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ABSTRACT 
 

Reusable packaging often accumulates downstream in supply chains, resulting in non-
revenue-earning relocations. This paper presents a reliable optimisation model under 
supply and demand uncertainty. Instead of using deterministic forecasted values, we 
propose a fixed recourse stochastic program that embeds the approximated uncertainties 
within the decision model. Results do indeed prove to be more reliable, and thus useful to 
industry. We also investigate the model's sensitivity to the difference in weighting of 
inventory versus stock-out penalties. The valuable role of Operations Research in industry – 
and of optimisation, specifically – is affirmed. Though uncertainties cannot be eradicated, 
planned relocations can be done more reliably. 

 
OPSOMMING 

 
Herbruikbare verpakking bou gereeld aan die onderpunt van voerkanaalnetwerke op met 
nie-verdienste-genererende herskuiwings tot gevolg. Hierdie artikel bied ’n betroubare 
optimeringsmodel aan wat vraag- en aanbodonsekerheid aanspreek. In plaas van 
deterministiese vooruitskattings, stel ons ’n vaste verhaling stogastiese program voor waar 
die benaderde onsekerheid in die model self vasgevang word. Resultate is inderdaad meer 
betroubaar en dus bruikbaar vir industrie. Ons beskou ook die sensitiwiteit van voorraad- 
teenoor vooraadlose strafgewigte. Die waardevolle rol van Operasionele Navorsing – en 
meer spesifiek, optimering – word bevestig. Alhoewel onsekerheid nie uitgewis kan word 
nie, kan meer betroubare herskuiwings beplan word. 
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1. INTRODUCTION 
 
Although the term logistics is widely used and recognised, Coyle et al. [6] provide four 
useful subdivisions: business logistics, military logistics, event logistics, and service 
logistics. The focus of this paper, business logistics, is a process in the supply chain that 
plans, manages, and implements the effective and efficient storage and flow of goods, 
services, and information from point of origin to the point of consumption in order to 
satisfy customer requirements. 
 
The product concerned in this paper, however, is not a consumable or service. Rather, this 
paper focuses on the reusable packaging used to store, handle, protect, and transport 
goods through the supply chain. Examples of such reusable packaging include, but are not 
limited to, pallets, containers, trolleys, bins, and custom made crates. Once products 
arrive in their packaging at their destination, the reusable packaging tends to build up since 
there is not sufficient demand for products in the opposite direction. This requires reusable 
packaging to be relocated back upstream in the supply chain to where products are 
produced and packaged. Whereas products earn revenue, reusable packaging only incurs 
costs, requiring proper management to ensure cost minimisation [9, 10, 11]. Olivo et al. 
[14] cite an Italian survey estimating that the handling of empty shipping containers alone 
will increase from approximately US$ 25 billion in 1999 to US$ 50 billion in 2010. Proper 
management of reusable packaging can therefore provide cost-saving opportunities, 
providing scope for analytical decision support. For the remainder of the paper we will 
refer to all forms of reusable packaging types collectively as containers. 
 
Whereas strategic decision models, such as the work by Crainic and Delorme [8], consider 
long-term decisions such as where depots should be located, this paper deals with the more 
operational decisions regarding the relocation of containers. 
 
Operations Research (OR) literature abounds with models assisting companies with the 
management of forward product movement, but few models are concerned with the return 
leg of empty container relocations. One of the first contributions was the balanced 
transportation approach by Misra [13], considering a single commodity, rail cars. In the 
mathematical model the objective is to minimise the total cost of relocating empty 
containers. The objective is constrained by the available supply of and demand for empty 
containers at every station. Demand at every station must be met, while the total supply 
must equal the total demand, resulting in a balanced system. 
 
One of the early Empty Container Allocation Problem (ECAP) contributions was by Crainic 
et al. [7], formulating models for deterministic single and multi-commodity problems, and 
providing a general modelling framework. Crainic and Delorme [8] use the formulation and 
provide a heuristic solution approach, while Choong et al. [5] later extend the formulation 
to include storage capacities and multiple capacitated transportation modes. 
 
A multi-commodity network flow optimisation model was formulated by Holmberg et al. 
[12]. The optimisation model addresses capacity constraints and strictly adheres to arrival 
and departure times. Supply and demand of empty cars are assumed to be given, albeit 
forecasted. Another deterministic contribution, by Olivo et al. [14], formulates the dynamic 
model with hourly time-steps. The term dynamic in that contribution refers to a rolling 
horizon procedure used to address the uncertainty of supply, demand, transit times, and 
equipment failures. These parameters are, however, used as deterministic parameters. 
Empty containers are assumed to be delivered to the customer during the time-period in 
which they are required. 
 
