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ABSTRACT 
 

This article considers a two-commodity continuous review inventory system in which the 
arriving customers belong to any one of three types, such that type 1 customers demand a 
single item of the first commodity, type 2 customers demand bulk items of the second 
commodity, and type 3 customers demand one item of the first commodity and bulk items of 
the second commodity. The arrivals of all three types of customers are assumed to be a 
Markovian arrival process (MAP). It is also assumed that the number of items demanded for 
the second commodity is a random variable. The ordering policy is to place orders for both 
commodities when the inventory levels are below prefixed levels for both commodities. The 
lead time is assumed to have a phase type distribution, and the demands that occur during 
stock out period are assumed to be lost. The joint probability distribution for both 
commodities is obtained in the steady state case. Various measures of system performance 
and the total expected cost rate in the steady state are derived. The results are illustrated 
with numerical examples.  
 

OPSOMMING 
 
’n Tweeprodukstelsel se voorraad vir klante word kontinu hersien. Die vraag na die 
produktipes word gekenmerk deur klantvoorkeure. Die versoektempo van klante vir voorraad 
word aanvaar as ’n Markovproses. Aannames word gemaak oor vraaghoeveelhede en 
aanlooptyd. Die resultate van die ondersoek word voorgehou via syfervoorbeelde. 
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1. INTRODUCTION 
 
One of the factors that contribute to the complexity of present day inventory systems is the 
multitude of items stocked, necessitating multi-commodity inventory systems. In early 
dealing with such systems, many models were proposed with independently established 
re-order points. But in situations where several products compete for limited storage space, 
or share the same transport facility, or are produced on (procured from) the same equipment 
(supplier), the above strategy overlooks the potential savings associated with joint ordering, 
and hence will not be optimal. Thus coordinated (also known as joint) replenishment reduces 
the ordering and setup costs, and allows the user to take advantage of quantity discounts, if 
any. Various models and references may be found in Miller [23], Agarwal [5], Silver [31], 
Thomstone and Silver [36], Kalpakam and Arivarignan[15], and Srinivasan and Ravichandran 
[35]. and further references that they contain. 

 
In continuous review inventory systems, Balintfy [6] and Silver [31] have considered a 
coordinated re-ordering policy, represented by the triplet ),,( scS , where three parameters, 

iciS ,  and is  are specified for each item i  with iSicis  , for a unit sized Poisson 

demand and constant lead time. In this policy, if the level of the i -th commodity at any time 
is below is , an order is placed for ii sS   items; and at the same time, if any other item 

)( ij   with available inventory is at or below its can-order level jc , an order is placed so as 

to bring its level back to its maximum capacity jS . Many subsequent articles have appeared 

with models involving the above policy. A further article of interest is that of Federgruen et 
al. [9], which deals with the general case of compound Poisson demands and non-zero lead 
times. 

 
Throughout the years, the work on methods to solve the joint replenishment problem has 
been extensive. Readers are referred to the publications of Fung and Ma [10], Goyal 
[11,12,13], Goyal and Satir [14], Kaspi and Rosenblatt [16], Nilsson et al. [27], Nilsson and 
Silver [28], Olsen [29], Silver [32], Van Eijs [37], Viswanathan [38,39,40], and Wildeman et al. 
[41] and references that they contain. 

 
Kalpakam and Arivarignan [15] have introduced an ),( Ss  policy with a single re-order level 

s  defined in terms of the total number of items in the stock. The policy avoids separate 
ordering of each commodity. Hence a single processing of orders for both commodities has 
some advantages in a situation where procurement is made from the same supplies, items are 
produced on the same machine, or items have to be supplied by the same transport facility. 

 
In the case of two-commodity inventory systems, Anbazhagan and Arivarignan [1,2,3,4] have 
proposed various ordering policies. Yadavalli et al. [42] have analysed a model with a joint 
ordering policy and variable order quantities. Sivakumar et al. [33] have considered a 
two-commodity substitutable inventory system in which the items demanded are delivered 
after a random time. Sivakumar et al. [34] have considered a two-commodity perishable 
inventory system with a joint ordering policy. 

 
There are some situations in which a single item is demanded for one commodity and multiple 
items are demanded for another commodity. For instance, a customer may buy a single razor, 
or a set of blades, or both. Another example is the sale of a DVD writer and a set of DVDs. It 
may be noted that the seller would be placing a joint order for both commodities, as these are 
available from the same source. Moreover, a seller may not be willing to place orders 
frequently, and may prefer to have one order to replenish stock in a given cycle. These 
situations are modelled in this work by assuming demand processes that require a single item 
for one commodity, multiple items for the other commodities, or both commodities, and by 
assuming a joint re-order for both commodities. 

