accept or reject them. The 
DM’s preferences can be altered if he/she is not satisfied with the solutions presented by 
the analyst – in which case the analyst begins the search for a new set of solutions based on 
the DM’s new preferences. Again the obtained solutions are presented to the DM. This 
process continues until the DM is satisfied with the presented solution set. 
 
The posteriori approach also involves constructing a set of compromise solutions. In this 
case, the analyst designs a solution method to seek the set of compromise solutions 
(Pareto-optimal set), and presents the obtained solutions to the DM who selects the one 
that best satisfies his/her preferences. The implications of each solution are presented to 
the DM.  
 
This paper considers the bi-criteria scheduling problem of simultaneously minimising the 
total completion time (Ctot) and the number of tardy jobs (NT) on a single machine with 
release time. The priori approach is adopted. The problem consists of a set of n jobs (J1, J2, 
… Jn) with each job having processing time (Pi), release or ready time (ri), and due dates 
(di). The completion time for processing each job is Ci. A job Ji is said to be tardy (Ui = 1) if 
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it is completed after its due date (i.e. Ci > di). The sum of individual job completion times 

is called the total completion time (
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jobs have relative weights denoted by   and   respectively. Thus the objective function 

is a linear combination of the total completion time and the number of tardy jobs criteria
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i UC  . The case of the equal importance of the two criteria was 

considered ( = = 0.5). Two solution methods (heuristics) were proposed for this 

problem, and compared with a heuristic called HR7, proposed earlier for the same problem 
by Oyetunji [17].  
 
2. PREVIOUS WORK 
 
A single performance measure represents only a component of the total cost of a schedule. 
In practice, decision makers usually have to consider more than one criterion before 
arriving at a decision [13]. Thus, considering scheduling problems with more than one 
criterion is more relevant in the context of real life scheduling problems. The problem of 
scheduling jobs with diverse performance objectives (i.e. jobs having different weights, and 
in some cases, different performance measures or criteria) was studied by Peha [8]. He 
called them ‘heterogeneous-criteria scheduling problems’, and presented an O(N2) 
algorithm for the problem. A hybrid-framework (consisting of two modules: an expert-
scheduler and a meta-scheduler) for multi-criteria production scheduling problems was 
proposed by Geyik [5]. The performance criteria considered included makespan, mean 
flowtime, mean tardiness, and mean machine idle-time. 
 
In 2003 a multi-criteria scheduling system was developed and implemented for a computer 
assembly shop by Abhyuday et al. [1]. Six performance indices (average flow time, 
maximum tardiness, customer priority, inventory holding cost, production balancing, and 
transportation cost between two assembly lines) were considered. The scheduling problem 
of simultaneously minimising the average flow-time and the maximum tardiness criteria was 
explored by Leon [11]. Two search procedures (called BMOS and DMOS) were implemented 
using problem-space neighborhood generation techniques. 
 
Assayad et al. [2] proposed a list scheduling heuristic (called Reliable Bi-Criteria Scheduling 
Algorithm) for the bi-criteria problem of scheduling data-flow graphs of operations on to 
parallel heterogeneous architectures. The two criteria considered are, first, minimisation of 
the schedule length, and second, maximisation of system reliability. Landa and Burke [9] 
presented an introductory tutorial on the application of multi-objective metaheuristics to 
the optimisation of some multiple criteria scheduling problems.  
 
Molnar [15] used a discrete event simulation model to propose a genetic algorithm (GA) for 
multi-criteria scheduling optimisation of order picking activities in an automotive parts 
warehouse. Mehta et al. [14] presented a Multi-Criteria Scheduling Algorithm (MCSA) based 
on swapping dispatching rules to yield improved system performance. Rerouting of jobs in 
queues was conventionally adopted in case of machine breakdowns, while a Selective 
Rerouting (SR) approach based on the lateral entry of critical jobs in the queue of alternate 
machine was adopted. 
 
Yves and Emmanuel [25] addressed the problem of dynamically scheduling independent 
tasks and/or application task graphs in a GridRPC environment. Four heuristics were 
proposed and compared with the well-known minimum completion time (MCT) algorithm. 
Their experiment results showed that the proposed heuristics outperformed the MCT 
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algorithm on several metrics, including the makespan and the response time. Low et al. 
[12] developed a multi-objective model for solving flexible manufacturing system (FMS) 
scheduling problems that simultaneously considered three performance measures: minimum 
mean job flow time, mean job tardiness, and minimum mean machine idle time. Hybrid 
heuristics were proposed for solving the addressed FMS scheduling problems. 
 
