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ABSTRACT

This paper considers the bi-criteria scheduling problem of simultaneously minimising the
total completion time and the number of tardy jobs with release dates on a single machine.
Since the problem had been classified as NP-Hard, two heuristics (HR9 and HR10) were
proposed for solving this problem. Performance evaluations of the proposed heuristics and
selected solution methods (HR7 and BB) from the literature were carried out on 1,100
randomly generated problems ranging from 3 to 500 jobs. Experiment results show that HR7
outperformed HR10 when the number of jobs (n) is less than 30, while HR10 outperformed
HR7 for nx 30.

OPSOMMING
In hierdie artikel word die bi-kriteria-skeduleringsprobleem bestudeer waar die totale
voltooiingstyd en die aantal take wat laat is op ‘n enkele masjien geminimiseer moet word.

Verskeie heuristieke word voorgestel en getoets om sodoende die beste benadering te
identifiseer.
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1. INTRODUCTION

Scheduling is concerned with the allocation of tasks (jobs) to processors (machines) with
the aim of optimising (minimising or maximising) a set of objectives. When it is desired to
minimise (or maximise) only one objective at a time, the resulting problem is tagged as a
single criterion scheduling problem. It is called a bi-criteria scheduling problem when it is
desired to optimise two criteria (objectives) at a time, while it is called a multi-criteria
(multi-objectives) scheduling problem whenever we seek to optimise three or more criteria
at a time. Scheduling objectives provide the basis on which the performances of solution
methods to scheduling problems can be evaluated.

A schedule is completely defined by the sequence (order) in which the jobs (tasks) are to be
processed on the machines (processors) and the time at which the processing of each job
may start and end on the machines. The total cost of a schedule is not a function of one
objective, but rather a function of two or more objectives [4]. Since realising this fact,
many researchers [6, 13, 15, 21, 22, 23] have worked on bi-criteria and multi-criteria
scheduling problems. The effort put into single criterion scheduling problems since the
pioneering work of Johnson [7] has paid off. Today a number of solution methods proposed
for the bi-criteria and multi-criteria scheduling problems have been either a direct
modification or an amalgamation of solution methods to single criterion scheduling
problems [19, 23].

Many variants of bi-criteria and multi-criteria scheduling problems have been studied by
many researchers. Essentially there are four techniques for combining the criteria [6, 26],
which may be categorised as either hierarchical minimisation or simultaneous minimisation.
The hierarchical minimisation technique involves a situation in which one criterion is more
important than the other. The criterion that is less important is minimised, subject to the
constraint that the more important criterion is less or equal to a predetermined constant
(for a minimisation problem).

The simultaneous minimisation approach involves minimising all the criteria at the same
time. There are three variants of this approach: priori, interactive, and posteriori
techniques.

In the priori approach, the criteria are combined into a scalar function. Each criterion is
assigned a weight (which denotes the relative importance of the criterion) by the Decision
Maker (DM). The analyst then constructs solutions that minimise the scalar function.

In the interactive (or progressive) approach, a set of solutions that represents trade-offs on
the values of the criteria is sought. Partial preference information (trade-offs) is provided
by the DM, while the analyst constructs solutions based on the DM’s partial preference. The
obtained solutions are presented to the DM, who can either accept or reject them. The
DM’s preferences can be altered if he/she is not satisfied with the solutions presented by
the analyst - in which case the analyst begins the search for a new set of solutions based on
the DM’s new preferences. Again the obtained solutions are presented to the DM. This
process continues until the DM is satisfied with the presented solution set.

The posteriori approach also involves constructing a set of compromise solutions. In this
case, the analyst designs a solution method to seek the set of compromise solutions
(Pareto-optimal set), and presents the obtained solutions to the DM who selects the one
that best satisfies his/her preferences. The implications of each solution are presented to
the DM.