 
This paper is organised as follows. In section 2, the mathematical model and notations 
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followed in the rest of the paper are described. The steady state solution of the joint 
probability distribution for both commodities, the phase of the demand process, and the 
phase of the lead time process are given in section 3. In section 4, various measures are 
derived of system performance in the steady state; and the total expected cost rate is 
calculated in section 5. Section 6 presents the cost analysis of the model using numerical 
examples. 

 

 
                   Figure 1: Space of inventory levels 

 
Notations 
0  : zero matrix  
I  : an identity matrix  


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iE  = },{1,2, i  
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iE  = },{0,1, i  

e  = a column vector of ones 
 

2. MODEL DESCRIPTION 
 

Consider a two-commodity perishable inventory system with the maximum capacity Si units 
for the i-th commodity 1,2)=(i . Assume that the demand for the first commodity is for a 
single item and the demand for the second commodity is for bulk items. An arriving customer 
may demand only the first commodity, or only the second commodity, or both. The number of 
items demanded for the second commodity at any demand point is a random variable Y with 
a probability function },={= kYPrkp  .1,2,3,= k  The three types of demand for these 

two commodities occur according to a Markovian arrival process )(MAP . The life time of each 

commodity is exponential with parameter 1,2).=(ii  The re-order level for the i -th 

commodity is fixed at )(1 iii Sss  , and the ordering quantity for the i -th commodity is 

1)>(=  iiii ssSQ  items when both the inventory levels are less than or equal to their 

respective re-order levels. Assume that demands during stock-out period are lost, as well as 
unsatisfied demands. The requirement 1,>  iii ssS  ensures that after a replenishment 

the inventory levels of both commodities will always be above the respective re-order levels. 
Otherwise it may not be possible to place a re-order (according to the policy), leading to a 
perpetual shortage. That is, if )(tLi  represents inventory level of i -th commodity at time 

,t  then a re-order is made when 11 )( stL   and 22 )( stL   (see Figure 1). The time to deliver 
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the items is assumed to be of phase type )(PH  with representation ),( T  of order .2m  Note 

that the phase type distribution is defined as the time until absorption in a finite state 
irreducible Markov chain with one absorbing state. The mean of the phase type distribution 

),( T  is given by e1)( T  . Let   denote the reciprocal of this mean. That is, 

  11)(=
 eT  gives the rate of replenishment once an order is placed. Let 0T  be such 

that .=0 0e TT   
 

For the demand process, the description of MAP  as given in Lucantoni [20] was used. 
Consider a continuous-time Markov chain on the state space 1,1,2, m . The demand process 

is constructively defined as follows. When the chain enters a state ,1, 1mii   it remains 

for an exponential time with parameter .i  At the end of the sojourn time in state i , there 

are four possible transitions: with probabilities ,1, 1mjaij   the chain enters the state j  

when a demand for the first commodity occurs; with probabilities ,1, 1mjbij   the chain 

enters the state j  when a demand for the second commodity occurs; with probabilities 

,1, 1mjcij   the chain enters the state j  when a demand for both commodities occurs; 

with probabilities ,,1, 1 jimjdij   the transitions correspond to no demand and the 

state of the chain is j . The Markov chain can go from state i  to state i  only through a 

demand. Defining the square matrices 0,1,2,12,=, kDk  of size 11 mm   by iiiD =][ 0  

and ,,=][ 0 jidD ijiij   ijiijijiij bDaD  =][,=][ 21  and ,=][ 12 ijiij cD   .,1 1mji   It is 

seen that 12210= DDDDD   is an infinitesimal generator of a continuous-time Markov 

chain. Assume that D  is irreducible and 0.0 eD
 

 
Let   be the stationary probability vector of the continuous-time Markov chain with 
generator .D  That is,   is the unique probability vector satisfying  

1.=0,= eD   

Let   be the initial probability vector of the underlying Markov chain governing the MAP. By 
choosing   appropriately, the time origin can be modelled to be:  
 
1. an arbitrary arrival point, 

2. the end of an interval during which there are at least k  arrivals; or 
3. the point at which the system is in a specific state, such as when the busy period ends or 
begins.  

