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ABSTRACT

This article considers a two-commodity continuous review inventory system in which the
arriving customers belong to any one of three types, such that type 1 customers demand a
single item of the first commodity, type 2 customers demand bulk items of the second
commodity, and type 3 customers demand one item of the first commodity and bulk items of
the second commodity. The arrivals of all three types of customers are assumed to be a
Markovian arrival process (MAP). It is also assumed that the number of items demanded for
the second commodity is a random variable. The ordering policy is to place orders for both
commodities when the inventory levels are below prefixed levels for both commodities. The
lead time is assumed to have a phase type distribution, and the demands that occur during
stock out period are assumed to be lost. The joint probability distribution for both
commodities is obtained in the steady state case. Various measures of system performance
and the total expected cost rate in the steady state are derived. The results are illustrated
with numerical examples.

OPSOMMING
'n Tweeprodukstelsel se voorraad vir klante word kontinu hersien. Die vraag na die
produktipes word gekenmerk deur klantvoorkeure. Die versoektempo van klante vir voorraad

word aanvaar as ’'n Markovproses. Aannames word gemaak oor vraaghoeveelhede en
aanlooptyd. Die resultate van die ondersoek word voorgehou via syfervoorbeelde.
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1. INTRODUCTION

One of the factors that contribute to the complexity of present day inventory systems is the
multitude of items stocked, necessitating multi-commodity inventory systems. In early
dealing with such systems, many models were proposed with independently established
re-order points. But in situations where several products compete for limited storage space,
or share the same transport facility, or are produced on (procured from) the same equipment
(supplier), the above strategy overlooks the potential savings associated with joint ordering,
and hence will not be optimal. Thus coordinated (also known as joint) replenishment reduces
the ordering and setup costs, and allows the user to take advantage of quantity discounts, if
any. Various models and references may be found in Miller [23], Agarwal [5], Silver [31],
Thomstone and Silver [36], Kalpakam and Arivarignan[15], and Srinivasan and Ravichandran
[35]. and further references that they contain.

In continuous review inventory systems, Balintfy [6] and Silver [31] have considered a
coordinated re-ordering policy, represented by the triplet (S,c,s), where three parameters,

Si’ci and s; are specified for each item i with 5; SC,- <S,, for a unit sized Poisson

demand and constant lead time. In this policy, if the level of the i -th commodity at any time
is below s;, an order is placed for §; —s; items; and at the same time, if any other item

j(# 1) with available inventory is at or below its can-order level c;, an order is placed so as
to bring its level back to its maximum capacity S;. Many subsequent articles have appeared

with models involving the above policy. A further article of interest is that of Federgruen et
al. [9], which deals with the general case of compound Poisson demands and non-zero lead
times.

Throughout the years, the work on methods to solve the joint replenishment problem has
been extensive. Readers are referred to the publications of Fung and Ma [10], Goyal
[11,12,13], Goyal and Satir [14], Kaspi and Rosenblatt [16], Nilsson et al. [27], Nilsson and
Silver [28], Olsen [29], Silver [32], Van Eijs [37], Viswanathan [38,39,40], and Wildeman et al.
[41] and references that they contain.

Kalpakam and Arivarignan [15] have introduced an (is,.S) policy with a single re-order level

S defined in terms of the total number of items in the stock. The policy avoids separate
ordering of each commodity. Hence a single processing of orders for both commodities has
some advantages in a situation where procurement is made from the same supplies, items are
produced on the same machine, or items have to be supplied by the same transport facility.

In the case of two-commodity inventory systems, Anbazhagan and Arivarignan [1,2,3,4] have
proposed various ordering policies. Yadavalli et al. [42] have analysed a model with a joint
ordering policy and variable order quantities. Sivakumar et al. [33] have considered a
two-commodity substitutable inventory system in which the items demanded are delivered
after a random time. Sivakumar et al. [34] have considered a two-commodity perishable
inventory system with a joint ordering policy.

There are some situations in which a single item is demanded for one commodity and multiple
items are demanded for another commaodity. For instance, a customer may buy a single razor,
or a set of blades, or both. Another example is the sale of a DVD writer and a set of DVDs. It
may be noted that the seller would be placing a joint order for both commodities, as these are
available from the same source. Moreover, a seller may not be willing to place orders
frequently, and may prefer to have one order to replenish stock in a given cycle. These
situations are modelled in this work by assuming demand processes that require a single item
for one commodity, multiple items for the other commodities, or both commodities, and by
assuming a joint re-order for both commodities.

This paper is organised as follows. In section 2, the mathematical model and notations
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followed in the rest of the paper are described. The steady state solution of the joint
probability distribution for both commodities, the phase of the demand process, and the
phase of the lead time process are given in section 3. In section 4, various measures are
derived of system performance in the steady state; and the total expected cost rate is
calculated in section 5. Section 6 presents the cost analysis of the model using numerical
examples.