Benoit et al. [3] studied the complexity of the bi-criteria mapping problem for pipeline 
graphs on communication homogeneous platforms. Several efficient polynomial bi-criteria 
heuristics were proposed and their relative performance evaluated through extensive 
simulations. Petrovic et al. [24] presented a GA for multi-objective job shop scheduling 
problems. The developed tool was used to analyse and solve a real-world problem defined 
in collaboration with a pottery company. Klusáček et al. [10] proposed a novel schedule-
based approach (Earliest Gap-Earliest Deadline First [EG-EDF]) for scheduling a continuous 
stream of batch jobs on the machines.  The proposed solution was compared with some of 
the most common queue-based scheduling algorithms, such as FCFS, EASY backfilling, and 
Flexible backfilling. Their experiments showed that the EG-EDF rule was able to compute 
good assignments, often with a shorter algorithm runtime, compared with the other queue-
based algorithms. 
 
The problem of maximising the total profit and minimising the maximum idle time on m 
unrelated parallel machines where pre-emption is allowed, was explored by T’kindt et al. 
[27]. The objective function was chosen as a linear combination of the total profit and the 
maximum idle time. The criteria have relative weights. An algorithm to compute the set of 
all strict Pareto optima was proposed. Nelson et al. [28] explored the two bi-criteria 
scheduling problems. These are (1) minimisation of the mean flow time and number of 
tardy jobs with zero release dates on a single machine, and (2) minimisation of the 
maximum tardiness and number of tardy jobs with zero release dates on a single machine. 
Four algorithms were proposed for the problems.  
 
Hoogeveen and Velde [29] studied the bi-criteria single-machine scheduling problem of 
minimising total completion time and maximum cost, fmax. The maximum cost was defined as 
max 1  j  n fj(Cj), where each fj denotes an arbitrary regular cost function for job Jj. They 
proved that the problem is simultaneously solvable in polynomial time. Two algorithms 
(Algorithm I and Algorithm II) were proposed for this problem. Verma and Dessouky [30] 
studied the problem of determining a schedule of jobs with unit-time lengths on a single 
machine that minimises the total weighted earliness and tardiness penalties with respect to 
arbitrary rational due-dates. The problem was formulated as an integer programming 
problem, and it was shown that if the penalties meet a certain criterion called the 
Dominance Condition, then there is an extremal optimal solution to the LP-relaxation that 
is integral, leading to a polynomial-time solution procedure. 
 
The bi-criteria scheduling problem of minimising the maximum earliness and the number of 
tardy jobs on a single machine was explored by Azizoglu et al. [31]. First, they examined 
the problem of minimising maximum earliness while keeping the number of tardy jobs to its 
minimum value (hierarchical minimisation). An algorithm for generating all the efficient 
schedules for bi-criteria problems was proposed. Second, a general procedure to find the 
efficient schedule that minimises a composite function of the two criteria by evaluating 
only a small fraction of the efficient solutions was developed. Hoogeveen [6] explored 
multi-criteria scheduling problems by aggregating the criteria into a single function called 
the composite objective function. He suggested two types of composite objective function: 
linear and general. 
 
Recently, Oyetunji and Oluleye [22] proposed a method for evaluating the performances of 
solution methods for bi-criteria scheduling problems. A normalisation scheme (which 
converts the values of one criterion to the other) was also put forward. Three heuristics 
(HR4, HR5, and HR6) were proposed by Oyetunji and Oluleye [19] for the bi-criteria 
problem of simultaneously minimising the total completion time (Ctot) and the number of 
tardy jobs (NT) on a single machine with release dates. The bi-criteria problem of 
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minimising the total completion time (Ctot) and number of tardy jobs (NT) on a single 
machine with release dates was modeled as hierarchical minimisation problems by Oyetunji 
and Oluleye [20]. Two types of hierarchical minimisation models (one with the total 
completion time criterion being more important than the number of tardy jobs criterion, 
and the other with the number of tardy jobs criterion being more important than the total 
completion time criterion) were explored.  
 