 
The important case is that of the stationary version of the MAP  for .=   The constant 

,)(= 1221 eDDD   referred to as the fundamental rate, gives the expected number of 

demands per unit time in the stationary version of the MAP . The quantities ,= 11 eD  

eD22 =   and ,= 1212 eD  give the arrival rate of demand for first commodity, for second 

commodity, and for both respectively. Note that .= 1221    
 

For further details on MAP and phase-type distributions and their usefulness in stochastic 
modelling, the reader may refer to Chapter 2 in Neuts [24], Chapter 5 in Neuts [25], 
Ramaswami [30], Lucantoni [20,21], Lucantoni et al. [22], Latouche and Ramaswami [17], Li 
and Li [19], Lee and Jeon [18], Chakravarthy and Dudin [8], and references therein for a 
detailed introduction of the MAP and phase-type distribution. Some recent reviews can be 
found in Neuts [26] and Chakravarthy [7]. 

 
Let )(1 tJ  and )(2 tJ  respectively denote the phase of the demand process and the phase of 
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the lead time process. Then the stochastic process 0})),(2),(1),(2),(1{( ttJtJtLtL  has the 

state space,  
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From the assumptions made on the demand and replenishment processes, it can be shown 
that { 0})),(2),(1),(2),(1( ttJtJtLtL  is a Markov process on the state space  . By placing 

the sets of state space in lexicographic order, the infinitesimal generator of the Markov chain 
governing the system, in block partitioned form, is given by 
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1,1,2,= skFor   
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For 0,=k  
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It may be noted that the matrix C  is of order ,1)()1)(( 1221111 mSmmsmQ   the 

matrices ,,3,2,=, 111 SssiBi   are of order ,1)(1)( 1212 mSmS   the matrix 11sB  is 

of order ),1)((1)( 2111112 mmsmQmS   the matrices ,,1,2,=, 1siBi   are of order 

),1)(()1)(( 2111121111 mmsmQmmsmQ   the matrices 1,0,1,=, siAi   are of order 

),1)(()1)(( 2111121111 mmsmQmmsmQ   and the matrices 111 ,21,=, SssiAi   are 

of order .1)(1)( 1212 mSmS   

 
3. STEADY STATE ANALYSIS 

 
It can be seen from the structure of P  that the homogeneous Markov process 
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and 

 .,,,= )1((1)(0) S   
 
Then the vector of limiting probabilities   satisfies  
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The equations (except (2)) can be recursively solved to obtain  
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Substituting the values of i  in equation (2) and in the normalising condition, it follows that 
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From the equation (6), the value of )(Q  may be obtained up to a constant multiplication. 
This constant can be determined by substituting the value of )(Q  in the equation (7). 

Substituting the value of )(Q  in the equation (5) we get the values of .,0,1,=,)( Sii   
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4. SYSTEM PERFORMANCE MEASURES 
 

In this section, certain stationary performance measures of the system are derived. Using 
these measures, the total expected cost per unit time may be determined. 

 
4.1 Mean inventory level 
 

Let 
kI

  denote the mean inventory level of k th commodity in the steady state 1,2)=(k  

Since ),( ji  is the steady state probability vector for the inventory level of first commodity i  

and the second commodity j , it follows that  
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4.2 Mean re-order rate 

 
A re-order for both commodities is made when the joint inventory level drops to ),( 21 ss  or 

21 <),,( sjjs  or .<),,( 12 sisi  Let R  denote the mean re-order rate for both commodities in 

the steady state, given by  
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4.3 Mean shortage rate 

 
Let 

iSh  denote the mean shortage rate of i th type demand in the steady state 
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4.4 Mean failure rate 

 
Let the mean failure rate of commodity- i  in the steady state be denoted by 1,2).=(, i

iF
  A 

failure occurs when any one of the stocked items ceases to function or perishes. Since the rate 
of failure of a single item is j  for commodity ,j  the rate at which any one of i  items for 

the thj   commodity fail is given by 1,2).=(, ji j  When the process is in state ),,,,( 21 jjki  
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the rate of failure of any one item of the first commodity is given by 1i  (provided 0>i ), 

and the failure rate of any one item of the second commodity is 2k  (provided 0>k ). 

