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ABSTRACT

Reusable packaging often accumulates downstream in supply chains, resulting in non-
revenue-earning relocations. This paper presents a reliable optimisation model under
supply and demand uncertainty. Instead of using deterministic forecasted values, we
propose a fixed recourse stochastic program that embeds the approximated uncertainties
within the decision model. Results do indeed prove to be more reliable, and thus useful to
industry. We also investigate the model's sensitivity to the difference in weighting of
inventory versus stock-out penalties. The valuable role of Operations Research in industry -
and of optimisation, specifically - is affirmed. Though uncertainties cannot be eradicated,
planned relocations can be done more reliably.

OPSOMMING

Herbruikbare verpakking bou gereeld aan die onderpunt van voerkanaalnetwerke op met
nie-verdienste-genererende herskuiwings tot gevolg. Hierdie artikel bied ’n betroubare
optimeringsmodel aan wat vraag- en aanbodonsekerheid aanspreek. In plaas van
deterministiese vooruitskattings, stel ons 'n vaste verhaling stogastiese program voor waar
die benaderde onsekerheid in die model self vasgevang word. Resultate is inderdaad meer
betroubaar en dus bruikbaar vir industrie. Ons beskou ook die sensitiwiteit van voorraad-
teenoor vooraadlose strafgewigte. Die waardevolle rol van Operasionele Navorsing - en
meer spesifiek, optimering - word bevestig. Alhoewel onsekerheid nie uitgewis kan word
nie, kan meer betroubare herskuiwings beplan word.
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1. INTRODUCTION

Although the term logistics is widely used and recognised, Coyle et al. [6] provide four
useful subdivisions: business logistics, military logistics, event logistics, and service
logistics. The focus of this paper, business logistics, is a process in the supply chain that
plans, manages, and implements the effective and efficient storage and flow of goods,
services, and information from point of origin to the point of consumption in order to
satisfy customer requirements.

The product concerned in this paper, however, is not a consumable or service. Rather, this
paper focuses on the reusable packaging used to store, handle, protect, and transport
goods through the supply chain. Examples of such reusable packaging include, but are not
limited to, pallets, containers, trolleys, bins, and custom made crates. Once products
arrive in their packaging at their destination, the reusable packaging tends to build up since
there is not sufficient demand for products in the opposite direction. This requires reusable
packaging to be relocated back upstream in the supply chain to where products are
produced and packaged. Whereas products earn revenue, reusable packaging only incurs
costs, requiring proper management to ensure cost minimisation [9, 10, 11]. Olivo et al.
[14] cite an Italian survey estimating that the handling of empty shipping containers alone
will increase from approximately USS$ 25 billion in 1999 to USS$ 50 billion in 2010. Proper
management of reusable packaging can therefore provide cost-saving opportunities,
providing scope for analytical decision support. For the remainder of the paper we will
refer to all forms of reusable packaging types collectively as containers.

Whereas strategic decision models, such as the work by Crainic and Delorme [8], consider
long-term decisions such as where depots should be located, this paper deals with the more
operational decisions regarding the relocation of containers.

Operations Research (OR) literature abounds with models assisting companies with the
management of forward product movement, but few models are concerned with the return
leg of empty container relocations. One of the first contributions was the balanced
transportation approach by Misra [13], considering a single commodity, rail cars. In the
mathematical model the objective is to minimise the total cost of relocating empty
containers. The objective is constrained by the available supply of and demand for empty
containers at every station. Demand at every station must be met, while the total supply
must equal the total demand, resulting in a balanced system.

One of the early Empty Container Allocation Problem (ECAP) contributions was by Crainic
et al. [7], formulating models for deterministic single and multi-commodity problems, and
providing a general modelling framework. Crainic and Delorme [8] use the formulation and
provide a heuristic solution approach, while Choong et al. [5] later extend the formulation
to include storage capacities and multiple capacitated transportation modes.