The technique proposed earlier by Oyetunji and Oluleye [22] for assessing the performance 
of solution methods to bi-criteria problems was extended to multi-objective scheduling 
problems by Oyetunji [16]. The difference was that the composite objective function was 
designed to handle situations in which some of the criteria were to be minimised, while at 
the same time some were to be maximised (mixed multi-objectives scheduling). A new 
heuristic (HR7) was proposed by Oyetunji [17] for the bi-criteria problem of simultaneously 
minimising the total completion time and the number of tardy jobs on a single machine 
with release dates. His experiments show that the HR7 outperformed an earlier heuristic 
(HR6) for the same bi-criteria problem in terms of both effectiveness (for problems 
involving 3 to 500 jobs) and efficiency (for problems involving fewer than 30 jobs). For a 
more detailed review of literature on multi-criteria scheduling, we refer to Hoogeveen [6] 
and T’kindt and Billaut [32]. 
 
3. SOLUTION METHODS 
 
A number of solution methods (proposed and selected) for the bi-criteria scheduling 
problem of simultaneously minimising the total completion time and the number of tardy 
jobs on a single machine with release time are discussed below. 
 
3.1 Proposed solution methods 
 
Since this problem is NP-Hard, heuristic approaches are desired to obtain fairly good 
schedules. Two heuristics (HR9 and HR10) are proposed here for the bi-criteria scheduling 
problem. 
 
3.1.1 HR9 heuristic 
 
The basic idea in this heuristic consists of choosing a job Ji with the least job allowance 
(due dates minus processing time) among the set of jobs that have arrived and are available 
for processing at time t. If the chosen job will be tardy, do not schedule the job: rather 
choose the next job that has the least job allowance, until all the jobs have been 
scheduled. The HR9 heuristic steps are outlined below: 
 
HR9 Heuristic steps 
 
Step 0: Initialise    
 Job_SetA=[J1, J2,…,Jn ]; The set of given jobs 
 Job_SetB=[0]  The set of scheduled jobs 
 Job_SetC=[J1, J2,…,Jn]  The set of unscheduled jobs 
 Job_SetD=[0]  The set of available jobs at time t 

 t = iSetAJobJ r
i _min   (i.e. the minimum ready time of all jobs) 

Step 1: At time t 
 Update Job_SetD with jobs for which ri<=t 
 If ri <= t then Job_SetD = [Ji] 
Step 2: Calculate Job_Allowance[Ji] for all available jobs at time t 
Step 3: Choose the job with the least Job_Allowance among the jobs that have arrived at 

time t from Job_SetD 
Step 4: If the job chosen in Step 3 will be tardy, remove it from Job_SetD and go back to 

Step 3, otherwise go to Step 5.   
Step 5: Add the job chosen in Step 3 to Job_SetB and remove the same job from Job_SetC. 

Compute start time Si = t and completion time Ci = Si + pi 
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Step 6: Compute new time as:  t = max ( Ci, iSetCJobJ r
i _min   ); maximum of the 

completion time or the minimum ready time of the remaining unscheduled jobs. 
Step 7: If  Job_SetC is not empty, go back to Step 1, otherwise proceed to Step 8 
Step 8: Job_SetB is the schedule required. 
Step 9: Stop. 
 
3.1.2 HR10 heuristic 
 
The basic idea in this heuristic consists of choosing a job Ji with the least processing time 
among the set of jobs that have arrived and are available for processing at time t.  If the 
chosen job will be tardy, do not schedule the job, rather choose the next job that has the 
least processing time until all the jobs have been scheduled. The HR10 heuristic steps are 
outlined below: 
 
HR10 heuristic steps 
 
Step 0: Initialise    
 Job_SetA=[J1, J2,…,Jn ]; The set of given jobs 
 Job_SetB=[0]  The set of scheduled jobs 
 Job_SetC=[J1, J2,…,Jn]  The set of unscheduled jobs 
 Job_SetD=[0]  The set of available jobs at time t 
 Job_SetE=[0]  The set of tardy jobs  
 t = iSetAJobJ r

i _min   (i.e. the minimum ready time of all jobs) 

Step 1: At time t 
 Update Job_SetD with jobs for which ri<=t 
 If ri <= t then Job_SetD = [Ji] 
Step 2: Choose the job with the smallest processing time among the jobs that have arrived 

at time t from Job_SetD 
Step 3: If the job chosen in Step 2 will be tardy, remove it from Job_SetD, add the job to 

Job_SetE, and go to Step 4, otherwise go to Step 5.   
Step 4: If at time t Job_SetD is empty, go to Step 6, otherwise go to Step 2 
Step 5: Add the job chosen in Step 2 to Job_SetB and remove the same job from Job_SetC. 