 
Then we have  
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5. COST ANALYSIS 
 
The total expected cost per unit time (total expected cost rate) in the steady-state for this 
model is defined to be  
 

22111212221122112211 =),,,( FfFfShshShshShshRsIhIh ccccccccsSsSTC    

where 

ih
c  : The inventory carrying cost of i -th commodity per unit item per unit time 1,2)=(i . 

sc  : Joint ordering cost per order. 

if
c  : The failure cost of i -th commodity per unit item per unit time 1,2)=(i . 

ishc  : Shortage cost due to type i  demand per unit time 1,2,12)=(i .  

 

Since the total expected cost rate is only implicitly known, the analytical properties – such as 
convexity of the total expected cost rate – cannot be carried out in the present form. 
However, the following numerical examples to demonstrate the computability of the results 
derived in our work, and to illustrate the existence of local optima when the total cost 
function is treated as a function of only two variables, are presented. 
 
6. ILLUSTRATIVE NUMERICAL EXAMPLES 
 
Since the total expected cost rate is obtained in a complex form, the convexity of the total 
expected cost rate cannot be studied by analytical methods. Hence, ‘simple’ numerical 
search procedures are used to find the ‘local’ optimal values for any two of the decision 
variables },,,{ 2211 sSsS  by considering a small set of integer values for these variables. With 

a large number of numerical examples, it has been found that the total cost rate per unit time 
in the long run is either a convex function of both variables or an increasing function of any 
one variable. 

 
The following five MAPs  for arrival of demands are considered, and it may be noted that 

these processes can be normalized to have a specific (given) demand rate   when 
considered for arrival of demands.  
 
1. Exponential (Exp) 
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3. Hyper-exponential (HExp) 
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4. MAP with negative correlation (MNC)  






































25.25055.75

55.75025.25

000

=

8100

0810

022

= 10 HH

 
 
5. MAP with positive correlation (MPC)  
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All the above MAPs are qualitatively different in that they have different variance and 
correlation structures. The first three processes are special cases of renewal processes, and 

the correlation between arrival times is 0.  The demand process labelled as MNC has 
correlated arrivals with a correlation coefficient of -0.1254, and the demands corresponding 
to the process labelled MPC have a positive correlation coefficient of 0.1213. Since Erlang has 
the least variance among the five arrival processes considered here, the ratios of the 
variances of the other four arrival processes, labelled Exp, HExp, MNC and MPC above, with 
respect to the Erlang process, are 3.0, 15.1163, 8.1795, 8.1795 respectively. The ratios are 
given rather than the actual values, since the variance depends on the arrival rate, which is 
varied in the discussion. 
 
For the lead time distribution, the following three PH  distributions are considered. 
Again these processes can be normalised to have a specific (given) rate   when considered 

for replenishment. 
 
1. Exponential (Exp)  
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2. Erlang (Erl)  
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3. Hyper-exponential (HExp) 
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Example 1: In this example, the effect of the demand rate ,  the lead time rate  , the 
five types of demand processes, and the three types of lead time processes on the optimal 

values ),( *
2

*
1 SS  and the optimal cost rate ,4),2,( *

2
*
1 SSTC  is illustrated. The following 

fixed values for the parameters and costs are assumed: 
 

0.2.=
2

0.2,=
1

1,=
12

1.5,=
2

0.8,=
1

10,=0.01,=
2

0.05,=
1

,1,2,=,10.4*0.6=0.6,=20.8,=1,10.3=12,10.4=2,10.3=1,0=0

fcfcshcshcshcschchc

ii
ipHDHDHDHD 
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Table 1 gives the optimum values, *
1S  and ,*

2S  that minimise the total expected cost rate 

for each of the five MAPs for arrivals of demands considered against each of the three 
PHs  for lead times. The associated total expected cost rate values are also given in the 
table. The lower entry in each cell gives the optimal expected cost rate, and the upper 

entries correspond to *
1S  and .*

2S  The following observations from Table 1 may be noticed: 

1. As   increases, the optimal total cost rate decreases for all five demand processes and 
for all three lead time processes. Similarly, as   increases the optimal total cost rate 
decreases.  

2. The optimal total expected cost rate has a higher value for a demand process having an 
hyper-exponential distribution, and a lower value for the Erlang demand process. 

3. The Erlang distributed lead time has a low optimal total cost rate, except for an HExp 
distributed demand process; and HExp distributed lead time has high optimal total cost 
rate, except for HExp distributed demand process. For HExp distributed demand process 
this observation reverses – i.e. HExp distributed lead time has a low optimal total cost 
rate, and Erl distributed lead time has a high optimal total cost rate.  