(0, S5) (81, 55)

/ Set of reorder levels

0,5,)

(0,0) (51.0) (S1.0)
Figure 1: Space of inventory levels

Notations
0 :zero matrix
| : an identity matrix

Hod) = x if x>0
0=14 if x<0
Ej = (12,13
E) = 1,..,1

e = a column vector of ones
2. MODEL DESCRIPTION

Consider a two-commodity perishable inventory system with the maximum capacity S; units
for the i-th commodity (i =1,2) . Assume that the demand for the first commodity is for a

single item and the demand for the second commodity is for bulk items. An arriving customer
may demand only the first commodity, or only the second commodity, or both. The number of
items demanded for the second commodity at any demand point is a random variable Y with

a probability function pp =Pr{Y =k}, k=1,2,3, ... The three types of demand for these
two commodities occur according to a Markovian arrival process (MAP) . The life time of each
commodity is exponential with parameter y;(i=1,2). The re-order level for the i -th
commodity is fixed at s; (1<s; <§;), and the ordering quantity for the i-th commodity is
Q; (=S; —s; >s; +1) items when both the inventory levels are less than or equal to their

respective re-order levels. Assume that demands during stock-out period are lost, as well as
unsatisfied demands. The requirement S; —s; >s; +1, ensures that after a replenishment

the inventory levels of both commodities will always be above the respective re-order levels.
Otherwise it may not be possible to place a re-order (according to the policy), leading to a
perpetual shortage. That is, if L;(f) represents inventory level of i-th commodity at time

t, thenare-orderis made when L(t)<s, and L,(t)<s, (seeFigure 1). The time to deliver
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the items is assumed to be of phase type (PH) with representation («,T) of order m,. Note

that the phase type distribution is defined as the time until absorption in a finite state
irreducible Markov chain with one absorbing state. The mean of the phase type distribution

(a,T) is given by a(—T)"1e . Let B denote the reciprocal of this mean. That is,

1
p= [a(—T)"1eT gives the rate of replenishment once an order is placed. Let T° be such
that Te + 7% = 0.

For the demand process, the description of MAP as given in Lucantoni [20] was used.
Consider a continuous-time Markov chain on the state space 1,2,...,m,. The demand process

is constructively defined as follows. When the chain enters a state i,1<i<m,, it remains
for an exponential time with parameter 6. At the end of the sojourn time in state i, there

are four possible transitions: with probabilities a;;, 1< j <m,, the chain enters the state j

ijs
when a demand for the first commodity occurs; with probabilities b,-j, 1< j<m,, the chain
enters the state j when a demand for the second commodity occurs; with probabilities

Cij, 1< Jj <m,, the chain enters the state j when a demand for both commaodities occurs;

with probabilities d;;, 1< j <m,,i# j, the transitions correspond to no demand and the

ij»
state of the chain is j. The Markov chain can go from state i to state i only through a
demand. Defining the square matrices D, k=0,1,2,12, of size m;xm, by [Dy]; =-0;
and [Do]; =6d;;,i#j, [D]; = 6,a,[D,]; = 6b; and [Dy,]; = ¢y,

seen that D=D, + D, +D, +D,, is an infinitesimal generator of a continuous-time Markov

1<i,j<m,. It is

chain. Assume that D is irreducible and Dye # 0.

Let ¢ be the stationary probability vector of the continuous-time Markov chain with
generator D. Thatis, ¢ is the unique probability vector satisfying

(D=0, e =1.

Let 7 be the initial probability vector of the underlying Markov chain governing the MAP. By
choosing 7 appropriately, the time origin can be modelled to be:

1. an arbitrary arrival point,

2. the end of an interval during which there are at least & arrivals; or
3. the point at which the system is in a specific state, such as when the busy period ends or
begins.

The important case is that of the stationary version of the MAP for 5 = {. The constant
A=¢(D,; +D, +Dy,)e, referred to as the fundamental rate, gives the expected number of
demands per unit time in the stationary version of the MAP . The quantities A, = {D,e,
A, =¢{D,e and A, = {D,,e, give the arrival rate of demand for first commodity, for second
commodity, and for both respectively. Note that A =4, + 4, + 4.

For further details on MAP and phase-type distributions and their usefulness in stochastic
modelling, the reader may refer to Chapter 2 in Neuts [24], Chapter 5 in Neuts [25],
Ramaswami [30], Lucantoni [20,21], Lucantoni et al. [22], Latouche and Ramaswami [17], Li
and Li [19], Lee and Jeon [18], Chakravarthy and Dudin [8], and references therein for a
detailed introduction of the MAP and phase-type distribution. Some recent reviews can be
found in Neuts [26] and Chakravarthy [7].

Let J,(t) and J,(t) respectively denote the phase of the demand process and the phase of
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the lead time process. Then the stochastic process {(Ly(t),L;(t),J4(t),J5(t)),t =0} has the
state space,

Q:{(i1,i2,i3,0),i1eES1\ES1,1'2€E52\Esz,i3eEm1}
... . . 0 .
Uil1,12,13,0),71 € ES1 \ES1,12 € ESZ,I3 € Em1}
i ii0)i EO E. \E . E
U (11,12,13, ),11e 51,6 52 52,13e m,
i_ i i it cf9 i cE® il cE i cE }
U 11,12,13,14),116 51,126 52,136 m1”4€ m,

From the assumptions made on the demand and replenishment processes, it can be shown
that {(L4(t),L;(6),J4(t),J5(6)),t 20} is a Markov process on the state space €. By placing

the sets of state space in lexicographic order, the infinitesimal generator of the Markov chain
governing the system, in block partitioned form, is given by

Ai’ j=i’ i=0:1;---)s1)

B, j=i-1, i=1,2,...,5,
[P]ij = c .. . !

, Jj=i+Q,, i=0,1,..,s,,

0, otherwise.
where

Im ®T0v j=i+Q2, i=0,1,...,52,
[C]ij = 1 K

0, otherwise.