Compute start time Si = t and completion time Ci = Si + pi 

Step 6: Compute new time as:  t = max ( Ci, iSetCJobJ r
i _min   );maximum of the 

completion time or the minimum ready time of the remaining unscheduled jobs. 
Step 7: If  Job_SetC is not empty, go back to Step 1, otherwise proceed to Step 8 
Step 8: Append Job_SetB with Job_SetE in the increasing order of processing times of the 

jobs in Job_SetE. 
Step 9: Job_SetB is the schedule required. 
Step 10: Stop. 
 
3.2 Selected solution methods 
 
Many researchers have explored many variants of the bi-criteria scheduling problems. Many 
of them have adopted dynamic programming, linear programming, or integer linear 
programming methods, while others have proved the NP-Hard nature of the problems [6]. 
The literature on the bi-criteria problem considered in this paper (the problem of 
simultaneously minimising total completion time and the number of tardy jobs with release 

dates on a single machine - )(||1
11

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
n

i
i
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i
ii UCr  ) appears to be sparse. To the best 

of our knowledge, only Oyetunji [17] and Oyetunji and Oluleye [18] have proposed solution 
methods (heuristics) for solving this problem with respect to the job characteristics, shop 
environments, and criteria under consideration. This is probably due to the fact that the 
problem is NP-Hard in the strong sense. 
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Therefore, to compare the performances of the proposed heuristics, a heuristic (HR7) was 
selected from Oyetunji [17] as well as a branch and bound (BB) method implemented by 
Oyetunji and Oluleye [19]. The HR7 heuristic systematically combines the AEO and EOO 
heuristics. (For details of the HR7 heuristic and the BB method, see Oyetunji [17] and 
Oyetunji and Oluleye [19], page 149, respectively.) The HR7 outperformed the best (HR6) 
of the heuristics proposed by Oyetunji and Oluleye [18], hence its selection for evaluation. 
 
4. DATA ANALYSIS 
 
For the purpose of proper comparison, the same problems solved by Oyetunji and Oluleye 
[20] were solved. These consist of 50 problems for each of 22 different problem sizes 
ranging from 3 to 500 jobs (Fig. 1). In all, 1,100 randomly generated problems were solved. 
The processing times of the jobs were randomly generated (using the random number 
generator in Microsoft Visual Basic 6.0) with values ranging between 1 and 100 inclusive. 
Similarly, the ready times of the jobs were randomly generated with values ranging 

between 0 and 


n

i
iP

1

 inclusive, and the due dates of the jobs were randomly generated 

with values ranging between (ri + pi) and (ri + 2*pi) inclusive. The problem data was 
archived for future reference, and can be made available on request. 
 
A program was written in Microsoft Visual Basic 6.0 to apply the solution methods (HR7, 
HR9, HR10, and BB) to the problems generated. The program computes the value of the 

normalised linear composite objective function ( 



n

i
i
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11
*5.0*5.0 ) obtained 

by each solution method for each problem. The data (values of the normalised linear 
composite objective function and execution time) was exported to Statistical Analysis 
System (SAS version 9.1) for detailed analysis.  SAS is a very versatile statistical package, 
and was employed to enable credible conclusions to be drawn from the results. The 
hardware used for the experiment was a 1.73 GHz T2080 Intel CPU with 1024 MB of RAM. 
 
The general linear model (GLM) procedure in SAS was used to compute the mean value of 
the normalised linear composite objective function for each problem size (50 problem 
instances were solved under each problem size) and by solution methods. The test of means 
was also carried out using the GLM procedure to determine whether or not the differences 
observed in the mean value of the normalised linear composite objective function obtained 
by various solution methods are statistically significant. Note that the methodology of 
Oyetunji [16] was used to obtain the normalised linear composite objective function. 
Therefore, the normalised linear composite objective function shown in the results is 
dimensionless.  
 
