
South African Journal of Industrial Engineering Nov 2010 Vol 21(2): 91-100

PARETO OPTIMAL SOLUTIONS FOR MULTI-OBJECTIVE GENERALIZED
ASSIGNMENT PROBLEM

S. Prakash1

, M.K. Sharma2 and A. Singh3

1Department of Applied Sciences
Amity School of Engineering & Technology, New Delhi, India

sprakash@aset.amity.edu

2School of Mathematics & Computer Applications
Thapar University, Patiala, India

mksharma@thapar.edu

3Department of Applied Sciences
Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib, India

amarinder77@gmail.com

ABSTRACT

The Multi-Objective Generalized Assignment Problem (MGAP) with two objectives, where
one objective is linear and the other one is non-linear, has been considered, with the
constraints that a job is assigned to only one worker – though he may be assigned more than
one job, depending upon the time available to him. An algorithm is proposed to find the set
of Pareto optimal solutions of the problem, determining assignments of jobs to workers
with two objectives without setting priorities for them. The two objectives are to minimise
the total cost of the assignment and to reduce the time taken to complete all the jobs.

OPSOMMING

‘n Multi-doelwit veralgemeende toekenningsprobleem (“multi-objective generalised
assignment problem – MGAP”) met twee doelwitte, waar die een lineêr en die ander nie-
lineêr is nie, word bestudeer, met die randvoorwaarde dat ‘n taak slegs toegedeel word aan
een werker – alhoewel meer as een taak aan hom toegedeel kan word sou die tyd
beskikbaar wees. ‘n Algoritme word voorgestel om die stel Pareto-optimale oplossings te
vind wat die taaktoedelings aan werkers onderhewig aan die twee doelwitte doen sonder
dat prioriteite toegeken word. Die twee doelwitte is om die totale koste van die opdrag te
minimiseer en om die tyd te verminder om al die take te voltooi.

 Corresponding author.

 92

1. INTRODUCTION

The generalized assignment problem, unlike other assignment problems, does not have a
one-to-one correspondence between jobs and workers. Jobs are assigned in such a way that
each job is assigned to a worker who may, however, be assigned more than one job,
subject to the time available to him. The objective here is to minimise the total cost of
assigned jobs. Many researchers, including Cattrysse & Wassenhove [2], Amini & Racer [1],
Chu & Beasley [3], Diaz & Fernandez [4], Haddadi & Ouzia [8] and Kasana & Kumar [11]
have proposed various methods – including exact and approximate ones – to solve the GAP
and its variants. Lourenço & Serra [13] have applied heuristic techniques to solve the
generalized assignment problem.

 It is well known that multi-objective optimization problems have continued to attract a lot
of attention due to their vast application. In multi-objective optimization problems, the
objective functions are generally conflicting in nature. Thus the solution of the problem is
important because of the trade-off relationship among the objectives. If the decision-maker
knows the exact trade-off among the objective functions, then a single optimal solution will
suffice; whereas, in the absence of explicit knowledge of the trade-off relationship among
the objectives, it is better to find a set of Pareto optimal solutions first, and then choose
one solution from the set, using the weights that may be set up by the decision-maker.
Ignizio [9] has discussed multi-objective problems. Evans [5] has presented some reasons for
the rapidly increasing interest in multi-objective mathematical programming, and has also
discussed the advantages and disadvantages of a few general approaches to multi-objective
mathematical programming. Lourenço et al. [12] have presented multi-objective
metaheuristics for solving real-life crew scheduling problems in public transport companies.
Fu & Diwekar [6] have presented an approach to multi-objective optimization based on the
principles of probabilistic uncertainty analysis. Junker [10] has generalized a preference-
based search to compute balanced, extreme, and Pareto optimal solutions for general
constraint satisfaction problems, thus handling preferences on and between multiple
criteria.