This paper considers the bi-criteria scheduling problem of simultaneously minimising the
total completion time (Ctot) and the number of tardy jobs (NT) on a single machine with
release time. The priori approach is adopted. The problem consists of a set of n jobs (J;, J,,
... Jn) with each job having processing time (P;), release or ready time (r;), and due dates
(d;). The completion time for processing each job is C;. A job J; is said to be tardy (U; = 1) if
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it is completed after its due date (i.e. C; > d;). The sum of individual job completion times

is called the total completion time (ZC[ ), while the sum of jobs that are tardy is called
i=1

the number of tardy jobs (ZUi ). The total completion time and the number of tardy
i=1

jobs have relative weights denoted by & and ,3 respectively. Thus the objective function

is a linear combination of the total completion time and the number of tardy jobs criteria

n n

(aZCi+ﬂZUi). The case of the equal importance of the two criteria was
i=l i=1

considered (a=ﬂ= 0.5). Two solution methods (heuristics) were proposed for this

problem, and compared with a heuristic called HR7, proposed earlier for the same problem
by Oyetunji [17].

2. PREVIOUS WORK

A single performance measure represents only a component of the total cost of a schedule.
In practice, decision makers usually have to consider more than one criterion before
arriving at a decision [13]. Thus, considering scheduling problems with more than one
criterion is more relevant in the context of real life scheduling problems. The problem of
scheduling jobs with diverse performance objectives (i.e. jobs having different weights, and
in some cases, different performance measures or criteria) was studied by Peha [8]. He
called them ‘heterogeneous-criteria scheduling problems’, and presented an O(N?)
algorithm for the problem. A hybrid-framework (consisting of two modules: an expert-
scheduler and a meta-scheduler) for multi-criteria production scheduling problems was
proposed by Geyik [5]. The performance criteria considered included makespan, mean
flowtime, mean tardiness, and mean machine idle-time.

In 2003 a multi-criteria scheduling system was developed and implemented for a computer
assembly shop by Abhyuday et al. [1]. Six performance indices (average flow time,
maximum tardiness, customer priority, inventory holding cost, production balancing, and
transportation cost between two assembly lines) were considered. The scheduling problem
of simultaneously minimising the average flow-time and the maximum tardiness criteria was
explored by Leon [11]. Two search procedures (called BMOS and DMOS) were implemented
using problem-space neighborhood generation techniques.

Assayad et al. [2] proposed a list scheduling heuristic (called Reliable Bi-Criteria Scheduling
Algorithm) for the bi-criteria problem of scheduling data-flow graphs of operations on to
parallel heterogeneous architectures. The two criteria considered are, first, minimisation of
the schedule length, and second, maximisation of system reliability. Landa and Burke [9]
presented an introductory tutorial on the application of multi-objective metaheuristics to
the optimisation of some multiple criteria scheduling problems.

Molnar [15] used a discrete event simulation model to propose a genetic algorithm (GA) for
multi-criteria scheduling optimisation of order picking activities in an automotive parts
warehouse. Mehta et al. [14] presented a Multi-Criteria Scheduling Algorithm (MCSA) based
on swapping dispatching rules to yield improved system performance. Rerouting of jobs in
queues was conventionally adopted in case of machine breakdowns, while a Selective
Rerouting (SR) approach based on the lateral entry of critical jobs in the queue of alternate
machine was adopted.

Yves and Emmanuel [25] addressed the problem of dynamically scheduling independent
tasks and/or application task graphs in a GridRPC environment. Four heuristics were
proposed and compared with the well-known minimum completion time (MCT) algorithm.
Their experiment results showed that the proposed heuristics outperformed the MCT
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algorithm on several metrics, including the makespan and the response time. Low et al.
[12] developed a multi-objective model for solving flexible manufacturing system (FMS)
scheduling problems that simultaneously considered three performance measures: minimum
mean job flow time, mean job tardiness, and minimum mean machine idle time. Hybrid
heuristics were proposed for solving the addressed FMS scheduling problems.

Benoit et al. [3] studied the complexity of the bi-criteria mapping problem for pipeline
graphs on communication homogeneous platforms. Several efficient polynomial bi-criteria
heuristics were proposed and their relative performance evaluated through extensive
simulations. Petrovic et al. [24] presented a GA for multi-objective job shop scheduling
problems. The developed tool was used to analyse and solve a real-world problem defined
in collaboration with a pottery company. Klusacek et al. [10] proposed a novel schedule-
based approach (Earliest Gap-Earliest Deadline First [EG-EDF]) for scheduling a continuous
stream of batch jobs on the machines. The proposed solution was compared with some of
the most common queue-based scheduling algorithms, such as FCFS, EASY backfilling, and
Flexible backfilling. Their experiments showed that the EG-EDF rule was able to compute
good assignments, often with a shorter algorithm runtime, compared with the other queue-
based algorithms.