5. RESULTS AND DISCUSSION 
 
The values of the normalised linear composite objective function obtained by the various 
solution methods indicate the effectiveness of the solution methods, whereas their 
efficiency is measured by the execution time (seconds). The mean values of the normalised 
linear composite objective function obtained by the various solution methods and problem 
sizes considered are shown in Table 1. As expected, the branch and bound (BB) method 
gave the minimum mean value of the normalised linear composite objective function 
(indicating the best performance with respect to effectiveness) for all the problem sizes 
considered. The HR7 heuristic gave the mean value of the normalised linear composite 
objective function that was closest to that of the BB method when the number of jobs was 
less than 30. This was closely followed by the HR10 heuristic.  However, when the number 
of jobs was equal to or greater than 30, the HR10 heuristic gave the mean value of the 
normalised linear composite objective function that was closest to that of the BB method. 
This was closely followed by the HR7 and HR9 heuristics in that order (Table 1). 
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The results presented in Table 1 were subjected to statistical test to determine whether or 
not the differences observed in the mean values of the normalised linear composite 
objective function obtained from the various solution methods were significant; the results 
are summarised in Tables 2-5. The differences in the mean value of the normalised linear 
composite objective function obtained from BB, HR7, HR10, and HR9 solution methods are 
not significant (indicating competitive performances among BB, HR7, HR10, and HR9 
solution methods) at the 5% level for problems ranging from 3 to 7 jobs (Table 2). However, 
under the same job configuration, the mean value of the normalised linear composite 
objective function obtained from the HR6 heuristic is significantly different from that of the 
BB, HR7, HR10, and HR9 solution methods (Table 2), indicating a poor performance 
compared with the other four methods. 
 
For problems ranging from 8 to 30 jobs, the differences in the mean value of the normalised 
linear composite objective function obtained from BB, HR7, and HR10 solution methods are 
not significant (indicating competitive performances among BB, HR7, and HR10), whereas 
the mean values of the normalised linear composite objective function obtained from the 
HR9 heuristic are significantly different from those of the BB, HR7, and HR10 solution 
methods at the 5% level (Table 3), indicating poor performance compared with the other 
three methods.  
 
When the number of jobs ranges between 30 and 200 inclusive, the differences in the mean 
value of the normalised linear composite objective function obtained from BB and HR10 are 
not significant at the 5% level (Table 4), indicating competitive performances between BB 
and HR10. Under the same problem loading, the mean value of the normalised linear 
composite objective function obtained from the HR7 and HR9 heuristics are significantly 
different from that of the BB and HR10 solution methods at 5% level (Table 4), indicating a 
poor performance compared with the other two. Table 5 shows that the mean value of the 
normalised linear composite objective function obtained from the HR10 heuristic is 
significantly different from that of the HR7 and HR9 heuristics at 5% level for problems 
ranging from 300 to 500 inclusive, indicating better performance than the HR7 and HR9 
heuristics). The BB procedure could not be applied to problems involving more than 200 
jobs, as it could not obtain solutions within the maximum allowable time of 60 minutes due 
to its obvious implicit enumeration characteristic. 
 
The ratio of the values of the normalised linear composite objective function obtained from 
the HR7, HR9, and HR10 to that of the BB (HR7/BB, HR9/BB, and HR10/BB) was computed 
for the various problem sizes; the results are shown in Fig. 1. The closeness of the HR7 
performance to that of BB when the number of jobs is less than 30 is obvious. And the 
closeness of the HR10 performance to that of BB when the number of jobs is equal to or 
greater than 30 is also obvious (Fig. 1). As the number of jobs increases, the performance of 
the HR10 heuristic gets better and closer to that of the BB method (Fig. 1). 
 
The mean values of the execution time (seconds) taken to obtain results by the various 
solution methods for the various problem sizes are shown in Table 6. As expected, the BB 
method took longer (and thus was slower) than the HR7, HR9, and HR10 heuristics (Table 
6). The HR7, HR9, and HR10 heuristics were not consistently faster than each other under 
the same problem loading (Table 6).  
 
The t-tests carried out indicate that HR7, HR9, and HR10 heuristics were significantly faster 
than the BB for all the considered problem sizes (results not shown). Also, both HR7 and 
HR10 are significantly faster than HR9 when the number of jobs exceeds 30.  
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Problem  Mean of the normalised composite objective function 
Size  BB  HR7  HR9  HR10   
 
