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ABSTRACT

The trade-off between time, cost, and quality is one of the important problems of project
management. This problem assumes that all project activities can be executed in different
modes of cost, time, and quality. Thus a manager should select each activity’s mode such
that the project can meet the deadline with the minimum possible cost and the maximum
achievable quality. As the problem is NP-hard and the objectives are in conflict with each
other, a multi-objective meta-heuristic called CellDE, which is a hybrid cellular genetic
algorithm, is implemented as the optimisation method. The proposed algorithm provides
project managers with a set of non-dominated or Pareto-optimal solutions, and enables
them to choose the best one according to their preferences. A set of problems of different
sizes is generated and solved using the proposed algorithm. Three metrics are employed for
evaluating the performance of the algorithm, appraising the diversity and convergence of
the achieved Pareto fronts. Finally a comparison is made between CellDE and another
meta-heuristic available in the literature. The results show the superiority of CellDE.

OPSOMMING

‘n Balans tussen tyd, koste en gehalte is een van die belangrike probleme van
projekbestuur. Die vraagstuk maak gewoonlik die aanname dat alle projekaktiwiteite
uitgevoer kan word op uiteenlopende wyses wat verband hou met koste, tyd en gehalte. ‘n
Projekbestuurder selekteer gewoonlik die uitvoeringsmetodes sodanig per aktiwiteit dat
gehoor gegegee word aan minimum koste en maksimum gehalte teen die voorwaarde van
voltooiingsdatum wat bereik moet word.

Aangesien die beskrewe problem NP-hard is, word dit behandel ten opsigte van
konflikterende doelwitte met ‘n multidoelwit metaheuristiese metode (CellDE). Die
metode is ‘n hibride-sellulére genetiese algoritme. Die algoritme lewer aan die
besluitvormer ‘n versameling van ongedomineerde of Pareto-optimale oplossings vir
voorkeurgedrewe besluitvorming. Uiteenlopende probleme word opgelos deur die
algoritme. Drie verskillende waardebepalings word toegepas op die gedrag van die
algoritme. Die resultate bevestig die voortreflikheid van CellDE.
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1. INTRODUCTION

Since the evolution of the critical path method, the time/cost trade-off problem has
received more attention. There is a tradeoff between the cost and time of a project:
solutions of shorter duration usually cost more, while solutions with low costs usually take
longer [1, 2]. By crashing an activity in a project, its duration is reduced by allocating
additional resources - money, for example - so a decision problem considered in the project
management literature is to determine the activities for crashing and also the extent of
crashing. In the discrete time/cost trade-off problem (DTCTP), activities can be executed in
different sets of time and cost. In 1961, Kelley and Walker [3] proposed a technique based
on a mathematical model. The model considered the assumption of linearity of the
activity’s utility function, and could be solved using network flow methods. For nonlinear
cases, activities with a nonlinear utility function are replaced with a series of r activities
having linear utility functions. An alternative to what Kelley suggested is the SAM
algorithm, which was proposed by Siemens [4]. This algorithm was designed with the
purpose of reducing project duration at the minimum cost when it exceeds the predefined
due date. Although SAM is simple and less time consuming, there is neither a guarantee of
achieving an optimal solution, nor a way to determine the optimality of the achieved
solution. Goyal [5] reconsidered SAM, and permitted a shortening of the activities that had
been previously shortened. The problem was proved to be NP-hard in [6], and subsequently
heuristic approaches were offered to optimise the problem. Babu and Suresh [7] suggested
that crashing a project might also affect its quality. They developed three linear
programming models with the assumption that both cost and quality are linear descending
and ascending functions of time respectively. Each model contains a single objective for
optimisation, and constrains the values of the other two objectives within desired levels.
They evaluated the project quality using arithmetic mean, geometric mean, and the
minimum qualities of a project’s activities. Evaluating the applicability of the technique
proposed by Babu, the method was applied to an actual cement factory construction
project in [8]. Analyzing the results, it was shown that there are budget thresholds at
different quality levels of the time-cost curve. [2, 10 and 11] proposed meta-heuristic
solutions for the discrete time, cost, and quality trade-off problem (DTCQTP). Combining
electromagnetism theory with scatter search, Tareghian and Taheri [10] presented an
approach to the inter-related integer programming models suggested in [9]. Rahimi and
Iranmanesh [2] proposed a multi-objective PSO based algorithm, and compared it with a
genetic algorithm (GA) for both small- and large-size problems.