Birge and Ho [2] present a formulation of a stochastic, dynamic network problem with 
dynamic decisions, uncertain input flows, and congestion. Their contribution also considers 
a multi-period decision model where uncertainties are resolved period-by-period as time 
progresses. The model is applicable to situations where flows must be directed between 
nodes, and complete information about future demand is not known. Cheung and Powell [4] 
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also use stochastic programming, developing an algorithm for multi-stage dynamic networks 
with random arc capacities. They use arcs to characterise the movement of vehicles 
between cities. 
 
A two-stage stochastic approach was followed by Cheung and Chen [3] in their formulation 
of the ECAP. In the first stage they use demand, capacity, and supply as deterministic 
values, while they are treated as random variables in the second stage. The more complex 
the formulation of the problem, the more difficult it is to find exact and optimal solutions, 
especially for large problem instances (Rajgopal [15]). 
 
In this paper we considered a network ( )ADG ,= , consisting of depot nodes },{1,= DD , 

and directed arcs },{1,= AA . A set },{1,= EE  of container types is to be relocated 
between the nodes using trucks of different types, denoted by set },{1,= LL , that are 

available on demand, each type L∈l  with a different capacity and cost associated with it. 
Both supply and demand are assumed to be uncertain, yet follow known probabilistic 
distributions. We used a fixed recourse approach to address the uncertain demand, since 
we want to track the number of containers either in storage or in short supply, so as to 
incur appropriate recourse penalties. 
 
We were able to solve a realistically sized instance of the problem exactly, and also tested 
the reliability and usability of the model through scenario analysis. Our contribution is 
significant in that it not only provides a quantitative measure of the realistic usefulness of 
the model, but also investigates and reports on the effect that inventory and shortage costs 
have on the reliability of the optimisation model. 
 
The remainder of the paper starts with the stochastic formulation of the ECAP in Section 2, 
along with the conversion of the model into its deterministic equivalent. A numerical 
example is solved in Section 3, with a discussion on the quantitative measure of the 
model’s reliability in Section 4. The paper concludes in Section 5 and provides a brief 
agenda for future research. 
 
2. STOCHASTIC MODEL FORMULATION 
 
Recall from the introduction that the model formulated is concerned with finding a 
minimum cost relocation plan of all E∈e  containers between the supply and demand 
depots, D∈ds, . It is important to note that supply and demand depots can, but will not 
necessarily, be the same depot. Although both the supply and demand at each of the 
depots are only known as probabilistic random variables, the relocation decisions are non-
adaptive, implying that the relocation decisions are made before the realisation of the 
random demand, and the original decisions are not adjusted once the actual demand is 
realised. Relocations are done through assigning the containers to different truck types 

L∈l , each type l  with a different cost and capacity. Since different trucks have different 
capacities, and the volume of each individual container in its collapsed form (if it is 
collapsible) is different, the number of containers transported per truck may vary. 
Consequently, the transportation cost for every container can not be specified, and the 
total cost is expressed in terms of the number of each truck type l  used for relocations. 
Trucks are rented from service providers on demand, and incur a fixed cost based on their 
type, causing less-than-truckload movements to incur the same cost as full loads. 
 
To formulate the model, decision variables are defined as follows: 
 

sdex the number of type e  containers shipped from supply depot s  to demand depot     

 d , where D∈ds,  and E∈e .  
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sdely
 
the number of type e  containers shipped from supply depot s  to demand depot d  

using a truck of type l , where D∈ds, , E∈e , and L∈l .  

sdln  the number of type l  trucks required from supply depot s  to demand depot d , 

where D∈ds, , and L∈l .  
 
A number of relocation related parameter definitions are required. We let:  
 

sdlc the given cost to transport a load of containers from supply depot s  to demand 

depot d  using a truck of type l , where D∈ds, , and L∈l .  

deI the given opening inventory of container type e  at depot d , where D∈d  and 

E∈e .  
D

dV the given volumetric capacity (in 3m ) of depot D∈d .  

T
lV the given volumetric capacity (in 3m ) of a truck of type L∈l .  

T
lW the given weight capacity (in kg ) of a truck of type L∈l .  

C
ev the given unit volume (in 3m ) of a collapsed container of type E∈e .  

C
ew the given unit weight (in kg ) of a container of type E∈e .  