For k=s,+2,5,+3,...,5,,

D1+k7/1lm1, j=1i, i=1,2,...,5,,
D, +D,, +ky1lm1, j=1i, i=0,
[Bk],-j =1Pi_;Diz, j=1,2,...,i-1, i=23,...,5,,
piDy,, j=0, i=1,2,...,5,,
0, otherwise.
pn:Zpi
i=n
For k=s,+1,
D1+k;/1lm1, j=i, i=52+1,52+2,...,52,
(D1+k}/1lm1)®a, j=1i, i=1,2,...,59,
(D1+D12+k;/1lm1)®0(, j=i, i=0,
5 ) pi—jD12’ j=sz+1,sz+2,...,i—1, i=52+2,52+3,...,52,
(Byl;; = pi_ P ®a J=1.2,05, i=5,+2,5)+3,..,5,,
or
j=1,2,...,i-1, i=2,3,.,.,52+1,
piDy, ® j=0, i=1,2,0.0.5,,
0, otherwise.
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For k=

[Bk]ij =

For k=

[Ak]ij =

For k=

[Ak]ij =

142

1,2,...,5

D; + kyilm,

Dy +kyilp ) ® 1y,
(D, + Dy, + ky/1lm1)®l
PHD12:

p,._jD12 ® «,

p;D; ®a,

pi_jDy; ® Imz!

PiDiz ® Iy,

0,

my

Sy +1,8+2,..,
piD; + k3l

s”

pi_Ds, J=1,2,.,0

p;:Dz:

Dy — (ky +i71)’m1
D, +D, - k;/1lm1,
0,

1,2,...,5,

PiD; +iy3lp,

(PDy +i7yl) ®
(PiDy +1y3li ) ® Iy, s
Pi_jDz,

pi_iD, ® a,

pi_jD; ® 1y,

przDZ ®a,

piD, ®1,,

Dy = (kyy +1yy)lm, >

Dy ®T —(kyy +iyy)lm, ® Iy,

Dy +D)®T - kj/1lm1 ®1,
0,

1 1] 1]
—

~

el L
L}

otherwise.

otherwise.

j=i-1,

j=i-1,

j=i-1,

Jj=s,+1,5,+2,..,

j=1,2,...,i-2,
or

;SZ;

2,.
2,0 —2,

1,
1
0,
0

J
J
J
J
J
J
J

2 )
otherwise.

i-2,

i=s,+1,5,+2,...,5,,
i=1,2,...,s,,

i=0,
i=s,+2,s5,+3,...,5,,
i=s,+1,5,+2,...,5,,
i=s,+1,5,+2,...,5,,
i=2,3,...,5,
i=1,2,...,s,

i=s,+2,5,+3,...
i=s,+1,
i=2,3,...,5,,

i=s,+1,5,+2,

i=s,+3,5,+4,...
i=3,4,..,5,,
i=s,+1,5,+2,...
i=1,2,..,s,
i=s,+1,5,+2,...
i=1,2,...,s,

i=0,

i=s,+3,5,+4,...



For k=0,

P1(Dy + Dyy) + iy, 1y, j=i-1, i=s,+2,5,+3,...,5,,

(p1(D; + D) +17,ly, ) ® j=i-1, i=s,+1,

(P1(Dy +Dyy) +i7yl ) ® Iy, j=i-1, i=2,3,...,s,

Pi_j(D; + Dyy), Jj=s,+1,5,+2,...,i-2, i=5,+3,5,+4,...,5,,

pi_j(D; +Dy;) ® a, j=12,..,i-2, i=s,+1,5,+2,

or
j=12,...,s,, i=s,+3,5,+4,...,S,,

[Ady = pi_j(D; +Dyp) @1, j=1,2,...,i-2, i=3,4,..,s,,

pi(D, +D;;) ® j=0, i=s,+1,5,+2,...,5;,

pi(Dy +D13) ® 1y, j=0, i=1,2,...,s,

D, +D, - (17/2),,,1, j=i, i=s,+1,5,+2,...,5,,

(Do +D) ST = (i7y)lm, ® j=i, i=1,2,...,s,

D&®T, j=i, i=0,

0, otherwise.

It may be noted that the matrix C is of order (Qm;+(s,;+1)mm,)x(S, +1)m,;, the

matrices B;,i=5s,+2,5,+3,...,
x(Qumy +(s; +1)mym,), the matrices B,,i=1,2,...,s,,
(Qimy + (s + 1)mmy) X (Qymy + (1 +1)mym,),
(Qmy + (s, + 1)mym,) x(Q,m, + (s + 1)mm,),
of order (S, +1)m, x(S;, +1)m;.

S, are of order (S, +1)m, x(S, +1)m,, the matrix BS1+1 is
of order (S, +1)m, are of order
the matrices A;,i=0,1,...,s, are of order

and the matrices A;,i=s,+1,5;+2...,S, are

3. STEADY STATE ANALYSIS

It can be seen from the structure of P that the homogeneous Markov process
{(Ly®), Ly (1), J4(t), J,(t)),t = 0} on the finite state space Q is irreducible.