In this paper we find an approximation to the Pareto front for DTCQTP using a multi-
objective algorithm, and evaluate the performance using three different metrics. In
contrast to other approaches, in which a single solution is offered to the Decision Maker
(DM), here we suggest different alternatives, and give the DM the opportunity to choose the
one that fits best according to his/her preferences. In the next section the problem is
defined. The algorithm that is developed to produce the Pareto front is proposed in section
3. In section 4, three performance metrics are presented, and a comparison between the
Pareto sets achieved by the implemented CellDE [13] and a version of FastPGA [11] is made
in section 5. Section 6 concludes our work.

2. PROBLEM DEFINITION

A project usually consists of different activities, where activity ican be executed in
n different modes. If the time, cost, and quality of mode j of activity are denoted bytij ,

Gij and i respectively, then in comparison with another mode k (k > j) of this activity we
should have: tj; <ti, cj> cixand gjj<gj- Table 1 shows a sample project with two

activities that both can be executed in two modes. The project manager should select
modes such that the project meets the deadline with the minimum possible total cost and
maximum achievable quality. The mathematical model used here is similar to the one
proposed in [11].
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3. SOLUTION PROCEDURE

Multi-objective algorithms provide a set of non-dominated solutions. A solution is non-
dominated if no other feasible solution is better with respect to all objectives, and moving
from one non-dominated solution to another improves at least one objective but degrades
one or more others. As evolutionary algorithms (EAs) deal with sets of solutions, they have
been reckoned among the best alternatives for multi-objective problems. Their ability to
handle complex problems, including those having features such as discontinuities,
multimodality, disjoint feasible spaces, and noisy function evaluations, reinforces the
potential effectiveness of EAs in multi-objective optimisation [13]. To solve the problem, a
hybrid multi-objective cellular genetic algorithm called CellDE is implemented here.
CellDE, developed by Durillo et al. [14], is a combination of MOCell, a multi-objective
cellular genetic algorithm, and Generalized Differential Evolution 3, GDE3. It inherits good
diversity from MOCell and convergence from GDE3 [14]. In the following, a brief description
of cellular genetic algorithms as the base of CellDE, and the Differential Evolution method
as the reproductive operator of CellDE, is presented.

Alternative 1 Alternative 2
Activity
Time - Cost :  Quality Time Cost Quality
1 10 2000 0.96 14 1800 = 0.98
2 1 2100 0.94 13 ‘ 1900 | 0.99

Table 1: Sample problem data
3.1 Cellular GA

Cellular optimisation models are structured EAs in which the population is decentralised.
Using the concept of neighbourhood, individuals only interact with other nearby individuals.
In the primitive cellular genetic algorithm, individuals are structured in a grid of d
dimensions (d=1, 2, 3), and a neighbourhood is defined on it. Genetic operators perform the
exploitation, while exploration is done by means of overlapped neighbourhoods [15].

Figure 1: Cellular genetic algorithm

3.2 Differential Evolution

Differential Evolution is a parallel direct search method in which three parents collaborate
to produce one offspring. All three parents are selected, using the selection operator,
amongst the neighbours of the current individual. By adding the weighted difference vector
of two of the parents to the third one, a new individual is generated [16]. The construction
of the new individual in Differential Evolution is discussed further in 3.3.2.
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3.3 CellDE

Similar to other cellular genetic algorithms, after the creation of an empty front,
individuals are settled in a 2-dimensional toroidal grid. Then, from among the nearby
neighbours of the current individual, two are chosen and the trio of parents is formed. The
pseudo-code of the CellDE algorithm is illustrated in Figure 2. In CellDE, one of the parents
is the original individual, while in DE all three members are chosen from among the
neighbours of the current individual. The other two parents are chosen from eight
neighbours of the current individual using the selection operator. The new offspring’s
vector is generated by adding a weighted difference vector between two of the parents to
the third one (differentialEvolution function). If the original solution is dominated by the
new individual, it will be replaced by the new one; but if both are non-dominated, then the
neighbour with the worst crowding-distance is replaced (insert function). To compute the
crowding-distance, all solutions are assigned a distance value. The boundary solutions
(those that have the smallest or largest objective values) for each objective are set to
infinite value, while the others are set to the normalised difference in the objective values
of two successive solutions.