A multi-commodity network flow optimisation model was formulated by Holmberg et al.
[12]. The optimisation model addresses capacity constraints and strictly adheres to arrival
and departure times. Supply and demand of empty cars are assumed to be given, albeit
forecasted. Another deterministic contribution, by Olivo et al. [14], formulates the dynamic
model with hourly time-steps. The term dynamic in that contribution refers to a rolling
horizon procedure used to address the uncertainty of supply, demand, transit times, and
equipment failures. These parameters are, however, used as deterministic parameters.
Empty containers are assumed to be delivered to the customer during the time-period in
which they are required.

Birge and Ho [2] present a formulation of a stochastic, dynamic network problem with
dynamic decisions, uncertain input flows, and congestion. Their contribution also considers
a multi-period decision model where uncertainties are resolved period-by-period as time
progresses. The model is applicable to situations where flows must be directed between
nodes, and complete information about future demand is not known. Cheung and Powell [4]
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also use stochastic programming, developing an algorithm for multi-stage dynamic networks
with random arc capacities. They use arcs to characterise the movement of vehicles
between cities.

A two-stage stochastic approach was followed by Cheung and Chen [3] in their formulation
of the ECAP. In the first stage they use demand, capacity, and supply as deterministic
values, while they are treated as random variables in the second stage. The more complex
the formulation of the problem, the more difficult it is to find exact and optimal solutions,
especially for large problem instances (Rajgopal [15]).

In this paper we considered a network G = (D,A), consisting of depot nodes D={1,...,D},
and directed arcs A={1,...,4}. Aset E={1,...,E} of container types is to be relocated
between the nodes using trucks of different types, denoted by set L =1{1,...,L}, that are

available on demand, each type /<L with a different capacity and cost associated with it.
Both supply and demand are assumed to be uncertain, yet follow known probabilistic
distributions. We used a fixed recourse approach to address the uncertain demand, since
we want to track the number of containers either in storage or in short supply, so as to
incur appropriate recourse penalties.

We were able to solve a realistically sized instance of the problem exactly, and also tested
the reliability and usability of the model through scenario analysis. Our contribution is
significant in that it not only provides a quantitative measure of the realistic usefulness of
the model, but also investigates and reports on the effect that inventory and shortage costs
have on the reliability of the optimisation model.

The remainder of the paper starts with the stochastic formulation of the ECAP in Section 2,
along with the conversion of the model into its deterministic equivalent. A numerical
example is solved in Section 3, with a discussion on the quantitative measure of the
model’s reliability in Section 4. The paper concludes in Section 5 and provides a brief
agenda for future research.

2. STOCHASTIC MODEL FORMULATION

Recall from the introduction that the model formulated is concerned with finding a
minimum cost relocation plan of all e E containers between the supply and demand
depots, s,d e D . It is important to note that supply and demand depots can, but will not
necessarily, be the same depot. Although both the supply and demand at each of the
depots are only known as probabilistic random variables, the relocation decisions are non-
adaptive, implying that the relocation decisions are made before the realisation of the
random demand, and the original decisions are not adjusted once the actual demand is
realised. Relocations are done through assigning the containers to different truck types
leL, each type | with a different cost and capacity. Since different trucks have different
capacities, and the volume of each individual container in its collapsed form (if it is
collapsible) is different, the number of containers transported per truck may vary.
Consequently, the transportation cost for every container can not be specified, and the
total cost is expressed in terms of the number of each truck type | used for relocations.
Trucks are rented from service providers on demand, and incur a fixed cost based on their
type, causing less-than-truckload movements to incur the same cost as full loads.

To formulate the model, decision variables are defined as follows:

X, the number of type e containers shipped from supply depot s to demand depot
d, where s,deD and ecE.
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Ve ~ the number of type e containers shipped from supply depot § to demand depot d
using a truck of type /, where s, deD, ecE,and [eL.

n,  the number of type / trucks required from supply depot s to demand depot 4,
where s, d eD,and /e L.

A number of relocation related parameter definitions are required. We let:

¢, the given cost to transport a load of containers from supply depot s to demand

depot d using a truck of type [, where s,d eD,and [ L.
1,

. the given opening inventory of container type e at depot 4, where d D and

ecE.

VdD the given volumetric capacity (in m®) of depot d € D.

V,T the given volumetric capacity (in m>) of a truck of type / e L.

W,T the given weight capacity (in kg ) of a truck of type /e L.