Hence, the limiting distribution @ j, j,) =

tim PrlLy(©) = 1, Lo () = k, Jy(6) = Ji, Jo(8) = Jz 1 11(0), Ly(0), 4(0), 4 0)]

exists. Let

4 @ik Pikir2)
=
GoH ] (B0

(i,k, j;) € Fy,
(iyk;j1)€ F2>

)-~-y¢(i,k,j1,m2))y

where
T 0 0
Fi = {(11,12,13),11 €Es i ek ize E,m}

Fy ={ivsi2s3),y € Eg \Ey i, € Eg) \Ey iy € Ep, |
520 )iz € Em1}

eE,,H}

ui11,12,13),11 €Es \Eg i€ E?

Ukl1,12,13),11 € E51,e Es, \Es, i3

¢(i,k) — (¢(i,k,1)’¢(f,k,2)’ ¢’ ) ),kE Ez,l € E1y
o = {(%,ov(”(i,n’-"’¢(":52))’ iek,
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and
®= (q>‘°),<1>‘”,...,c1>‘51))

Then the vector of limiting probabilities @ satisfies

®OP =0 and e =1.

The first equation of the above yields the following set of equations:
®"B,,, +®"4 =0,i=0,1,.,Q, -1,

(1)
B, +dVA + 0¥ C=0,i=Q, (2)
B, + 0VA + 0" WC=0,i=Q +1,Q+2,...,5 1, (3)
oA +0"¥C=0,i=5,. (4)
The equations (except (2)) can be recursively solved to obtain
o =Yg, i=0,1,..,5S, (5)

where
(~1) 47 By, Aq)1Bo,1+Burh, 1=0,1,.,Q -1,

I) i=Q1)

12Q1—i+15_i[(B A B B . A~ kAf1
(1) 2 Bo, Aqy-1Bay-1 - Bsyar-jAs- CAs 5

J=0

(351,J.A;1‘,].,1BS1,J.1 ‘B 1A )l i=Q+1,...,S,.

Substituting the values of 6, in equation (2) and in the normalising condition, it follows that

(@) (1)@ ! 4 -
o |: 12[(BQ1AQ1—1BQ1—1 s1+1 ]AS1 jkA51 -j BS1 jA51 —-j- 1BS1 -j-1° BQ1+2AQ1+1 )bQ1+1 + AQ1

j=0

.

+(=1)% By, Ag) +Bq, 1 ~-~B1A51C]= 0, (6)

and

Q .
Q) Q i -1 -1
1L}( ™ By, Ag! +Boy -+ B+ |

51 S ~ ~ ~
+ ) [(—1)2Q1 H1Z(;[(BQ1AQ11—1BQ171"'Bs1+1—jAs11—j }:Ass—j
=

i=Qq+1

(351—1"45_11—;—1351—1‘—1 BraAT e =1 @)

From the equation (6), the value of ®¥* may be obtained up to a constant multiplication.
This constant can be determined by substituting the value of ®@ in the equation (7).

Substituting the value of ®@ in the equation (5) we get the values of ®?,i=0,1,...,S.
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4. SYSTEM PERFORMANCE MEASURES

In this section, certain stationary performance measures of the system are derived. Using
these measures, the total expected cost per unit time may be determined.

4.1 Mean inventory level

Let M denote the mean inventory level of k —th commodity in the steady state (k =1,2)

Since ¢ ; is the steady state probability vector for the inventory level of first commodity i
and the second commodity j, it follows that

559

m = PRIL I
i=1j=0

and
%5
=22 Jd e
i=0 j=1

4.2 Mean re-order rate

A re-order for both commodities is made when the joint inventory level drops to (s;,s;) or

(51, J),Jj<s, or (i,s,),i<s,. Let 7z denote the mean re-order rate for both commodities in
the steady state, given by

ZZ@k 52+1) Zpu(DZ ® Ol)e + Z¢(s1+1 k)(D1 ® CX)

k=0 j=1
51+1Qp

+ 220 s2+)) Zpu(Dn ® a)e + Z(sz +1)720s,41)€
P

+ Z $1+ D118 51,08
k=0

4.3 Mean shortage rate
Let 75, denote the mean shortage rate of i-th type demand in the steady state
(i =1,2,12) . Consequently

5
Mshy = Z¢(o,k)D1e-

Nsn, = ZZ%,J) ZPsz

i=0j=0 k=j+1
and

Mshy, = [Z‘% xDre + ZZ@: j) Z ka12e]

i=0j=0 k=j+1
4.4 Mean failure rate

Let the mean failure rate of commodity-i in the steady state be denoted by 77,:,.,(7 =1,2). A

failure occurs when any one of the stocked items ceases to function or perishes. Since the rate
of failure of a single itemis y; for commodity j, the rate at which any one of i items for

the j-th commodity fail is given by iy;,(j =1,2). When the process is in state (i,k, jy, j,),
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the rate of failure of any one item of the first commodity is given by iy, (provided i>0),
and the failure rate of any one item of the second commodity is ky, (provided k>0).

Then we have
55

Mg, = Zzimﬁ(f,k)e-

i=1k=0
and

5 S
Mg, = ZkZ:k72¢(i,k)e-
=0 k=1

5. COST ANALYSIS

The total expected cost per unit time (total expected cost rate) in the steady-state for this
model is defined to be

TUS4,51,52,52) = Cp My, +Ch) My, +Cstlg + Coy sty + Csty sy, + Cst, sy, 1,7, +Cp, S,
where
¢, : The inventory carrying cost of i-th commodity per unit item per unit time (i = 1,2) .

1

¢, : Joint ordering cost per order.