In the next step, the offspring is added to the external archive (addToArchive function).
Through a feedback mechanism implemented after each generation, some of the individuals
in the population are randomly selected and replaced by a set of solutions in the archive
(replacelndividuals function).

proc stepsUp (CellDE) //Algorithm parameters in
‘CellDE’

population— randomPopulation () //Creates a random initial
population

archive— createFront () //Creates an empty Pareto front

while !terminationCondition() do
for individuals— 1 to CellDE.populationSize do
neighborhood« getNeighbors(population, position(individual));
parentl< selection(neighborhood);
parent2«< selection(neighborhood);
// parentl and parent2 might be identical
while parentl=parent2 do
parent2« selection(neighborhood);
end while
offspring« differentialEvolution(position(individual),
position(individual),position(parentl), position(parent2));
evaluateFitness(offspring);
insert(position(individual), offspring, population);
addToArchive(individual);
end for
population«+ replacelndividuals(population, archive);
end while
end_proc stepsUp;

Figure 2: The pseudo-code of the CellDE algorithm
3.3.1 Chromosome representation
We used the direct coding to represent the chromosomes. As a consequence, the produced
solutions are always feasible. Each chromosome’s length is equal to the number of

activities, and each allele’s value is an integer limited to the number of modes of the
related activity.
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3.3.2 Reproductive operator

To produce new individuals, the differential evolution operator is used. This operator uses
two parameters of CR and F, where CR is the crossover constant and F is the mutation’s
scaling factor. The pseudo-code of producing new individuals is illustrated in Figure 3,
where N, G, D are the population size, generation, and dimension of solution respectively.

An example is presented next. Consider the following three parents:

Parent1l [5,6,7,4,9,5]
Parent2 [1,4,1,2,5, 3]
Parent3 [3,5,1, 2,1, 3]

For CR= 0.5 and F= 0.5, and assuming all generated random values are less than CR, the
offspring would be:

Offspring [5, 6, 4, 3, 3, 4]
3.3.3 Termination criterion

Different measures have been taken in the literature to set a stopping criterion, among
which one may address the maximum number of generations, maximum CPU time, and/or
convergence progress. The combination of two criteria is also employed in some cases; for
example, the program stops if either the maximum generation or a designated value of the
fitness is reached. In this paper, the maximum number of generations is considered as the
termination criterion.

Il ry, ry, r3e{l, 2,.., N}, randomly selected, except
mutually different from i
proc differentialEvolution (i, ry, Iy, I3)
jrand= floor(rand; [0,1).D+1
for(j=1;j<D;j=j+l) do
if (rand; [0,1) < CR Vv j = jrang) then
Uinie = Xesmne tF-( Xnme - Xr2nie)
else
Uigi.e = Xine
end if
end for

return U g

end proc differentialEvolution

Figure 3: The pseudo-code of producing new individuals in DE
3.3.4 Parameterisation

Other considerations for the implemented CellDE are the following:

e Population size: 100 individuals. For more information about the selection of the
population size, we refer the reader to [17].

e Neighbourhood: individuals located at North, East, West, South, Northwest, Southwest,
Northeast, and Southeast of the current solution.

e Binary tournament selection: selects two individuals randomly. The one that is fitter is
selected as a parent.

e Reproductive operator: differential evolution. Tests for real values in range [0, 1] lead
to selection of 0.05 for CR and 0.95 for F. More explanation for the values of CR and F
is presented in [18].
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Archive size: 100 individuals.
Feedback: 20 individuals.
Termination criteria: 100000 evaluations.

4. PERFORMANCE METRICS

Three metrics are implemented here for evaluating the performance of the developed
algorithm. To calculate diversity and hypervolume, the Ideal and Nadir points should be
calculated first. The vector that contains the best value of each objective in the objective
space is considered as an Ideal point. The opposite of the Ideal point is the Nadir point,
which contains the worst of objective values. In this problem, the Ideal point is a vector
that contains the minimum possible time and cost, and the maximum achievable quality. As
execution modes of activities are predefined, the Ideal and Nadir points can be calculated
easily. A project completes at the minimum time when all the activities forming the critical
path are executed in the modes with the minimum time, and it has the minimum cost when
all the activities of a project are executed in the modes with the minimum cost. The same
can be said about quality: a project has the maximum quality while all activities are
executed in the modes with the maximum quality. A brief description of each metric is
provided next.

4.1 Hypervolume metric

Zitzler and Thiele [19] introduced a metric called hypervolume, which measures the size of
the space dominated by the Pareto front. Considering a cuboid between the Ideal and Nadir
points, this indicator calculates the fraction of the cuboid that is dominated by the
obtained non-dominated solutions. Since this metric is not free from arbitrary scaling of
objectives, we evaluate this metric by using normalised objective function values.
Furthermore, the achieved Pareto front is inverted, as we are minimizing cost, time, and
the inverse of quality.

Figure 4: A hypervolume indicator in the two-objective case
4.2 Spread metric

Diversity metric A was first introduced by Deb et al. [20] and computes the non-uniformity
of spread through the Pareto front. It is defined as Equation (1).