The problem of maximising the total profit and minimising the maximum idle time on m
unrelated parallel machines where pre-emption is allowed, was explored by T’kindt et al.
[27]. The objective function was chosen as a linear combination of the total profit and the
maximum idle time. The criteria have relative weights. An algorithm to compute the set of
all strict Pareto optima was proposed. Nelson et al. [28] explored the two bi-criteria
scheduling problems. These are (1) minimisation of the mean flow time and number of
tardy jobs with zero release dates on a single machine, and (2) minimisation of the
maximum tardiness and number of tardy jobs with zero release dates on a single machine.
Four algorithms were proposed for the problems.

Hoogeveen and Velde [29] studied the bi-criteria single-machine scheduling problem of
minimising total completion time and maximum cost, f.. The maximum cost was defined as
max 1< ;< , fj(C;), where each f; denotes an arbitrary regular cost function for job J;. They
proved that the problem is simultaneously solvable in polynomial time. Two algorithms
(Algorithm | and Algorithm II) were proposed for this problem. Verma and Dessouky [30]
studied the problem of determining a schedule of jobs with unit-time lengths on a single
machine that minimises the total weighted earliness and tardiness penalties with respect to
arbitrary rational due-dates. The problem was formulated as an integer programming
problem, and it was shown that if the penalties meet a certain criterion called the
Dominance Condition, then there is an extremal optimal solution to the LP-relaxation that
is integral, leading to a polynomial-time solution procedure.

The bi-criteria scheduling problem of minimising the maximum earliness and the number of
tardy jobs on a single machine was explored by Azizoglu et al. [31]. First, they examined
the problem of minimising maximum earliness while keeping the number of tardy jobs to its
minimum value (hierarchical minimisation). An algorithm for generating all the efficient
schedules for bi-criteria problems was proposed. Second, a general procedure to find the
efficient schedule that minimises a composite function of the two criteria by evaluating
only a small fraction of the efficient solutions was developed. Hoogeveen [6] explored
multi-criteria scheduling problems by aggregating the criteria into a single function called
the composite objective function. He suggested two types of composite objective function:
linear and general.

Recently, Oyetunji and Oluleye [22] proposed a method for evaluating the performances of
solution methods for bi-criteria scheduling problems. A normalisation scheme (which
converts the values of one criterion to the other) was also put forward. Three heuristics
(HR4, HR5, and HR6) were proposed by Oyetunji and Oluleye [19] for the bi-criteria
problem of simultaneously minimising the total completion time (Ctot) and the number of
tardy jobs (NT) on a single machine with release dates. The bi-criteria problem of
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minimising the total completion time (Ctot) and number of tardy jobs (NT) on a single
machine with release dates was modeled as hierarchical minimisation problems by Oyetunji
and Oluleye [20]. Two types of hierarchical minimisation models (one with the total
completion time criterion being more important than the number of tardy jobs criterion,
and the other with the number of tardy jobs criterion being more important than the total
completion time criterion) were explored.

The technique proposed earlier by Oyetunji and Oluleye [22] for assessing the performance
of solution methods to bi-criteria problems was extended to multi-objective scheduling
problems by Oyetunji [16]. The difference was that the composite objective function was
designed to handle situations in which some of the criteria were to be minimised, while at
the same time some were to be maximised (mixed multi-objectives scheduling). A new
heuristic (HR7) was proposed by Oyetunji [17] for the bi-criteria problem of simultaneously
minimising the total completion time and the number of tardy jobs on a single machine
with release dates. His experiments show that the HR7 outperformed an earlier heuristic
(HR6) for the same bi-criteria problem in terms of both effectiveness (for problems
involving 3 to 500 jobs) and efficiency (for problems involving fewer than 30 jobs). For a
more detailed review of literature on multi-criteria scheduling, we refer to Hoogeveen [6]
and T’kindt and Billaut [32].

3. SOLUTION METHODS

A number of solution methods (proposed and selected) for the bi-criteria scheduling
problem of simultaneously minimising the total completion time and the number of tardy
jobs on a single machine with release time are discussed below.