G - The failure cost of i -th commodity per unit item per unit time (i = 1,2) .

Cony Shortage cost due to type i demand per unit time (i = 1,2,12) .

Since the total expected cost rate is only implicitly known, the analytical properties - such as
convexity of the total expected cost rate - cannot be carried out in the present form.
However, the following numerical examples to demonstrate the computability of the results
derived in our work, and to illustrate the existence of local optima when the total cost
function is treated as a function of only two variables, are presented.

6. ILLUSTRATIVE NUMERICAL EXAMPLES

Since the total expected cost rate is obtained in a complex form, the convexity of the total
expected cost rate cannot be studied by analytical methods. Hence, ‘simple’ numerical
search procedures are used to find the ‘local’ optimal values for any two of the decision
variables {S,s,,5,,5,} by considering a small set of integer values for these variables. With
a large number of numerical examples, it has been found that the total cost rate per unit time
in the long run is either a convex function of both variables or an increasing function of any
one variable.

The following five MAPs for arrival of demands are considered, and it may be noted that

these processes can be normalized to have a specific (given) demand rate A when
considered for arrival of demands.

1. Exponential (Exp)
Ho = (—1)H1 = (1)

2. Erlang (Erl)
-1 1 0

T

o

I

o

|

-

-

=<

I
- O O
o O o
o O o
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3. Hyper-exponential (HExp)

9

H__4o 0 b 1
"l 0 -1) " 0.9 0.1

4. MAP with negative correlation (MNC)
-2 2 0 00 0
Hy,=| 0 -81 0| H,=[25.25 0 55.75
0 0 -81 55.75 0 25.25

5. MAP with positive correlation (MPC)
-2 2 0 00 0
Hy=| 0 -81 0| H,=|55.25 0 25.75
0 0 -81 25.75 0 55.25

All the above MAPs are qualitatively different in that they have different variance and
correlation structures. The first three processes are special cases of renewal processes, and

the correlation between arrival times is (. The demand process labelled as MNC has
correlated arrivals with a correlation coefficient of -0.1254, and the demands corresponding
to the process labelled MPC have a positive correlation coefficient of 0.1213. Since Erlang has
the least variance among the five arrival processes considered here, the ratios of the
variances of the other four arrival processes, labelled Exp, HExp, MNC and MPC above, with
respect to the Erlang process, are 3.0, 15.1163, 8.1795, 8.1795 respectively. The ratios are
given rather than the actual values, since the variance depends on the arrival rate, which is
varied in the discussion.

For the lead time distribution, the following three PH — distributions are considered.
Again these processes can be normalised to have a specific (given) rate ﬁ when considered
for replenishment.

1. Exponential (Exp)
a=MT =(-1)

2. Erlang (Erl)
-1 1 0 O
0o -1 1 0
a=(1,0,0,0)T = 0 0 -1 1
0 0 0 -1
3. Hyper-exponential (HExp)

=(0.9,0.1)T = 100
a=(0.9,0. “l o 1

Example 1: In this example, the effect of the demand rate 4, the lead time rate g, the
five types of demand processes, and the three types of lead time processes on the optimal

values (5;,5,) and the optimal cost rate TC(SI*,Z,S;A) is illustrated. The following
fixed values for the parameters and costs are assumed:

- - - _ _ - _ w401 _
Dy =Hg,Dq =0.3H,,D, =0.4H,,D,5 = 0.3H,,7, =0.8,y, =0.6,p; =0.6*0.47",i=1,2,..,,

¢h

=0.05,c, =0.01,cc =10,c =0.8,¢c =1.5,c =1,c, =0.2,c, =0.2.
1 hy s shy shy shi, " f
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Table 1 gives the optimum values, 51* and S;, that minimise the total expected cost rate

for each of the five MAPs for arrivals of demands considered against each of the three
PHs for lead times. The associated total expected cost rate values are also given in the
table. The lower entry in each cell gives the optimal expected cost rate, and the upper

entries correspond to 51* and S;. The following observations from Table 1 may be noticed:
1. As A increases, the optimal total cost rate decreases for all five demand processes and
for all three lead time processes. Similarly, as g increases the optimal total cost rate

decreases.

2. The optimal total expected cost rate has a higher value for a demand process having an
hyper-exponential distribution, and a lower value for the Erlang demand process.

3. The Erlang distributed lead time has a low optimal total cost rate, except for an HExp
distributed demand process; and HExp distributed lead time has high optimal total cost
rate, except for HExp distributed demand process. For HExp distributed demand process
this observation reverses - i.e. HExp distributed lead time has a low optimal total cost
rate, and Erl distributed lead time has a high optimal total cost rate.

Example 2: In this example, the effect of the arrival rate /1, the lead time rate g, and the

type of arrival and lead time processes on the optimal values (S;,S;) and optimal cost rate

TC(IS,SI*,:SO,S;) is illustrated. Assume the following fixed values for the parameters and
cost:
Dy = Ho, D, = 0.3H,,D, = 0.4H,,D,, = 0.3H,, 7, = 0.6, 7, = 0.5, p; = 0.55*0.45'",i =1,2, ...,

ch, =0.01,ch, =0.01,¢, =10,cg, =0.8,c, =1.5,¢5,, =1,¢¢ =0.2,¢ =0.2.