N —1 B

d +d + X ‘d_—d‘

f | o)1

A= — — (1)
d+d +(N-1d
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where d; is the Euclidean distance of two successive points. To define the successive points
in 3-D space, the achieved front is normalised and then sorted through a lexicographical
comparator. 4 is the average of distances, and d; and d; are the distances between
bounding solutions. To define df and d|, the Euclidean distance between the first solution of
sorted front and the Ideal point, and the last solution of the sorted front and the Nadir
point, should be calculated respectively. In well distributed fronts A is zero, because d; is
equal toq and d; = d; = 0, while in other cases A would be greater than zero.

4.3 Coverage metric

Comparing two Pareto sets achieved by the implemented CellDE and the FastPGA developed
in [11], the coverage metric, first introduced in [19], is used (see Equation (2)). Zitzler and
Thiele defined the function C(X, X'), where Xand X are two sets of decision vectors, which
calculates the percent of points in X'that are dominated by at least a point in X. In our
problem a solution is dominated if there is at least one other individual with less cost and
time, and greater quality.

|{a'eX';Ea'eX':a'Za"}

CX'".X") = (2)

1
5. COMPUTATIONAL EXPERIMENTS

The CellDE algorithm was tested with multiple problems of different sizes, and the results
were compared with the solutions obtained by the FastPGA [11], an adapted version of the
original FastPGA [12] for the DTCQTP problem. Four types of networks, containing 30, 60,
90, and 120 activities respectively, were downloaded from psplib'. The procedure
implemented to generate the execution modes is the same as the one used in [9]. Each
experiment was repeated 40 times in order to restrict the influence of random effects. The
parameter settings used for the developed algorithm are described in 3.3.4, while the
parameters’ values for the FastPGA are taken from the reference paper [11]. While the
running times of two algorithms are similar, the results of the implemented performance
metrics are presented in Tables 2, 3, and 4.

#Activity CellDE FastPGA
30 0.674+0.076 0.628+0.070
60 0.605+0.032 0.570+0.081
90 0.568+0.019 0.515+0.073
120 0.512+0.054 0.462+0.065

Table 2: Mean and standard deviation of the hypervolume metrics for the sample

problems
#Activity CellDE FastPGA
30 0.466+0.076 0.662+0.051
60 0.511+0.069 0.716x+0.022
90 0.639+0.027 0.742+0.039
120 0.670+0.051 0.744+0.026

Table 3: Mean and standard deviation of the spread metrics for the sample
problems

! http://129.187.106.231/psplib
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#Activity |  cx,x7 | celbE FastPGA

CellDE ; - 24%
30 4
FastPGA 4% ; -
CellDE - 24%
60 3. H
FastPGA 9% ,
CellDE ? - 21%
90 ; :
FastPGA 5% i -
CellDE - 22%
120
FastPGA 6% ]

Table 4: Mean of the coverage metric for the sample problems

According to the size of the covered space, which is measured by hypervolume, CellDE is
more efficient than FastPGA. About 59% of the space on average is dominated by CellDE,
while this value is about 54% for FastPGA. The main conclusion that can be drawn from
Table 2 is that the difference in hypervolume of CellDeE and FastPGA statistically proves
the superiority of the Pareto front achieved by the proposed algorithm.

Regarding the spread metric, the difference between the values achieved by the two
algorithms is meaningful, and the results indicate that CellDE outperforms FastPGA on all
problems. The lower value of spread shows better distribution of the solutions; therefore
solutions achieved by CellDE are spread broadly and more uniformly through the Pareto
front.

In addition, on average 22.75% of solutions achieved by FastPGA are dominated by at least
one solution obtained by CellDE, while the opposite is 6%, according to the coverage metric
presented in Table 4. As mentioned earlier, a solution is dominated if there is at least
another solution with greater quality but less cost and time.

6. CONCLUSION

In this paper, a hybrid multi-objective cellular genetic algorithm called CellDE was
implemented to solve the time, cost, and quality trade-off problem. A set of randomly-
generated problems of different sizes was generated and solved using CellDE and a meta-
heuristic available in the literature called FastPGA. The Pareto solution set, which is
achieved by minimising time and cost while maximising the quality of a project, gives the
decision maker the opportunity to choose the best solution according to his/her
preferences. Implementing three different metrics, the performance of the proposed
algorithm was evaluated, and the results showed acceptable convergence and diversity of
the obtained Pareto front. Then a comparison was made between the obtained Pareto set
and the one achieved using FastPGA. The metrics demonstrated the comparative superiority
of CellDE over the existing FastPGA for networks of different sizes.
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