3x1  0.2868  0.3037  0.3169  0.3161 
4x1  0.3862  0.3911  0.3926  0.3920 
5x1  0.3616  0.3631  0.4228  0.3989 
6x1  0.3905  0.3962  0.4253  0.3976 
7x1  0.3971  0.4020  0.4835  0.4302 
8x1  0.4003  0.4247  0.5221  0.4357 
9x1  0.4215  0.4379  0.5116  0.4577 
10x1  0.4225  0.4369  0.5049  0.4500 
12x1  0.4180  0.4425  0.5303  0.4700 
15x1  0.4555  0.4725  0.5446  0.4830 
20x1  0.4755  0.4874  0.5608  0.4884 
25x1  0.4690  0.4821  0.5722  0.4845 
30x1  0.4612  0.4772  0.5670  0.4727 
40x1  0.4744  0.4812  0.5704  0.4808 
50x1  0.4857  0.4975  0.5854  0.4921 
100x1  0.4851  0.4972  0.5921  0.4867 
120x1  0.4853  0.5000  0.5986  0.4934 
140x1  0.4830  0.4930  0.5965  0.4843 
200x1  0.4804  0.4932  0.5971  0.4855 
300x1  -  0.4945  0.5999  0.4846 
400x1  -  0.4934  0.6013  0.4835 
500x1  -  0.4928  0.6022  0.4833 
 

Sample size = 50 
 

Table 1: Mean of the normalised composite objective function by solution  
methods and problem sizes 

 
 

      Heuristics 
Heuristics  BB  HR7  HR9  HR10 
BB   -  X  X  X 
HR7   X  -  X  X 
HR9   X  X  -  X 
HR10   X  X  X  - 
 
Note * indicates significant result at 5% level;      Sample size = 50 
 X indicates non-significant result at 5% level 
  - indicates not necessary 

 
Table 2: Test of means (probability values) of normalised composite objective  

function for 3  n  7 problems 
 

      Heuristics 
Heuristics  BB  HR7  HR9  HR10 
BB   -  X  <0.001*  X 
HR7   X  -  <0.001*  X 
HR9   <0.001*  <0.001*  -  <0.001* 
HR10   X  X  <0.001*  - 
 
Note * indicates significant result at 5% level;      Sample size = 50 
 X indicates non-significant result at 5% level 
  - indicates not necessary 

 

Table 3: Test of means (probability values) of normalised composite  
objective function for 8  n < 30 problems 
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Problem   Mean of execution time (seconds) 
size        
  BB  HR7  HR9  HR10  
  
3x1  0.8791  0.0021  0.0027  0.0013 
4x1  0.6761  0.0030  0.0027  0.0034 
5x1  0.8009  0.0041  0.0042  0.0039 
6x1  1.0627  0.0051  0.0044  0.0044 
7x1  1.5514  0.0067  0.0066  0.0070 
8x1  1.8374  0.0083  0.0071  0.0074 
9x1  2.2335  0.0102  0.0073  0.0088 
10x1  2.7916  0.0122  0.0119  0.0112  
12x1  3.0853  0.0175  0.0158  0.0158 
15x1  3.4220  0.0247  0.0227  0.0237 
20x1  7.4707  0.0432  0.0433  0.0410 
25x1  8.9151  0.0650  0.0665  0.0623 

30x1  12.4608  0.0912  0.0969  0.0874 
40x1  18.6614  0.1579  0.1636  0.1519 
50x1  34.6055  0.2388  0.5854  0.2577 
100x1  102.5728 0.9476  1.1157  1.0239 
120x1  140.3210 1.3599  1.6199  1.4872 
140x1  270.2090 1.8667  2.3984  2.0297 
200x1  480.5320 3.7965  4.8638  4.3243 
300x1  -  8.2500  11.5780  10.4256 
400x1  -  14.6081  23.1784  19.3045 
500x1  -  21.5290  39.0791  27.7815 
 

Sample size = 50 
 

Table 6: Mean of execution time (seconds) by solution methods and problem sizes 
 
6. CONCLUSION 
 
This paper has discussed the bi-criteria scheduling problem of simultaneously minimising 
the total completion time and the number of tardy jobs with release dates on a single 
machine. In view of the NP-Hard nature of the problem, two heuristics (HR9 and HR10) 
were proposed for solving this problem, and compared with both an earlier heuristic (HR7) 
that was proposed for the same bi-criteria problem, and a branch and bound (BB) method. 
Results show that the HR7 heuristic outperformed the HR10 heuristic when the number of 
jobs was fewer than 30. However, for jobs ranges from 30 to 500 jobs inclusive, the HR10 
heuristic outperformed the HR7 heuristic. In terms of efficiency, the HR7 and HR10 
heuristics were both faster than the BB method.  
 
Therefore, based on performance, the HR7 heuristic is recommended for the bi-criteria 
problem involving fewer than 30 jobs, while the HR10 heuristic is recommended for the bi-
criteria problems involving 30 or more jobs.    
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