3.1 Proposed solution methods

Since this problem is NP-Hard, heuristic approaches are desired to obtain fairly good
schedules. Two heuristics (HR9 and HR10) are proposed here for the bi-criteria scheduling
problem.

3.1.1 HR9 heuristic

The basic idea in this heuristic consists of choosing a job J; with the least job allowance
(due dates minus processing time) among the set of jobs that have arrived and are available
for processing at time t. If the chosen job will be tardy, do not schedule the job: rather
choose the next job that has the least job allowance, until all the jobs have been
scheduled. The HR9 heuristic steps are outlined below:

HR9 Heuristic steps

Step 0: Initialise
Job_SetA=[J;, Js,...,dn ]; The set of given jobs
Job_SetB=[0] The set of scheduled jobs
Job_SetC=[Jy, Js,...,dn] The set of unscheduled jobs
Job_SetD=[0] The set of available jobs at time t

t= minjiejgbism 7; (i.e. the minimum ready time of all jobs)

Step 1: Attimet
Update Job_SetD with jobs for which r;<=t
If r; <= t then Job_SetD = [Ji]

Step 2: Calculate Job_Allowance[J;] for all available jobs at time t

Step 3: Choose the job with the least Job_Allowance among the jobs that have arrived at
time t from Job_SetD

Step 4: If the job chosen in Step 3 will be tardy, remove it from Job_SetD and go back to
Step 3, otherwise go to Step 5.

Step 5: Add the job chosen in Step 3 to Job_SetB and remove the same job from Job_SetC.
Compute start time S; = t and completion time C; = S; + p;
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Step 6: Compute new time as: t = max ( G, MiN,_,, o.c? ); maximum of the

completion time or the minimum ready time of the remaining unscheduled jobs.
Step 7: If Job_SetC is not empty, go back to Step 1, otherwise proceed to Step 8
Step 8: Job_SetB is the schedule required.
Step 9: Stop.

3.1.2 HR10 heuristic

The basic idea in this heuristic consists of choosing a job J; with the least processing time
among the set of jobs that have arrived and are available for processing at time t. If the
chosen job will be tardy, do not schedule the job, rather choose the next job that has the
least processing time until all the jobs have been scheduled. The HR10 heuristic steps are
outlined below:

HR10 heuristic steps

Step 0: Initialise
Job_SetA=[Jq, Jy,...,Jdn ]; The set of given jobs
Job_SetB=[0] The set of scheduled jobs
Job_SetC=[J4, Jy,...,dn] The set of unscheduled jobs
Job_SetD=[0] The set of available jobs at time t
Job_SetE=[0] The set of tardy jobs

t= minJEJDb sera 1; (i-€. the minimum ready time of all jobs)

Step 1: At timet
Update Job_SetD with jobs for which r;<=t
If r; <= t then Job_SetD = [J;]

Step 2: Choose the job with the smallest processing time among the jobs that have arrived
at time t from Job_SetD

Step 3: If the job chosen in Step 2 will be tardy, remove it from Job_SetD, add the job to
Job_SetE, and go to Step 4, otherwise go to Step 5.

Step 4: If at time t Job_SetD is empty, go to Step 6, otherwise go to Step 2

Step 5: Add the job chosen in Step 2 to Job_SetB and remove the same job from Job_SetC.
Compute start time S; = t and completion time C; = S; + p;

Step 6: Compute new time as: t = max ( C, MIN,_,, c,7% );maximum of the

completion time or the minimum ready time of the remaining unscheduled jobs.
Step 7: If Job_SetC is not empty, go back to Step 1, otherwise proceed to Step 8
Step 8: Append Job_SetB with Job_SetE in the increasing order of processing times of the
jobs in Job_SetE.
Step 9: Job_SetB is the schedule required.
Step 10: Stop.