 
Related to the uncertain supply and demand, we let:  
 

deζ~ the given random vector describing the supply of type e  containers at depot d ,  

 where D∈d  and E∈e .  

deη~
 
the given random vector describing the demand of type e  containers at depot d , 

where D∈d  and E∈e .  

( )dededeu ηζ ~,~
the number of type e  containers in inventory at depot d  at the end of the 

period, expressed as a function of both the random supply and demand of type e  
containers at depot d , where D∈d  and E∈e .  

( )dededeh ηζ ~,~
the number of type e  containers short at depot d  at the end of the 

period, expressed as a function of both the random supply and demand of type e  
containers at depot d , where D∈d  and E∈e .  

deo the given unit holding cost for type e  containers at depot d , where D∈d  and 

E∈e .  

der  the given unit shortage penalty for type e  containers at depot d , where D∈d  and 

E∈e .  
 

The objective of the model is to minimise the total cost of relocating empty containers. 
Also included are the expected inventory and shortage costs – that is, the recourse as a 
result of the uncertain supply and demand. Formulated in (1) is the objective function 
expressed as a stochastic program with recourse:  

  

     (1) 

 

  
  

( ) ( ) ( )[ ]dedededededededededeedds l
sdlsdl hruoEncz ηζηζηζ

~,~~,~min ~,~

,
++= ∑∑∑ ∑

∈∈∈ ∈ EDD L
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ED
L

∈∈∀∑
∈

edsyx sdel
l

sde ,,=

where ( )dede
E ηζ ~,~ represents the expected value with respect to the realisations of the 

random supply, deζ~ , and demand, deη~ , for type e  containers at depot d . We revert to a 

two-stage fixed recourse approach to address the stochastic demands, and the resulting 

problem is then an ordinary deterministic Mixed Integer Program (MIP). The thα  realisation 

of the random supply is denoted by αζ de , which has a finite discrete distribution 

( ){ }Rpdede ,1,=,, αζ αα  with αα   0> ∀dep , and where R  is a given number of 

equidistant partitions with which the random distribution is approximated. Similarly the 
thβ  realisation of the random demand is denoted by βηde , which has a finite discrete 

distribution ( ){ }Rpdede ,1,=,, βη ββ  with ββ   0> ∀dep . 

 
With this approximation, we can alter the definition of the inventory and shortage 
variables, so we let: 
 

αβ
deu

 
the number of type e  containers in inventory at depot d  at the end of the period, 

given that the thα  realisation of supply, αζ de , and the thβ  realisation of demand, 

βηde , holds.  

αβ
deh  the number of type e  containers short at depot d  at the end of the period, given 

that the 
thα  realisation of supply, αζ de , and the thβ  realisation of demand, βηde , 

holds. 
 
The stochastic objective of (1) is subsequently converted into its dual decomposition 
structure and expressed in (2).  

 
            (2) 
   

 
The remainder of the formulation is also provided in its dual decomposition structure. Each 
container relocated must be assigned to a specific truck type, hence the introduction of 
(3).  

 

 
 To ensure that we do not exceed either the weight or volumetric capacity of any truck, we 
introduce (4) and (5) respectively.  
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E

∈∈∀≤∑
∈
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lsdel
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Assuming that relocations are affected concurrently with supply and demand realisations, 
and managed operationally in an efficient manner, we introduce the inventory and shortage 
calculation constraint of (6).  
 

ED
DD

∈∈∀−+−+− ∑∑
∈∈

eaxxIhu aeaeade
d

sae
s

dedede ,= βααβαβ ηζ   

},{1,, R∈∀ βα  

( )( )αβαββα

βα
dededededede

RR

ed
sdlsdl

lds
hruoppncz ++ ∑∑∑∑∑∑
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EDLD
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(3) 

 

 

(6) 
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The volumetric capacity of the depots is also considered. With (7) we employ a somewhat 
robust approach, and ensure that volumetric capacity is always adhered to, even in high-
supply-low-demand scenarios.  
 

},{1,,, RdVuv D
dde

C
e

e
∈∈∀≤∑

∈

βααβ D
E

  

 
Lastly, we impose nonnegativity and integrality constraints in (8) through (11).  
 