 

Example 2: In this example, the effect of the arrival rate ,  the lead time rate  , and the 

type of arrival and lead time processes on the optimal values ),( *
2

*
1 ss  and optimal cost rate 

),30,(15, *
2

*
1 ssTC  is illustrated. Assume the following fixed values for the parameters and 

cost:  

0.2.=0.2,=1,=1.5,=0.8,=10,=0.01,=0.01,=

,1,2,=,0.45*0.55=0.5,=0.6,=,0.3=,0.4=,0.3=,=
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The optimum values *
1s  and 

*
2s  that minimise the expected total cost for each of the five 

MAPs for arrivals of demands considered against each of the three PHs for lead times is 
given in Table 2. The associated total expected cost rate values are also given. The lower 
entry in each cell gives the optimal expected cost rate, and the upper entries correspond to 

*
1s  and .*

2s  The key observations are summarised below. 
 

Lead time distribution
 

 
 
 
 
 
 
 
 
 

MAP 
demands 

distributions 
 
 
 
 
 
 
 

 

  10 15

  Exp Erl HExp
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Exp Erl HExp 

 
 
 
 
6 
 
 
 
 
 

Exp
 

(13,46) (13,46) (13,46) (13,47) (13,47) (13,47) 
8.0236 8.0177 8.0277 8.2027 8.1999 8.2047 

Erl
 

(13,46) (13,46) (13,46) (13,47) (13,47) (13,47) 
7.9967 7.9905 8.0009 8.1838 8.1809 8.1858 

HExp (13,46) (13,46) (13,46) (13,47) (13,47) (13,47) 
8.1568 8.1570 8.1567 8.2977 8.2978 8.2976 

MNC (13,46) (13,46) (13,46) (13,47) (13,47) (13,47) 
8.0736 8.0680 8.0774 8.2379 8.2352 8.2397 

MPC (13,46) (13,46) (13,46) (13,47) (13,47) (13,47) 
8.1267 8.1214 8.1303 8.2753 8.2727 8.2770 

 
 
 
 
8 
 
 
 
 
 

Exp (17,58) (17,58) (17,58) (18,60) (18,60) (18,60) 
10.5224 10.5175 10.5258 10.8125 10.8101 10.8141 

Erl (17,58) (17,58) (17,58) (18,60) (18,60) (18,60) 
10.4959 10.4908 10.4994 10.7939 10.7915 10.7956 

HExp (17,58) (17,58) (17,58) (17,59) (17,59) (18,60) 
10.6604 10.6608 10.6601 10.9104 10.9106 10.9103 

MNC (17,58) (17,58) (17,58) (18,60) (18,60) (18,60) 
10.5717 10.5670 10.5749 10.8470 10.8448 10.8486 

MPC (17,58) (17,58) (17,58) (18,60) (18,60) (18,60) 
10.6260 10.6215 10.6291 10.8852 10.8830 10.8867 

 

Table 1: Total expected cost rate as a function of ),( 21 SS   
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1. As   increases, the optimal total cost rate increases, except for an HExp distributed 
demand process. For an HExp distributed demand process, the optimal total cost rate 
decreases as the demand rate   increases. 

2. When   increases, the optimal total cost rate increases for all combinations of five 
arrival processes and three demand processes. 

3. The optimal cost rate is high in cases where the demand process is an HExp, and it is 
low when the demand process is Erlang. 

4. The optimal total cost rate is low when the lead time is Erl, except for the HExp 
distributed demand process. For HExp distributed lead time, the optimal total cost 
rate is high, except for HExp distributed demand process. For HExp distributed 
demand process this observation reverses – i.e. the HExp distributed lead time is 
associated with a low optimal total cost rate, and Erl is associated with a high optimal 
total cost rate. 

Lead time distribution

MAP  
Demands 

Distri- 
butions 

  10  15 

  Exp Erl HExp Exp Erl HExp 

6 

Exp (4,4) (4,4) (4,4) (4,4) (4,4) (4,4) 
7.2328 7.2286 7.2356 7.3624 7.3604 7.3638 

Erl (4,4) (4,4) (4,4) (4,4) (4,4) (4,4) 
7.2080 7.2037 7.2111 7.3450 7.3429 7.3464 

HExp (4,4) (4,4) (4,4) (4,4) (4,4) (4,4) 
7.3579 7.3598 7.3567 7.4518 7.4527 7.4512 