The optimum values S; and §, that minimise the expected total cost for each of the five

MAPs for arrivals of demands considered against each of the three PHs for lead times is
given in Table 2. The associated total expected cost rate values are also given. The lower
entry in each cell gives the optimal expected cost rate, and the upper entries correspond to

S; and S;. The key observations are summarised below.

Lead time distribution

B 10 15
A Exp Erl HExp Exp Erl HExp

Exp (13,46) | (13,46) | (13,46) (13,47) | (13,47) | (13,47)

8.0236 8.0177 8.0277 8.2027 8.1999 8.2047

Erl (13,46) | (13,46) | (13,46) (13,47) | (13,47) | (13,47)

7.9967 7.9905 8.0009 8.1838 8.1809 8.1858

6 | HExp (13,46) | (13,46) | (13,46) (13,47) | (13,47) | (13,47)

8.1568 8.1570 8.1567 8.2977 8.2978 8.2976

MNC (13,46) | (13,46) | (13,46) (13,47) | (13,47) | (13,47)

MAP 8.0736 8.0680 8.0774 8.2379 8.2352 8.2397

demands MPC (13,46) | (13,46) | (13,46) (13,47) | (13,47) | (13,47)

distributions 8.1267 8.1214 8.1303 8.2753 8.2727 8.2770

Exp (17,58) | (17,58) | (17,58) (18,60) | (18,60) | (18,60)

10.5224 | 10.5175 | 10.5258 10.8125 | 10.8101 | 10.8141

Erl (17,58) | (17,58) | (17,58) (18,60) | (18,60) | (18,60)

10.4959 | 10.4908 | 10.4994 10.7939 | 10.7915 | 10.7956

8 | HExp (17,58) | (17,58) | (17,58) (17,59 | (17,59) | (18,60)

10.6604 | 10.6608 | 10.6601 10.9104 | 10.9106 | 10.9103

MNC (17,58) | (17,58) | (17,58) (18,60) | (18,60) | (18,60)

10.5717 | 10.5670 | 10.5749 10.8470 | 10.8448 | 10.8486

MPC (17,58) | (17,58) | (17,58) (18,60) | (18,60) | (18,60)

10.6260 | 10.6215 | 10.6291 10.8852 | 10.8830 | 10.8867

Table 1: Total expected cost rate as a function of (Sl, Sz)
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1. As A increases, the optimal total cost rate increases, except for an HExp distributed
demand process. For an HExp distributed demand process, the optimal total cost rate
decreases as the demand rate A increases.

2. When g increases, the optimal total cost rate increases for all combinations of five
arrival processes and three demand processes.

3. The optimal cost rate is high in cases where the demand process is an HExp, and it is
low when the demand process is Erlang.

4, The optimal total cost rate is low when the lead time is Erl, except for the HExp

distributed demand process. For HExp distributed lead time, the optimal total cost
rate is high, except for HExp distributed demand process. For HExp distributed
demand process this observation reverses - i.e. the HExp distributed lead time is
associated with a low optimal total cost rate, and Erl is associated with a high optimal
total cost rate.

Lead time distribution

B 10 15

y) Exp Erl HExp Exp Erl HExp
Exp (4,4) (4,4) (4,4) (4,4) (4,4) (4,4)
7.2328 | 7.2286 | 7.2356 7.3624 | 7.3604 | 7.3638
Erl (4,4) (4,4) (4,4) (4,4) (4,4) (4,4)
7.2080 | 7.2037 | 7.2111 7.3450 | 7.3429 7.3464
6 | HEXP (4,4) (4,4) (4,4) (4,4) (4,4) (4,4)
7.3579 | 7.3598 | 7.3567 7.4518 | 7.4527 | 7.4512
MNC (4,4) (4,4) (4,4) (4,4) (4,4) (4,4)
MAP 7.2787 7.2748 7.2814 7.3947 7.3929 7.3960
Demands MPC (4,4) (4,4) (4,4) (4,4) (4,4) (4,4)
Distri- 7.3282 7.3245 | 7.3307 7.4296 | 7.4279 7.4309
butions Exp (3,4) (3,4) (3,4) (3,4) (3,4) (3,4)
9.4935 9.4902 | 9.4957 9.7144 |  9.7129 9.7155
Erl (3,4) (3,4) (3,4) (3,4) (3,4) (3,4)
9.4694 | 9.4660 | 9.4717 9.6977 | 9.6961 9.6988
g | HEXp (3,4) (3,4) (3,4) (3,4) (3,4) (3,4)
9.6194 |  9.6211 9.6183 9.8030 | 9.8038 | 9.8025
MNC (3,4) (3,4) (3,4) (3,4) (3,4) (3,4)
9.5381 9.5351 9.5402 9.7455 9.7441 9.7465
MPC (3,4) (3,4) (3,4 (3,4) (3,4) (3,4
9.5876 | 9.5847 | 9.5895 9.7799 9.7786 | 9.7809

Table 2: Total expected cost rate as a function of (Sl,Sz)

Example 3: Next, consider the impact of ¢, and ¢, on the total expected cost rate. For

this, consider the following values for the parameters and costs:

D, = Hy,D, = 0.3H,,D, = 0.4H,,D,, =0.3H,,A=8,4=0.5,7,=0.6,7, =0.5,p, =0.55*0.45"",
i=1,2,..,¢, =0.01,¢c,, =0.01,¢, =10,cg, =0.8,¢y =1.5,¢5, = 1.