From a multi-objective point of view, Gandibleux & Freville [7] have used the Tabu search
heuristic on the two linear objectives to solve the 0-1 knapsack problem. Zhang & Ong [14]
have proposed an LP-based heuristic to solve the Bi-objective Generalized Assignment
Problem (BiGAP), in which both objective functions are linear. In the present study, a
BiGAP is considered in which both the objective functions are minimisation type
performance measures. An algorithm has been proposed to solve this BiGAP without
prioritising either of the objective functions, to obtain a set of Pareto optimal solutions.
The Pareto optimal solutions are also termed ‘non-dominated solutions’ or ‘efficient
solutions’.

2. FORMULATION OF THE PROBLEM

Consider the case of m workers and n jobs. Let cij (i=1,2,…,m; j=1,2,…,n) represent the cost
of assigning the worker i to job j; tij (i=1,2,…,m; j=1,2,…,n) denote the time taken by the
worker i to perform job j; xij (i=1,2,…,m; j=1,2,…,n) be the binary decision variable
assuming the value 1 or 0 according to whether or not the worker i has been assigned the
job j; and bi (i=1,2,…,m) be the time available with worker i. Let C and T denote the total
cost and duration respectively of assigning jobs. The mathematical formulation of the
problem is as follows. Determine xijs, which minimise the two-objective functions:


 


m

i

n

j
ijij xcC

1 1
 (1)









 


),2,1(:max
1

mixtT
n

j
ijij  (2)

 93

without according priorities to them, subject to the constraints

),2,1(1
1

njx
m

i
ij 



 (3)

),,2,1(
1

mibxt i

n

j
ijij 



 (4)

),,2,1;,2,1(10 njmiorxij   (5)

Here, (1) and (2) represent the objective functions that need to be minimised. Constraint
(3) ensures that each job is assigned to just one worker. Constraint (4) ensures that the
assignments to each worker are made only according to the time available to the worker. It
is necessary to find the set of non-dominated solutions of the problem provided by Eqs. (1)-

(5). A vector of decision variables *x for a k-objective problem is non-dominated if

there is not another x such that)()(*xfxf ii  for all ki ,,2,1  and

)()(*xfxf jj  for at least one j .

3. SOLUTION PROCEDURE

The Bi-objective Generalized Assignment Problem is an integer nonlinear problem. This is
so because the objective function provided by (2) is nonlinear, and the decision variables
xijs assume the integer value 0 or 1. A procedure is outlined to obtain the set of non-
dominated solutions.

3.1 Procedure to obtain first non-dominated solution

The first non-dominated solution is obtained by assigning the first priority to the objective
function (1) and the second priority to the objective function (2). The algorithm is
explained below:

Step 1. Calculate the least cost penalties for each job, i.e. the difference of least and
second-least costs, for various workers.

Step 2. Select the job with the largest penalty. In the event of a tie in the largest penalty
for two or more jobs, select the job for which the least cost of assignment is the lowest
among all such least costs. In the event of a tie on that count as well, select the job that
has the lowest time duration corresponding to the least cost cell; otherwise the job can be
selected arbitrarily. Let the kth job be selected.

Step 3. Select the least cost cell of the kth job selected above. In the event of a tie in the
least cost cells, select the one that has the lowest time duration in the least cost cells. In
the event of a tie on the least time duration of the selected least cost cells as well, assign
it to the worker who has the most time available; otherwise assign it arbitrarily. If the
selected least cost cell (r,k) does not satisfy the time constraint, leave the job unassigned;
otherwise make an assignment in the cell, i.e. assign job k to worker r and update the time
available to him to br-trk. Drop the kth job from further consideration.

Step 4. Repeat steps 2 and 3 until either each of the jobs has been assigned to a single
worker, or a situation arises that some jobs are left unassigned because of the time
constraints of the workers at their least costs. In the former case, a non-dominated solution
is obtained; in the latter case, apply the next step.

Step 5. If some of the jobs are left unassigned, the job schedule of certain workers is
subject to change – i.e. the allocation of combined jobs is considered for moving, preferring

 94

the least increase in cost, if an improvement in it is not possible, depending upon the
following situations that may occur.