3.2 Selected solution methods

Many researchers have explored many variants of the bi-criteria scheduling problems. Many
of them have adopted dynamic programming, linear programming, or integer linear
programming methods, while others have proved the NP-Hard nature of the problems [6].
The literature on the bi-criteria problem considered in this paper (the problem of
simultaneously minimising total completion time and the number of tardy jobs with release

dates on a single machine -1| 7, |(0€Z C + ,BZ U,)) appears to be sparse. To the best
i=1 i=1

of our knowledge, only Oyetunji [17] and Oyetunji and Oluleye [18] have proposed solution

methods (heuristics) for solving this problem with respect to the job characteristics, shop

environments, and criteria under consideration. This is probably due to the fact that the

problem is NP-Hard in the strong sense.
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Therefore, to compare the performances of the proposed heuristics, a heuristic (HR7) was
selected from Oyetunji [17] as well as a branch and bound (BB) method implemented by
Oyetunji and Oluleye [19]. The HR7 heuristic systematically combines the AEO and EOO
heuristics. (For details of the HR7 heuristic and the BB method, see Oyetunji [17] and
Oyetunji and Oluleye [19], page 149, respectively.) The HR7 outperformed the best (HR6)
of the heuristics proposed by Oyetunji and Oluleye [18], hence its selection for evaluation.

4. DATA ANALYSIS

For the purpose of proper comparison, the same problems solved by Oyetunji and Oluleye
[20] were solved. These consist of 50 problems for each of 22 different problem sizes
ranging from 3 to 500 jobs (Fig. 1). In all, 1,100 randomly generated problems were solved.
The processing times of the jobs were randomly generated (using the random number
generator in Microsoft Visual Basic 6.0) with values ranging between 1 and 100 inclusive.
Similarly, the ready times of the jobs were randomly generated with values ranging
between 0 and ZE inclusive, and the due dates of the jobs were randomly generated
i=1

with values ranging between (r; + p;) and (r; + 2*p;) inclusive. The problem data was
archived for future reference, and can be made available on request.

A program was written in Microsoft Visual Basic 6.0 to apply the solution methods (HR7,
HR9, HR10, and BB) to the problems generated. The program computes the value of the

normalised linear composite objective function (F:O,S*ZCI. +O'5*ZU1‘ ) obtained
i=l i=l

by each solution method for each problem. The data (values of the normalised linear

composite objective function and execution time) was exported to Statistical Analysis

System (SAS version 9.1) for detailed analysis. SAS is a very versatile statistical package,

and was employed to enable credible conclusions to be drawn from the results. The

hardware used for the experiment was a 1.73 GHz T2080 Intel CPU with 1024 MB of RAM.

The general linear model (GLM) procedure in SAS was used to compute the mean value of
the normalised linear composite objective function for each problem size (50 problem
instances were solved under each problem size) and by solution methods. The test of means
was also carried out using the GLM procedure to determine whether or not the differences
observed in the mean value of the normalised linear composite objective function obtained
by various solution methods are statistically significant. Note that the methodology of
Oyetunji [16] was used to obtain the normalised linear composite objective function.
Therefore, the normalised linear composite objective function shown in the results is
dimensionless.

5. RESULTS AND DISCUSSION

The values of the normalised linear composite objective function obtained by the various
solution methods indicate the effectiveness of the solution methods, whereas their
efficiency is measured by the execution time (seconds). The mean values of the normalised
linear composite objective function obtained by the various solution methods and problem
sizes considered are shown in Table 1. As expected, the branch and bound (BB) method
gave the minimum mean value of the normalised linear composite objective function
(indicating the best performance with respect to effectiveness) for all the problem sizes
considered. The HR7 heuristic gave the mean value of the normalised linear composite
objective function that was closest to that of the BB method when the number of jobs was
less than 30. This was closely followed by the HR10 heuristic. However, when the number
of jobs was equal to or greater than 30, the HR10 heuristic gave the mean value of the
normalised linear composite objective function that was closest to that of the BB method.
This was closely followed by the HR7 and HR9 heuristics in that order (Table 1).
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The results presented in Table 1 were subjected to statistical test to determine whether or
not the differences observed in the mean values of the normalised linear composite
objective function obtained from the various solution methods were significant; the results
are summarised in Tables 2-5. The differences in the mean value of the normalised linear
composite objective function obtained from BB, HR7, HR10, and HR9 solution methods are
not significant (indicating competitive performances among BB, HR7, HR10, and HR9
solution methods) at the 5% level for problems ranging from 3 to 7 jobs (Table 2). However,
under the same job configuration, the mean value of the normalised linear composite
objective function obtained from the HR6 heuristic is significantly different from that of the
BB, HR7, HR10, and HR9 solution methods (Table 2), indicating a poor performance
compared with the other four methods.