% the given unit volume (in m*) of a collapsed container of type ec E.

w the given unit weight (in kg ) of a container of type e E.

Related to the uncertain supply and demand, we let:

Ede the given random vector describing the supply of type e containers at depot d ,
where deD and ecE.

ﬁdc the given random vector describing the demand of type e containers at depot d,
where deD and ecE.

Uy, (Ede,ﬁde) the number of type e containers in inventory at depot d at the end of the

period, expressed as a function of both the random supply and demand of type e
containers at depot d , where deD and ecE.

hde(gde,ﬁde) the number of type e containers short at depot d at the end of the

period, expressed as a function of both the random supply and demand of type e
containers at depot d , where deD and ecE.

0,  the given unit holding cost for type e containers at depot d, where d €D and
eck.

Y the given unit shortage penalty for type e containers at depot d , where d e D and
ecE.

The objective of the model is to minimise the total cost of relocating empty containers.
Also included are the expected inventory and shortage costs - that is, the recourse as a
result of the uncertain supply and demand. Formulated in (1) is the objective function
expressed as a stochastic program with recourse:

min z = Z Z CoarMsar + ZZE(QJ@’N )[Odeude (g;de e )+ Fyehge (Ede Mo )] M

7
s,deD [eL. deDecE de
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where E(~

7 )represents the expected value with respect to the realisations of the
de’'lde

random supply, é’de , and demand, ﬁde, for type e containers at depot d . We revert to a
two-stage fixed recourse approach to address the stochastic demands, and the resulting

problem is then an ordinary deterministic Mixed Integer Program (MIP). The a™ realisation
of the random supply is denoted by (5;, which has a finite discrete distribution
{(é’;,pje),a=l,...,R} with pj >0V «a, and where R is a given number of
equidistant partitions with which the random distribution is approximated. Similarly the

,Bth realisation of the random demand is denoted by ﬂdﬁe, which has a finite discrete
distribution {(ni,pi),ﬂ = 1,...,R} with p” >0V .

With this approximation, we can alter the definition of the inventory and shortage
variables, so we let:

uZeﬂ the number of type e containers in inventory at depot d at the end of the period,
given that the a™ realisation of supply, é’j;, and the ,Bth realisation of demand,
17, holds.

h;f the number of type e containers short at depot d at the end of the period, given

that the ath realisation of supply, é’;, and the ﬂth realisation of demand, 7756,
holds.

The stochastic objective of (1) is subsequently converted into its dual decomposition
structure and expressed in (2).

R R
minz = Z chd,nsd, + ZZZZ(PZEPdﬂe Xodeu:ileﬂ + rdehs;ﬂ) @)

s,deDleL deDecE a=1 =1

The remainder of the formulation is also provided in its dual decomposition structure. Each
container relocated must be assigned to a specific truck type, hence the introduction of
3). 3)
Xy = E Y sdel Vs,d eD,ecE

leLL

To ensure that we do not exceed either the weight or volumetric capacity of any truck, we
introduce (4) and (5) respectively.

Zwecysdel < VVlTnsdl Vs, de D,l eL (4)
ecE

zvecysdel < I/vlrnsall vsad € D’l € L (5)

ecE

Assuming that relocations are affected concurrently with supply and demand realisations,
and managed operationally in an efficient manner, we introduce the inventory and shortage
calculation constraint of (6).

af aff _ a p
ude - hde - Ide + zxsae - Zxade + ae naeva € D’e € E (6)
seD deD

Va,pe{l,...,R}
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The volumetric capacity of the depots is also considered. With (7) we employ a somewhat
robust approach, and ensure that volumetric capacity is always adhered to, even in high-
supply-low-demand scenarios.