Step 5.1. An allocation of worker r is considered to move from job j to job j′ if





n

s
rrsrs jsbxt

1
)(,

where job j′ is so chosen that





'js

rsrs
js

rsrs xcxc

if possible.

Step 5.2. A combination of assignments of worker r is considered to move from jobs j & j′ to
job j* if





js

rrsrs bxc

Once an assignment is shifted from the cell (r,s), the cell is dropped from further
consideration. Repeat the steps 5.1 and 5.2 until all the jobs have been assigned. The
solution thus obtained will be termed the first non-dominated solution, denoted by (C(X(1)),
T(X(1))).

3.2 Procedure to obtain second and subsequent non-dominated solutions

After having obtained the first non-dominated solution by (C(X(1)), T(X(1))), the second non-
dominated solution (C(X(2)), T(X(2))) is obtained by introducing an additional constraint





n

j
ijij iXTxt

1

)1()((6)

to the formulation of the problem, to restrict the aspiration level of the decision-maker.
The second non-dominated solution is obtained by dropping all the cells (i,j) in which tij≥
T(X(1)) and assigning the jobs afresh by following the same procedure as explained in section
3.1, or by moving the assignments from the table of the first non-dominated solution in the
following manner.

Step I. Select the workers who are working for T(X(1)) amount of time, i.e., satisfy the
following equality

)()1(

1
XTxt ij

n

j
ij 



Step II. Shift the assigned jobs of a worker to some other worker by assigning them at the
available least cost cells, satisfying the constraints (3)-(6) as explained in steps 5.1 and 5.2.

Step III. Stop the procedure when all the jobs are assigned to workers, satisfying all the
constraints (3)-(6).

The solution obtained is termed the second non-dominated solution denoted by (C(X(2)),
T(X(2))). The third non-dominated solution may be obtained by following the same
procedure as for the second non-dominated solution just by replacing T(X(1)) with T(X(2)),
and the same procedure can be extended to obtain subsequent solutions as well. The
procedure terminates at the nth non-dominated solution (C(X(n)), T(X(n))), when it is not
possible to obtain a non-dominated solution (C(X(n+1)), T(X(n+1))) where T(X(n+1))< T(X(n)).

 95

3.3 Some additional assignment procedures

More non-dominated solutions can be found by following the assignment procedures
explained below.

Case I. Following the same penalties on cost, the assignments are made in the cells that
have the least amount of time, satisfying the constraints (3)-(5). In the event of a tie in the
cells for the least amount of time, the assignments are made in the cells that have a lower
cost corresponding to the least time. In the event of a tie on that count as well, the
assignment is made arbitrarily. If a solution is not obtained, i.e. not all the jobs are
assigned, then the procedure is applied as explained in step 5 of algorithm in section 3.1.
The solution should be compared with the non-dominated solutions already obtained for its
dominance or non-dominance. The second and subsequent non-dominated solutions can be
obtained by following the same procedure as explained earlier.

Case II. Calculate the least time penalties for all the jobs for various workers – i.e. the
difference between least and second least time duration of all the jobs by various workers –
and assign the jobs to the worker with least cost, following the same procedure as
explained in section 3.1, where the penalties are calculated on the time duration and
obtain a set of non-dominated solutions.

Case III. Using the same least time penalties for all the jobs, assign the jobs at the least
time duration, satisfying the constraints (3)-(5). Ties are broken as explained in Case I
above, thereby generating a set of non-dominated solutions.

It is worth noting here that some of the solutions obtained using the above cases may
dominate or be dominated themselves by the solutions obtained by the procedure explained
in sections 3.1 and 3.2.

4. NUMERICAL EXAMPLE

Consider the following example of multi-objective GAP with m=4, n=7 in Table 1.The first
entry in each cell represents cij and the second represents tij. In order to obtain the first
non-dominated solution of the problem, the objective functions (1) and (2) are assigned the
first and second priorities respectively. The penalties shown in Table 1 are the least cost
penalties for all the jobs. Apply the procedure explained in section 3.1 and try to assign the
jobs in decreasing order of penalties.