},{1,,,,0, Redhu dede ∈∈∈∀≥ βααβαβ ED   

ED ∈∈∀≥ edsxsde ,,0   

LED ∈∈∈∀≥ ledsysdel ,,,0   

0sdln ≥  

 
3. NUMERICAL EXAMPLE 
 
This section provide a numerical example based on the 6-depot situation for a South African 
container provider. The example considers the network with 6=D  depots and 6=L  truck 
types. In Section 1 it was noted that ‘container’ is used in this document as the collective 
name for a wide variety of different reusable packaging types, and not only for actual 
containers; therefore the number of different container types in this example was set to 

48=E . Parameter values have been simplified for the purpose of the example, and are the 
same for all container types. For example, the random supply at depot 1=d  for all 
container types, denoted by e1

~α , is approximated by a normal distribution with mean 

2000=µ  and standard deviation 50=σ ; using the notation E∈∀eNe (2000,50)~
1 :α . 

Table 1 indicates the random supply and demand approximations for all depots.   
 

Depot Supply Demand 
d  deζ~  

deη~  

1 (2000,100)N  (50,5)N  

2 (500,50)N  (500,50)N  

3 (500,50)N  (500,50)N  

4 (2000,100)N  (2000,100)N  

5 (50,5)N  (2000,100)N  

6 (500,50)N  (500,50)N  

 
†

 Demand for all container types E∈e  is assumed to be similar. 

Table 1: Probability distributions for uncertain supply and demand †
 

 
Each distribution is discretized into 5=R  equidistant partitions, or intervals, each 
representing a singe realisation of the random variable. The partitions were created by 
generating an arbitrary large number 1000=I  instances of the random variables according 
to the underlying distribution; establishing the minimum and maximum values; and sorting 
the instances into the calculated intervals. The resulting probabilities are calculated 
according to (12)  

 

},{1,== Rr
I
np r

r ∀
 

  

and integer 

(8) 

(9) 

(10) 

(11) 

 

(7) 

 

 

(12) 

 

 

, ,s d l∀ ∈ ∈D L
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 where rn  denotes the number of the random variable instances in inteval r . The outcome 
for each interval is merely calculated as the expected value of the interval: the value 
associated with the centre of the interval. The resulting probabilities and outcomes are 
provided in Table 2.   
 

Realisation (2000,100)N   (500,50)N   (50,5)N  

r  r
dep  r

deξ   r
dep  r

deξ   r
dep  r

deξ  

1 0.015 1712  0.019 359  0.036 38 
2 0.193 1850  0.207 429  0.241 44 
3 0.488 1988  0.522 498  0.464 50 
4 0.277 2126  0.221 567  0.227 57 
5 0.027 2264  0.031 636  0.032 63 

 
Table 2: Discretized probablities and outcomes for random distributions 
 

Actual container data, in terms of weight and volume, has been used for the 48 different 
container types in this example, and typical truck and depot capacities were obtained from 
a company in South Africa. Actual transport costs were used, while inventory holding costs 
were approximated using management inputs. Since it was difficult to quantify stock-out 
instances from historical data, and also to put a monetary value on shortage costs, it was 
assumed to be a factor of 10 of the inventory holding cost. However, this shortage will be 
addressed again later in the paper. 

 
The problem, referred to as the stochastic model (SM), was solved by coding it in GAMS and 
solving the model using the CPLEX solver, version 9.0 from iLOG, for 3600 CPU seconds on a 
standard desktop computer, after which the algorithm was interrupted, and the incumbent 
solution was chosen. Although the solution itself may not be of interest to the reader, the 
reliability of the approach may well be. 
 
4. MODEL RELIABILITY 
 
To compare the reliability of our proposed model with that of a model assuming 
deterministic forecasted demand, the proposed model is solved for a second time, but with 
a single realisation of the random demand, namely the expected value, which is, in the 
case of the normal distribution, the mean. The probability of the mean is taken as 1 since it 
is the only realisation. The model is referred to as the expected value model (EVM). 
 
In this paper we use the term reliability to indicate whether the first stage relocation plan, 
provided by the optimisation model, will hold within given criteria in realistically generated 
scenarios. Say we generate a scenario consisting of one instance for each random variable 
based on its probabilistic distribution. For the scenario, we calculate what the actual 
inventory and recourse costs would have been, had we implemented the optimisation 
solution in that scenario. Reliability is then defined as 1 if either the actual cost is less than 
the expected cost provided by the optimisation model, or no shortages were incurred. The 
two criteria are mutually exclusive, so we only define the reliability to be 0 if both criteria 
are violated. Inventory was not considered to deem the solution unreliable even though it 
increases the total cost. 
 