MNC (4,4) (4,4) (4,4) (4,4) (4,4) (4,4) 
7.2787 7.2748 7.2814 7.3947 7.3929 7.3960 

MPC (4,4) (4,4) (4,4) (4,4) (4,4) (4,4) 
7.3282 7.3245 7.3307 7.4296 7.4279 7.4309 

8 

Exp (3,4) (3,4) (3,4) (3,4) (3,4) (3,4) 
9.4935 9.4902 9.4957 9.7144 9.7129 9.7155 

Erl (3,4) (3,4) (3,4) (3,4) (3,4) (3,4) 
9.4694 9.4660 9.4717 9.6977 9.6961 9.6988 

HExp (3,4) (3,4) (3,4) (3,4) (3,4) (3,4) 
9.6194 9.6211 9.6183 9.8030 9.8038 9.8025 

MNC (3,4) (3,4) (3,4) (3,4) (3,4) (3,4) 
9.5381 9.5351 9.5402 9.7455 9.7441 9.7465 

MPC (3,4) (3,4) (3,4) (3,4) (3,4) (3,4) 
9.5876 9.5847 9.5895 9.7799 9.7786 9.7809 

Table 2: Total expected cost rate as a function of ),( 21 ss  

 
Example 3: Next, consider the impact of 

1f
c  and 

2f
c  on the total expected cost rate. For 

this, consider the following values for the parameters and costs: 
 

1.=1.5,=0.8,=10,=0.01,=0.01,=,1,2,=

,0.45*0.55=0.5,=0.6,=0.5,=8,=,0.3=,0.4=,0.3=,=

122121

1
21112121100

shshshshh

i
i

cccccci

pHDHDHDHD





The graphs of the total expected cost rate as a function of 
1f

c  and 
2f

c  for the three lead 

time processes and the five demand processes are shown in Figures 2 to 6. In all the figures 
the lead time distributions Exp, Erl, and HExp are coloured blue, black, and red respectively. 
Note the following:  
 
 In all five arrival processes, as 

1f
c  and 

2f
c  increase simultaneously, the total expected 

cost rate increases. But the increasing rate for 
2f

c  is high compared with .
1f

c   

 The Erlang lead time process is associated with a low total expected cost rate, and for 
the hyper exponential lead time process case the total expected cost rate is high.  



150 

 

     + 
Figure 2: Exp demand process 

  

       
  

Figure 3: Erl demand process  
  

 
 
 

Figure 4: HExp demand process  
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Figure 5: MNC demand process 

 
Figure 6: MPC demand process  

  
Example 4: In the final example, the impact of 

1h
c  and 

2hc  on the total expected cost rate 

is shown. Consider the following values for the parameters and costs: 

 
0.2.=0.2,=1,=1.5,=0.8,=10,=,1,2,=

,0.4*0.6=0.4,=0.8,=2,=15,=1,0.3=1,0.4=1,0.3=,=

211221
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The graphs of the total expected cost rate as a function of 
1f

c  and 
2f

c  for the three lead 

time processes and the five demand processes are shown in Figures 7 to 11. In all the figures 
the plots for the lead time distributions Exp, Erl, and HExp are coloured blue, black, and red 
respectively. The following may be observed: 

  
 In all five arrival processes, as 

1h
c  and 

2hc  increase, the total expected cost rate 

increases. But the increasing rate for 
2hc  is high compared with that of .

1h
c   

 For all the demand processes, the Erlang lead time process has a low total expected cost 
rate, and a hyper exponential lead time process has a high total expected cost rate.  

 The difference between the total expected cost rates for any two lead time processes is 
high, except for the HExp demand process. For the HExp demand process, the difference 
between the total expected cost rates for any two lead time processes is low.  
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Figure 7: Exp demand process  

  

  
Figure 8: Erl demand process  

  

 
Figure 9: HExp demand process 
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Figure 10: MNC demand process 

 
Figure 11: MPC demand process 

7. CONCLUSION 
 

This research has extended the existing work on two-commodity continuous review inventory 
systems by introducing perishability for both commodities, Markov arrival processes for 
demand time points, and a phase type distribution for lead time. It is also assumed that one of 
the commodities may accept bulk demands. Steady state solutions are also provided for the 
joint distribution of inventory levels. For a suitable cost structure, the total expected cost 
rate in the steady state has been determined. To demonstrate the computability of results 
derived here, ample numerical illustrations are given. Numerical analysis of the effect of the 
parameters and costs on the total expected cost rate is given. 
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