 J
W

1

2

3

4

5

6

7

Available

Time)(ib

1
9
4

7
8

8
3

12
10

9
10

12
8

15
7 15

2
10
3

5
10

8
5

11
6

15
3

16
10

20
2

12

3
4
12

3
12

10
2

9
2

12
7

14
9

12
10

20

4 8
7

7
6

8
5

10
4

10
9

14
9

10
12

14

Penalty 4 2 0 1 1 2 2

Table 1 – Numerical problem with 4 workers and 7 jobs

The largest penalty is 4 for job 1, and the corresponding least cost occurs for worker 3; and
since he has sufficient time available to him, the job is allocated to him, and the time
available to him is updated to 8 units. The next largest penalty is 2, which corresponds with
three jobs: job 2, job 6, and job 7. Since job 2 has the lowest of the corresponding least
costs, it is considered for allocation. The least cost cell for job 2 occurs for worker 3, but

 96

the job cannot be allocated to him since he does not have the required time to perform the
job. So job 2 is left unassigned for now. Next, job 7 is considered for allocation, since the
least cost for assigning job 7 is less than that of job 6. The least cost for job 7 occurs for
worker 4, who is allocated this job since he has the required time to perform the job. Thus
the time available to worker 4 is updated to 2 units. Thereafter job 6 is considered for
allocation, and is allocated to worker 1 whose available time is updated to 7 units. The
next largest penalty is 1 which corresponds with two jobs: job 4 and job 5. There is a tie in
the least costs for job 4 and job 5, but preference is given to job 4 since the least cost cell
– i.e. (3,4) for job 4 – has a lower time duration than that in the cell (1,5) for job 5. Thus
job 4 is allocated to worker 3, who has already been allocated job 1, and his available time
is updated to 6 units. Now job 5 cannot be assigned at the least cost – i.e. to worker 1 –
since he does not have the required time available to him. Thus job 5 is also left
unassigned. The last job under consideration is job 3, which has the same least cost for
three workers: worker 1, worker 3, and worker 4. Job 3 is allocated to worker 1 since he
has the least time duration as well. Thus, so far job 2 and job 5 have not been assigned to
any worker. Disregarding the least cost cells for these two jobs, calculate the cost penalties
by considering the next two least costs. It can be seen that the penalty for both the jobs is
2. Preference is given to job 2, since the least cost of assigning job 2 is less than that for
job 5. Thus job 2 is allocated to worker 2, and his available time is updated to 2 units. Job
5 still remains unassigned, since no worker has the required time available to him to
perform the job. It is easy to check that job 5 remains unassigned. The status of the
assignments after applying steps 1-4 of the algorithm given in section 3.1 is given in Table
2.

 J
W

1

2

3

4

5

6

7

Working
duration

1 (1) (1) 11
2 (1) 10
3 (1) (1) 14
4 (1) 12

Table 2 – Initial assignment of jobs

Since job 5 has not been assigned to any worker, select the least cost cell for the same, i.e.
the cell (1,5) that corresponds to worker 1. Now change the allocation of worker 1 so as to
include the cell (1,5) in his allocation. Since the total time available to the worker is 15
units, and he is already working for 11 units of time, some other allocation of worker 1 has
to be shifted to the cell (1,5). The two possible options to move are (1,3) or (1,6).
Preference is given to moving the assignment from (1,6) to (1,5), since that reduces the
cost of assignment, even though the working duration of worker 1 increases to 15 units.
This iteration leaves job 6 unassigned. Drop the cell (1,6) from further consideration of
assignments.

Repeating step 5 of the algorithm of section 3.1, now on job 6, the available least cost cell
is either (3,6) or (4,6). Since the least cost and the time duration are the same in both
cells, the allocation is made in (3,6) since worker 3 has a greater amount of time available
to him. Now the assignment of worker 3 may be changed in two ways, i.e. by moving the
assignments of cell (3,1) or (3,4) to the cell (3,6). But shifting the assignment from (3,4) to
(3,6) is not possible, since it violates the time constraint for worker 3. Shift the assignment
from (3,1) to (3,6), leaving job 1 unassigned, and update the time available to worker 3 to
9 units. Thus, the second iteration of step 5 of the algorithm leaves the cell (3,1)
unavailable for further consideration.