Even though the model formulation was based on an actual case study, a numerical 
example with arbitrary values is used for illustrative purposes. To establish a reliability 
measure, we repeat the reliability testing for 100 independent scenarios where an 
independent scenario represents a unique realisation of the random demand, and 
determine the percentage of reliable scenarios. The reliability results for both the SM and 
the EVM models are shown in Figure 1. Both models overspent in all scenarios: the SM on 
average by just over 0.3%, and the EVM by nearly 1.9%. The main overspend, however, was 
on inventory holding cost, and not necessarily on shortage costs. This is confirmed when 
considering the reliability measure: 93% for the SM, and 74% for the EVM. 
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Figure 1: Reliability comparison of the proposed stochastic model  

versus the expected value model 
 
It is expected that the objective function of the SM, i.e. the expected total cost, will be  
higher than the expected cost for the EVM, since the former makes decisions by taking 
multiple uncertain supply and demand realisations into account. Industry tends often to 
rely on such objective functions, and to price its products and/or services accordingly. The 
higher actual costs incurred by the EVM indicate not only that too much inventory is kept, 
but also that such inventory is kept at the wrong depots, resulting in shortages elsewhere in 
the network, which in turn incur recourse costs in the form of expedited deliveries. 
 
But reliability figures of both the SM and EVM indeed rely on an informed choice of the 
weight, or unit cost, of the recourse components – namely, the inventory and shortage 
costs. To analyse the sensitivity, we performed multiple reliability tests, each time with a 
different ratio of shortage cost to inventory holding cost. The result of the sensitivity 
analysis is illustrated in Figure 2. The larger the difference between the two weights, the 
more reliable the SM. Even in the worst case, where the recourse weights are equal, the SM 
outperforms the EVM with a reliability of 87% to 77%. 
 
5. CONCLUSION 
 
Reusable packaging may imply more environmentally friendly alternatives to packing, 
storing, and handling products, but its cost management requires careful consideration to 
ensure it does not impinge on profitability. The network for reusable packaging is typically 
unbalanced, requiring empty containers to be relocated throughout the network. Such 
relocations incur cost, but yield no revenue, emphasising the need for analytical cost 
minimisation decision support when planning relocations. 
 
The state-of-practice in industry is often to forecast supply and demand in uncertain 
environments, and then to use the forecasted values as deterministic parameters in 
decision-making models. Such models are referred to as expected value models. In this 
paper a stochastic model is proposed as an alternative, and we show that such stochastic 
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models outperform their expected value counterparts, even more so when there is a large 
differential between the inventory holding cost and shortage cost. 

 
 

Figure 2: Sensitivity of the reliability measure for different shortage  
cost to inventory holding cost ratios 

 
Not only does the stochastic model provide more reliable solutions, it also provides a better 
input on which companies can base their pricing for products and services. Merely inflating 
the inventory throughout the network to account for uncertainties (often referred to as fat 
solutions) typically results in containers being kept at the wrong depots even though more 
containers are in circulation. Since reusable containers are more costly than their 
consumable and/or recyclable counterparts, a larger number of containers in circulation 
implies tied up capital. 
 
Stochastic models as proposed in our paper are by no means the Holy Grail of network 
optimisation, and three areas of further research are suggested. First, it is assumed that 
the uncertain supply and demand follows probabilistic distributions, and that such 
distributions are known with certainty. In the presence of sufficient historical data, as was 
the case for the industry partner on whose situation this paper was based, one could 
establish container-location-specific distributions. However, when intermittent or erratic 
demand occurs, or where sufficient historical data is absent, the reliabilities cannot 
necessarily be guaranteed. One suggestion would be to investigate the application of fuzzy 
programming. Another would be not to approximate random distributions, but rather to 
generate probability-outcome realisations influenced by expert and management opinion. 
 
Second, the problem considered in this paper only accounts for a single time period. The 
formulation can be extended to take multiple time periods into account. The formulation of 
such problems can become somewhat messy, since each recourse variable becomes a 
function not only of the uncertainties of the current period, but also of all prior time 
periods. Birge [1] suggests a decomposition approach for such multistage stochastic linear 
programs. This brings us to the third suggestion for further research. 
 
Computationally, complexity is adversely affected when more and more complex models 
are formulated. One must be careful that the time to find a solution to a problem instance 
is not longer than the useful life of the solution (if found at all). An alternative approach to 
coding the models mathematically in search of exact solutions, heuristic – and more 
specifically, metaheuristic – approaches should be investigated. With proper lower bounds, 
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such approximate solutions may prove to result in very usable solutions to realistic 
problems in industry. 
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