The graphs of the total expected cost rate as a function of 9 and ¢, for the three lead
time processes and the five demand processes are shown in Figures 2 to 6. In all the figures
the lead time distributions Exp, Erl, and HExp are coloured blue, black, and red respectively.
Note the following:

e Inallfive arrival processes, as Cz and Cf, increase simultaneously, the total expected

cost rate increases. But the increasing rate for Cp, is high compared with Cp .

e The Erlang lead time process is associated with a low total expected cost rate, and for
the hyper exponential lead time process case the total expected cost rate is high.
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Exp demand process

Figure 2

Erl demand process

Figure 3
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HExp demand process

Figure 4
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TC(15,3,20,4)

TC(15,3,20,4)

Figure 6: MPC demand process

Example 4: In the final example, the impact of ChI and Chz on the total expected cost rate

is shown. Consider the following values for the parameters and costs:
D, = H,y,D, =0.3H1,D, =0.4H1,D,, =0.3H1,1=15,=2,7,=0.8,, =0.4,p; =0.6 * 0.4,

i=1,2,...,¢ =10,cs,,1 =0.8,c =1.5,csh12 =1,cf1 =0.2,c,2 =0.2.

The graphs of the total expected cost rate as a function of 9 and ¢, for the three lead

shy

time processes and the five demand processes are shown in Figures 7 to 11. In all the figures
the plots for the lead time distributions Exp, Erl, and HExp are coloured blue, black, and red
respectively. The following may be observed:

e Inall five arrival processes, as C,1| and Chz increase, the total expected cost rate

increases. But the increasing rate for Cp, is high compared with that of Cp, .

e  For all the demand processes, the Erlang lead time process has a low total expected cost
rate, and a hyper exponential lead time process has a high total expected cost rate.

e The difference between the total expected cost rates for any two lead time processes is
high, except for the HExp demand process. For the HExp demand process, the difference
between the total expected cost rates for any two lead time processes is low.
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Figure 7
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Erl demand process

Figure 8
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TC(15,3,20,4)

TC(15,3,20.4)

Figure 11: MPC demand process

7. CONCLUSION

This research has extended the existing work on two-commaodity continuous review inventory
systems by introducing perishability for both commodities, Markov arrival processes for
demand time points, and a phase type distribution for lead time. It is also assumed that one of
the commodities may accept bulk demands. Steady state solutions are also provided for the
joint distribution of inventory levels. For a suitable cost structure, the total expected cost
rate in the steady state has been determined. To demonstrate the computability of results
derived here, ample numerical illustrations are given. Numerical analysis of the effect of the
parameters and costs on the total expected cost rate is given.

8. ACKNOWLEDGEMENTS

V.S.S. Yadavalli would like to thank the National Research Foundation (NRF) for their financial
support. G. Arivarignan would like to thank the CSIR - India, for their financial support (No. 25
(156)/07/EMR-11).

9. REFERENCES

[1] Anbazhagan, N. & Arivarignan, G. 2000, Two-commodity continuous review inventory
system with coordinated reorder policy, International Journal of Information and
Management Sciences, 11(3), pp. 19-30.

153



(2]

(3]

(4]

(5]
(6]
[7]

(8]

[9]

[10]
(1]
[12]
[13]
[14]
[15]
[16]
[17]
(18]

[19]

[20]

[21]

(22]

(23]
[24]
(25]

[26]
154

Anbazhagan, N. & Arivarignan, G. 2001, A two-commodity coordinated inventory
system with renewal demands , Electronnoe modelirovanie, 23(2), pp. 5-16 (in
Russian).

Anbazhagan, N. & Arivarignan, G. 2001, Analysis of two-commodity Markovian
inventory system with lead time, The Korean Journal of Computational and Applied
Mathematics, 8(2), pp. 427-438.

Anbazhagan, N. & Arivarignan, G. 2003, Two-commodity inventory system with
individual and joint ordering policies, International Journal of Management and
Systems, 19(2), pp- 129-144.

Agarwal, V. 1984, Coordinated order cycles under joint replenishment multi-item
inventories, Naval Logistic Research Quarterly, 31(1), pp. 131-136.

Balintfy, J.L. 1964, On a basic class of inventory problems, Management Science, 10
(2), pp. 287-297.

Chakravarthy, S. 2001, The batch Markovian arrival process: A review and future
work, Advances in Probability and Stochastic Processes, A. Krishnamoorthy et al.,
(eds), Notable Publication Inc., New Jersey, USA, pp. 21-49.

Chakravarthy, S. & Dudin, A. 2003, Analysis of a retrial queueing model with MAP
arrivals and two types of customers, Mathematical and Computer Modelling, 37(3-4),
pp. 343-363.

Federgruen, A., Groenvelt, H. & Tijms, H.C. 1984, Coordinated replenishment in a
multi-item inventory system with compound Poisson demands, Management Science,
30(3), pp. 344-357.

Fung, R.Y.K. & Ma, X. 2001, A new method for joint replenishment problems, Journal
of the Operational Research Society, 52(3), pp. 358-362.

Goyal, S.K. 1973, Determination of economic packaging frequency of items jointly
replenished, Management Science, 20(2), pp. 232-235.

Goyal, S.K. 1974, Determination of optimal packaging frequency of jointly replenished
items, Management Science, 21(4), pp. 436-443.

Goyal, S.K. 1988, Economic ordering policy for jointly replenished items,
International Journal of Production Research, 26(7), pp. 1237-1240.