ZvecujﬁSVdD Vd eD,a,fe{l,....,R} 7)

e
ecE

Lastly, we impose nonnegativity and integrality constraints in (8) through (11).

u? h >0 VdeD,ecE,a,f<{l,...,R} (8)
X, 20 Vs,d eD,ecE 9)
Ve 20 Vs,deD,ecE,[cL (10)
n, 20 and integer Vs,d €D,/ eL (11)

3. NUMERICAL EXAMPLE

This section provide a numerical example based on the 6-depot situation for a South African
container provider. The example considers the network with D =6 depots and L =6 truck
types. In Section 1 it was noted that ‘container’ is used in this document as the collective
name for a wide variety of different reusable packaging types, and not only for actual
containers; therefore the number of different container types in this example was set to
E = 48. Parameter values have been simplified for the purpose of the example, and are the
same for all container types. For example, the random supply at depot 4 =1 for all

container types, denoted by ¢, , is approximated by a normal distribution with mean

1 =2000 and standard deviation ¢ =50; using the notation &]e :N(2000,50) VeeE.
Table 1 indicates the random supply and demand approximations for all depots.

Depot Supply Demand
d S Mae
1 N(2000,100) N(50,5)
2 N(500,50) N(500,50)
3 N(500,50) N(500,50)
4 N(2000,100) N(2000,100)
5 N(50,5) N(2000,100)
6 N(500,50) N(500,50)

Demand for all container types € € E is assumed to be similar.

Table 1: Probability distributions for uncertain supply and demand

Each distribution is discretized into R=35 equidistant partitions, or intervals, each
representing a singe realisation of the random variable. The partitions were created by
generating an arbitrary large number / =1000 instances of the random variables according
to the underlying distribution; establishing the minimum and maximum values; and sorting
the instances into the calculated intervals. The resulting probabilities are calculated
according to (12)

pr:% vr={1,...,R} (12)
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where n, denotes the number of the random variable instances in inteval 7. The outcome

for each interval is merely calculated as the expected value of the interval: the value
associated with the centre of the interval. The resulting probabilities and outcomes are
provided in Table 2.

Realisation N(2000,100) N(500,50) N(50,5)
r Pac Sie Pie Sde Pae Sde
1 0.015 1712 0.019 359 0.036 38
2 0.193 1850 0.207 429 0.241 44
3 0.488 1988 0.522 498 0.464 50
4 0.277 2126 0.221 567 0.227 57
5 0.027 2264 0.031 636 0.032 63

Table 2: Discretized probablities and outcomes for random distributions

Actual container data, in terms of weight and volume, has been used for the 48 different
container types in this example, and typical truck and depot capacities were obtained from
a company in South Africa. Actual transport costs were used, while inventory holding costs
were approximated using management inputs. Since it was difficult to quantify stock-out
instances from historical data, and also to put a monetary value on shortage costs, it was
assumed to be a factor of 10 of the inventory holding cost. However, this shortage will be
addressed again later in the paper.

The problem, referred to as the stochastic model (SM), was solved by coding it in GAMS and
solving the model using the CPLEX solver, version 9.0 from iLOG, for 3600 CPU seconds on a
standard desktop computer, after which the algorithm was interrupted, and the incumbent
solution was chosen. Although the solution itself may not be of interest to the reader, the
reliability of the approach may well be.

4. MODEL RELIABILITY

To compare the reliability of our proposed model with that of a model assuming
deterministic forecasted demand, the proposed model is solved for a second time, but with
a single realisation of the random demand, namely the expected value, which is, in the
case of the normal distribution, the mean. The probability of the mean is taken as 1 since it
is the only realisation. The model is referred to as the expected value model (EVM).

In this paper we use the term reliability to indicate whether the first stage relocation plan,
provided by the optimisation model, will hold within given criteria in realistically generated
scenarios. Say we generate a scenario consisting of one instance for each random variable
based on its probabilistic distribution. For the scenario, we calculate what the actual
inventory and recourse costs would have been, had we implemented the optimisation
solution in that scenario. Reliability is then defined as 1 if either the actual cost is less than
the expected cost provided by the optimisation model, or no shortages were incurred. The
two criteria are mutually exclusive, so we only define the reliability to be 0 if both criteria
are violated. Inventory was not considered to deem the solution unreliable even though it
increases the total cost.