 97

The third and subsequent iterations of step 5 of the algorithm are given below in Table 3.

Table 3 – Iterations of Step 5

Since all the jobs have been assigned to individual workers, thus satisfying all the
constraints, we have obtained the first non-dominated solution denoted by (C(X(1)), T(X(1))).
The corresponding assignments are given in Table 4, and the total cost and duration of the
assignment are given in Table 5.

 J
W

1

2

3

4

5

6

7

Working
Duration

1 (1) (1) (1) 14
2 (1) 10
3 (1) (1) 14
4 (1) 9

Table 4 – Job assignment of first non-dominated solution

Variables at Level 1 C(X(1)) T(X(1))

x11, x13, x17, x26, x32, x34, x45 70 units 14 units

Table 5 – First non-dominated solution

To obtain the second non-dominated solution denoted by (C(X(2)), T(X(2))), the cells (i,j) in
which tij ≥ 14 are dropped from consideration. The solutions may be obtained by following
two procedures explained in section 3.2. Starting from the assignment table of first non-
dominated solution, i.e. Table 4, the assignment of jobs 1 and 3 is considered for moving
from the existing worker to another worker who satisfies the constraints (3)-(6). The move
results in the second non-dominated solution given in Table 6.

Continuing the same procedure, the third non-dominated solution is obtained, as shown
below in Table 7.

Variables at Level 1 C(X(2)) T(X(2))

x11, x13, x26, x27, x32, x44, x45 76 units 13 units

Table 6 – Second non-dominated solution

Variables at Level 1 C(X(3)) T(X(3))
x11, x13, x26, x27, x34, x35, x42 81 units 12 units

Table 7 – Third non-dominated solution

Iteration No. Job to be
assigned Variables xij at level 1 Job left

unassigned
3 1 x13, x15, x22, x34, x36, x41 7
4 7 x13, x15, x22, x34, x37, x41 6
5 6 x13, x15, x22, x34, x37, x46 1
6 1 x11, x13, x22, x34, x37, x46 5
7 5 x11, x13, x22, x34, x37, x45 6
8 6 x11, x13, x26, x34, x37, x45 2
9 2 x11, x13, x26, x32, x34, x45 7
10 7 x11, x13, x17, x26, x32, x34, x45 -

 98

The non-dominated solutions maybe obtained by allocating afresh in Table 1 and satisfying
the constraints (3)-(6), following the same procedure explained in section 3.1 and applied
above, to obtain the first non-dominated solution. The solution obtained is given below in
Table 8.

Variables at Level 1 C(X(4)) T(X(4))
x11, x17, x26, x33, x35, x42, x44 79 units 11 units

Table 8 – Fourth non-dominated solution

It is easy to check that the fourth non-dominated solution displayed in Table 8 dominates
the third non-dominated solution given in Table 7. So the solution of Table 7 is rejected,
and that of Table 8 is redesignated as the third non-dominated solution. The procedure
ends here, since it is not possible to assign the jobs and obtain some other non-dominated
solution. Thus the non-dominated solutions obtained so far are given in Table 9.

Cost of assignment Duration of assignment
First non-dominated

solution
70 units 14 units

Second non-dominated
solution

76 units 13 units

Third non-dominated
solution

79 units 11 units

Table 9 – Set of non-dominated solutions

However, more solutions to the problem may be obtained by applying each of the three
cases explained in section 3.3. There is, though, only one non-dominated solution, shown in
Table 10, obtained by applying the procedure explained in Case I of section 3.3.

Cost of assignment Duration of assignment
First non-dominated

solution
83 units 8 units

Table 10 – Set of non-dominated solutions obtained by applying Case I

Applying the procedure explained in Cases II and III of section 3.3, we obtain more solutions
that may actually dominate, or be dominated by, the solutions obtained earlier. The non-
dominated solutions obtained by applying Case II and III are given in Tables 11 and 12
respectively.