For problems ranging from 8 to 30 jobs, the differences in the mean value of the normalised
linear composite objective function obtained from BB, HR7, and HR10 solution methods are
not significant (indicating competitive performances among BB, HR7, and HR10), whereas
the mean values of the normalised linear composite objective function obtained from the
HR9 heuristic are significantly different from those of the BB, HR7, and HR10 solution
methods at the 5% level (Table 3), indicating poor performance compared with the other
three methods.

When the number of jobs ranges between 30 and 200 inclusive, the differences in the mean
value of the normalised linear composite objective function obtained from BB and HR10 are
not significant at the 5% level (Table 4), indicating competitive performances between BB
and HR10. Under the same problem loading, the mean value of the normalised linear
composite objective function obtained from the HR7 and HR9 heuristics are significantly
different from that of the BB and HR10 solution methods at 5% level (Table 4), indicating a
poor performance compared with the other two. Table 5 shows that the mean value of the
normalised linear composite objective function obtained from the HR10 heuristic is
significantly different from that of the HR7 and HR9 heuristics at 5% level for problems
ranging from 300 to 500 inclusive, indicating better performance than the HR7 and HR9
heuristics). The BB procedure could not be applied to problems involving more than 200
jobs, as it could not obtain solutions within the maximum allowable time of 60 minutes due
to its obvious implicit enumeration characteristic.

The ratio of the values of the normalised linear composite objective function obtained from
the HR7, HR9, and HR10 to that of the BB (HR7/BB, HR9/BB, and HR10/BB) was computed
for the various problem sizes; the results are shown in Fig. 1. The closeness of the HR7
performance to that of BB when the number of jobs is less than 30 is obvious. And the
closeness of the HR10 performance to that of BB when the number of jobs is equal to or
greater than 30 is also obvious (Fig. 1). As the number of jobs increases, the performance of
the HR10 heuristic gets better and closer to that of the BB method (Fig. 1).

The mean values of the execution time (seconds) taken to obtain results by the various
solution methods for the various problem sizes are shown in Table 6. As expected, the BB
method took longer (and thus was slower) than the HR7, HR9, and HR10 heuristics (Table
6). The HR7, HR9, and HR10 heuristics were not consistently faster than each other under
the same problem loading (Table 6).

The t-tests carried out indicate that HR7, HR9, and HR10 heuristics were significantly faster

than the BB for all the considered problem sizes (results not shown). Also, both HR7 and
HR10 are significantly faster than HR9 when the number of jobs exceeds 30.
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Problem Mean of the normalised composite objective function

Size BB HR7 HR9 HR10
3x1 0.2868 0.3037 0.3169 0.3161
4x1 0.3862 0.3911 0.3926 0.3920
5x1 0.3616 0.3631 0.4228 0.3989
6x1 0.3905 0.3962 0.4253 0.3976
7x1 0.3971 0.4020 0.4835 0.4302
8x1 0.4003 0.4247 0.5221 0.4357
9x1 0.4215 0.4379 0.5116 0.4577
10x1 0.4225 0.4369 0.5049 0.4500
12x1 0.4180 0.4425 0.5303 0.4700
15x1 0.4555 0.4725 0.5446 0.4830
20x1 0.4755 0.4874 0.5608 0.4884
25x1 0.4690 0.4821 0.5722 0.4845
30x1 0.4612 0.4772 0.5670 0.4727
40x1 0.4744 0.4812 0.5704 0.4808
50x1 0.4857 0.4975 0.5854 0.4921
100x1 0.4851 0.4972 0.5921 0.4867
120x1 0.4853 0.5000 0.5986 0.4934
140x1 0.4830 0.4930 0.5965 0.4843
200x1 0.4804 0.4932 0.5971 0.4855
300x1 - 0.4945 0.5999 0.4846
400x1 - 0.4934 0.6013 0.4835
500x1 - 0.4928 0.6022 0.4833

Sample size = 50

Table 1: Mean of the normalised composite objective function by solution
methods and problem sizes