Even though the model formulation was based on an actual case study, a numerical
example with arbitrary values is used for illustrative purposes. To establish a reliability
measure, we repeat the reliability testing for 100 independent scenarios where an
independent scenario represents a unique realisation of the random demand, and
determine the percentage of reliable scenarios. The reliability results for both the SM and
the EVM models are shown in Figure 1. Both models overspent in all scenarios: the SM on
average by just over 0.3%, and the EVM by nearly 1.9%. The main overspend, however, was
on inventory holding cost, and not necessarily on shortage costs. This is confirmed when
considering the reliability measure: 93% for the SM, and 74% for the EVM.
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Figure 1: Reliability comparison of the proposed stochastic model
versus the expected value model

It is expected that the objective function of the SM, i.e. the expected total cost, will be
higher than the expected cost for the EVM, since the former makes decisions by taking
multiple uncertain supply and demand realisations into account. Industry tends often to
rely on such objective functions, and to price its products and/or services accordingly. The
higher actual costs incurred by the EVM indicate not only that too much inventory is kept,
but also that such inventory is kept at the wrong depots, resulting in shortages elsewhere in
the network, which in turn incur recourse costs in the form of expedited deliveries.

But reliability figures of both the SM and EVM indeed rely on an informed choice of the
weight, or unit cost, of the recourse components - namely, the inventory and shortage
costs. To analyse the sensitivity, we performed multiple reliability tests, each time with a
different ratio of shortage cost to inventory holding cost. The result of the sensitivity
analysis is illustrated in Figure 2. The larger the difference between the two weights, the
more reliable the SM. Even in the worst case, where the recourse weights are equal, the SM
outperforms the EVM with a reliability of 87% to 77%.

5. CONCLUSION

Reusable packaging may imply more environmentally friendly alternatives to packing,
storing, and handling products, but its cost management requires careful consideration to
ensure it does not impinge on profitability. The network for reusable packaging is typically
unbalanced, requiring empty containers to be relocated throughout the network. Such
relocations incur cost, but yield no revenue, emphasising the need for analytical cost
minimisation decision support when planning relocations.

The state-of-practice in industry is often to forecast supply and demand in uncertain
environments, and then to use the forecasted values as deterministic parameters in
decision-making models. Such models are referred to as expected value models. In this
paper a stochastic model is proposed as an alternative, and we show that such stochastic
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models outperform their expected value counterparts, even more so when there is a large
differential between the inventory holding cost and shortage cost.
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Figure 2: Sensitivity of the reliability measure for different shortage
cost to inventory holding cost ratios

Not only does the stochastic model provide more reliable solutions, it also provides a better
input on which companies can base their pricing for products and services. Merely inflating
the inventory throughout the network to account for uncertainties (often referred to as fat
solutions) typically results in containers being kept at the wrong depots even though more
containers are in circulation. Since reusable containers are more costly than their
consumable and/or recyclable counterparts, a larger number of containers in circulation
implies tied up capital.

Stochastic models as proposed in our paper are by no means the Holy Grail of network
optimisation, and three areas of further research are suggested. First, it is assumed that
the uncertain supply and demand follows probabilistic distributions, and that such
distributions are known with certainty. In the presence of sufficient historical data, as was
the case for the industry partner on whose situation this paper was based, one could
establish container-location-specific distributions. However, when intermittent or erratic
demand occurs, or where sufficient historical data is absent, the reliabilities cannot
necessarily be guaranteed. One suggestion would be to investigate the application of fuzzy
programming. Another would be not to approximate random distributions, but rather to
generate probability-outcome realisations influenced by expert and management opinion.

Second, the problem considered in this paper only accounts for a single time period. The
formulation can be extended to take multiple time periods into account. The formulation of
such problems can become somewhat messy, since each recourse variable becomes a
function not only of the uncertainties of the current period, but also of all prior time
periods. Birge [1] suggests a decomposition approach for such multistage stochastic linear
programs. This brings us to the third suggestion for further research.

Computationally, complexity is adversely affected when more and more complex models
are formulated. One must be careful that the time to find a solution to a problem instance
is not longer than the useful life of the solution (if found at all). An alternative approach to
coding the models mathematically in search of exact solutions, heuristic - and more
specifically, metaheuristic - approaches should be investigated. With proper lower bounds,
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such approximate solutions may prove to result in very usable solutions to realistic
problems in industry.
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