Cost of assignment Duration of assignment
First non-dominated

solution
84 units 9 units

Second non-dominated
solution

74 units 11 units

Third non-dominated
solution

72 units 12 units

Fourth non-dominated
solution

71 units 13 units

Fifth non-dominated
solution

66 units 15 units

Table 11 – Set of non-dominated solutions obtained by applying Case II

 99

Cost of assignment Duration of assignment
First non-dominated

solution
83 units 8 units

Table 12 – Set of non-dominated solutions obtained by applying Case III

Moreover, it is easy to check that the solution in which T(X(n))<8 is not possible, since ti6≥8
for all i – i.e. job 6 cannot be assigned for durations less than 8 units. Thus the final set of
non-dominated solutions, in decreasing value of the first objective function (1), is given
below in Table 13.

Cost of assignment Duration of assignment
First non-dominated

solution
83 units 8 units

Second non-dominated
solution

74 units 11 units

Third non-dominated
solution

72 units 12 units

Fourtt non-dominated
solution

71 units 13 units

Fifth non-dominated
solution

70 units 14 units

Sixth non-dominated
solution

66 units 15 units

Table 13 – Final set of non-dominated solutions of the numerical problem

5. CONCLUSIONS

The main contribution of this work is the study of the bi-objective generalized assignment
problem in which one objective function is linear and the other one is non-linear. Both
objective functions – the linear one on the cost of assignment of jobs, and the non-linear
one on the duration of completion of the jobs - are minimised. The solution procedure
involved moving the assignments of workers to restrict the aspiration criteria of the
decision-maker, so as to search the smaller neighbourhood for the possible set of non-
dominated solutions that give greater flexibility to the decision-maker.

6. REFERENCES

[1] Amini, M.M. & Racer, M. 1995. A hybrid heuristic for the generalized assignment

problem, European Journal of Operational Research, 87, pp 343-348.
[2] Cattrysse, D.G. & Wassenhove, L.N.V. 1992. A survey of algorithms for the

generalized assignment problem, European Journal of Operational Research, 60, pp
260-272.

[3] Chu, P.C. & Beasley, J.E. 1997. A genetic algorithm for the generalized assignment
problem, Computers & Operations Research, 24, pp 17-23.

[4] Diaz, J.A. & Fernandez, E. 2001. A tabu search heuristic for the generalized
assignment problem, European Journal of Operational Research, 132, pp 22-38.

[5] Evans, G.W. 1984. An overview of techniques for solving multiobjective
mathematical programs, Management Science, 30, pp 1268-1282.

[6] Fu, Y. & Diwekar, U.M. 2004. An efficient sampling approach to multiobjective
optimization, Annals of Operations Research, 132, pp 109-134.

[7] Gandibleux, X. & Freville, A. 2000. Tabu search based procedure for solving the 0-1
multiobjective knapsack problem: The two objective case, Journal of Heuristics, 6,
pp 361-383.

[8] Haddadi, S. & Ouzia, H. 2004. Effective algorithm and heuristic for the generalized
assignment problem, European Journal of Operational Research, 153, pp 184-190.

 100

[9] Ignizio, J.P. 1982. Linear programming in single and multi-objective systems,
Prentice-Hall, Englewood Cliffs, New Jersey.

[10] Junker, U. 2004. Preference based search and multi-criteria optimization, Annals of
Operations Research, 130, pp 75-115.

[11] Kasana, H.S. & Kumar, K.D. 2004. Introductory operations research. Theory and
applications, Springer-Verlag, Berlin.

[12] Lourenço, H.R., Paixao, J.P. & Portugal, R. 2001. Multiobjectives metaheuristics
for the bus driver scheduling problem, Transport Science, 35, pp 331-343.

[13] Lourenço, H.R. & Serra, D. 1998. Adaptive approach heuristics for the generalized
assignment problem, preprint.

[14] Zhang, C.W. & Ong, H.L. 2007. An efficient solution to biobjective generalized
assignment problem, Advances in Engineering Software, 38, pp 50-58.