Heuristics

Heuristics BB HR7 HR9 HR10

BB - X X X

HR7 X - X X

HR9 X X - X

HR10 X X X -

Note * indicates significant result at 5% level; Sample size = 50

X indicates non-significant result at 5% level

indicates not necessary

Table 2: Test of means (probability values) of normalised composite objective
function for 3 < n <7 problems

Heuristics
Heuristics BB HR7 HR9 HR10
BB - X <0.001* X
HR7 X - <0.001* X
HR9 <0.001* <0.001* - <0.001*
HR10 X X <0.001* -
Note  * indicates significant result at 5% level; Sample size = 50
X indicates non-significant result at 5% level

indicates not necessary

Table 3: Test of means (probability values) of nhormalised composite
objective function for 8 < n < 30 problems
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Heuristics

Heuristics BB HR7 HRO HR10

BB - <0.001* <0.001* X

HR7 <0.001* - <0.001* X

HR9 <0.001* <0.001* - <0.001*

HR10 X X <0.001* -

Note * indicates significant result at 5% level; Sample size = 50
X indicates non-significant result at 5% level

- indicates not necessary

Table 4: Test of means (probability values) of normalised composite objective
function for 30 <n < 200 problems

Heuristics
Heuristics HRé HR7 HR9 HR10
HR7 <0.001* - <0.001* <0.001*
HR9 <0.001* <0.001* - <0.001*
HR10 <0.001* <0.001* <0.001* -
Note * indicates significant result at 5% level; Sample size = 50

- indicates not necessary

Table 5: Test of means (probability values) of normalised composite objective
function for 300 < n < 500 problems

1.4
1.3
)
%
c 1.2 -
L
s A -~ HR7/BB
E 1.1
S ~—— HR9/BB
)
—_
§ 1 4 HR10/BB
0.9 - — — —
RFREREREEEEEEEEEEEE
Problem sizes~ — © & SIIR

Figure 1: Approximation ratio of the composite objective
function by problem sizes
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Problem Mean of execution time (seconds)

size
BB HR7 HR9 HR10

3x1 0.8791 0.0021 0.0027 0.0013
4x1 0.6761 0.0030 0.0027 0.0034
5x1 0.8009 0.0041 0.0042 0.0039
6x1 1.0627 0.0051 0.0044 0.0044
7x1 1.5514 0.0067 0.0066 0.0070
8x1 1.8374 0.0083 0.0071 0.0074
9x1 2.2335 0.0102 0.0073 0.0088
10x1 2.7916 0.0122 0.0119 0.0112
12x1 3.0853 0.0175 0.0158 0.0158
15x1 3.4220 0.0247 0.0227 0.0237
20x1 7.4707 0.0432 0.0433 0.0410
25x1 8.9151 0.0650 0.0665 0.0623
30x1 12.4608 0.0912 0.0969 0.0874
40x1 18.6614 0.1579 0.1636 0.1519
50x1 34.6055 0.2388 0.5854 0.2577
100x1 102.5728 0.9476 1.1157 1.0239
120x1 140.3210 1.3599 1.6199 1.4872
140x1 270.2090 1.8667 2.3984 2.0297
200x1 480.5320 3.7965 4.8638 4,3243
300x1 - 8.2500 11.5780 10.4256
400x1 - 14.6081 23.1784 19.3045
500x1 - 21.5290 39.0791 27.7815

Sample size = 50
Table 6: Mean of execution time (seconds) by solution methods and problem sizes
6. CONCLUSION

This paper has discussed the bi-criteria scheduling problem of simultaneously minimising
the total completion time and the number of tardy jobs with release dates on a single
machine. In view of the NP-Hard nature of the problem, two heuristics (HR9 and HR10)
were proposed for solving this problem, and compared with both an earlier heuristic (HR7)
that was proposed for the same bi-criteria problem, and a branch and bound (BB) method.
Results show that the HR7 heuristic outperformed the HR10 heuristic when the number of
jobs was fewer than 30. However, for jobs ranges from 30 to 500 jobs inclusive, the HR10
heuristic outperformed the HR7 heuristic. In terms of efficiency, the HR7 and HR10
heuristics were both faster than the BB method.

Therefore, based on performance, the HR7 heuristic is recommended for the bi-criteria
problem involving fewer than 30 jobs, while the HR10 heuristic is recommended for the bi-
criteria problems involving 30 or more jobs.
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