Goyal, S.K. & Satir, T. 1989, Joint replenishment inventory control: Deterministic and
stochastic models, European Journal of Operations Research, 38(1), pp. 2-13.
Kalpakam, S. & Arivarignan, G. 1993, A coordinated multi-commodity (s,S)

inventory system, Mathematical and Computer Modelling, 18(11), pp. 69-73.

Kaspi, M. & Rosenblatt, M.J. 1991, On the economic ordering quantity for jointly
replenished items, International Journal of Production Research, 29(1), pp. 107-114.
Latouche, G. & Ramaswami, V. 1999, Introduction to matrix analytic methods in
stochastic modelling, SIAM, Philadelphia.

Lee, G. & Jeon, J. 2000, A new approach toan N/G/1 queue, Queueing Systems, 35,
pp. 317-322.

Li, Q.L. & Li, J.J. 1994, An application of Markov-modulated Poisson process to
two-unit series repairable system, Chinese Journal of Engineering Mathematics, 11(1),
pp. 56-66.

Lucantoni, D.M. 1991, New results on the single server queue with a batch Markovian
arrival process, Stochastic Models, 7(1), pp. 1-46.

Lucantoni, D.M. 1993, The BMAP/G/1 queue : A tutorial, in Models and techniques
for performance evaluation of computer and communications systems, L. Donatiello
and R. Nelson (eds), Springer-Verlag, New York, pp. 330-358.

Lucantoni, D.M., Meier-Hellstern, K.S., & Neuts, M.F. 1990, A single server queue
with server vacations and a class of non-renewal arrival processes, Advances in Applied
Probability, 22, pp. 676-705.

Miller, B.L. 1971, A multi-item inventory model with joint probability back-order
criterion, Operations Research, 19(6), pp. 1467-1476.

Neuts, M.F. 1994, Matrix-geometric solutions in stochastic models: An algorithmic
approach, Dover Publications Inc. New York.

Neuts, M.F. 1989, Structured stochastic matrices of M/G/1 type and their
applications, Marcel Dekker.

Neuts, M.F. 1995, Matrix-analytic methods on the theory of queues, in Advances in



[27]

(28]

[29]
(30]
[31]

[32]

(33]

[34]

[35]

[36]
[37]
(38]
[39]
[40]

[41]

[42]

queueing: Theory, methods and open problems, J.H. Dshalalow (ed.), CRC, pp.
265-292.

Nilsson, A., Segerstedt, A. & van der Sluis, E. 2007, A new iterative heuristic to solve
the joint replenishment problem using a spreadsheet technique, International Journal
of Production Economics, 108(1-2), pp. 399-405.

Nilsson, A. & Silver, E.A. 2008, A simple improvement on Silver s heuristic for the
joint replenishment problem, Journal of the Operational Research Society, 59(10), pp.
1415-1421.

Olsen, A.L. 2005, An evolutionary algorithm to solve the joint replenishment problem
using direct grouping, Computers and Industrial Engineering, 48(2), pp. 223-235.
Ramaswami, V. 1981, The N/G/1 queue and its detailed analysis, Advances in
Applied Probability, 12, pp. 222-261.

Silver, E.A. 1974, A control system for coordinated inventory replenishment,
International Journal of Production Research, 12(6), pp. 647-671.

Silver, E.A. 1976, A simple method of determining order quantities in joint
replenishments under deterministic demand, Management Science, 22(12), pp.
1351-1361.

Sivakumar, B., Anbazhagan, N., & Arivarignan, G. 2005, A two-commodity perishable
inventory system, ORiON, 21(2), pp. 157-172.

Sivakumar, B., Anbazhagan, N., & Arivarignan, G. 2006, Two-commaodity continuous
review perishable inventory system, International Journal of Information and
Management Sciences, 17(3), pp. 47-64.

Srinivasan, S.K. & Ravichandran, N. 1994, Multi-item (S,s) inventory model with

Poisson Demand, general lead time and adjustable re-order size, in G.V. Krishna Reddy
et al. (Reviewed edited), Proceedings of the Conference of Stochastic Models,
Optimization and Computer Application, Wiley Eastern Limited, pp. 226-236.
Thomstone, T.M. & Silver, E.A. 1975, A coordinated inventory control system,
International journal of Production Research, 13(6), pp. 581-602.

Van Eijs, M.J.G. 1993, A note on the joint replenishment problem under constant
demand, Journal of the Operational Research Society, 44(2), pp. 185-191.
Viswanathan, S. 1996, A new optimal algorithm for the joint replenishment problem,
Journal of the Operational Research Society, 47(7), pp. 936-944.

Viswanathan, S. 2002, On optimal algorithms for the joint replenishment problem,
Journal of the Operational Research Society, 53(11), pp. 1286-1290.

Viswanathan, S. 2007, An algorithm for determining the best lower bound for the
stochastic joint replenishment problem, Operations Research, 55(5), pp. 992-996.
Wildeman, R.E., Frenk, J.B.G. & Dekker, R. 1997, An efficient optimal solution
method for the joint replenished problem, European Journal of Operational Research,
99(2), pp. 433-444.

Yadavalli, V.S.S., Anbazhagan, N. & Arivarignan, G. 2004, A two-commodity
continuous review inventory system with lost sales, Stochastic Analysis and

Applications, 22(2), pp. 479-497.

155



156



