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ABSTRACT 
 

The main purposes of this paper are to enhance the understanding of manufacturing 
resources planning models under uncertain conditions by documenting the current state of 
affairs, and to stimulate a fruitful future research direction by identifying gaps between the 
relevant issues and the literature available in reputable journals. This paper is a 
comprehensive and up-to-date review of the existing literature on manufacturing resource 
planning models under uncertainty. The authors have found that the combined effects/ 
impacts of the uncertainty factors on the system parameters have yet to be thoroughly 
studied. So far no research has been conducted into developing mathematical model(s) to 
study the uncertainty issues holistically in multi-period, multiple product, and multi-stage 
environments for manufacturing resources planning in association with commonality. 
 

OPSOMMING 
 

Die primêre doel van hierdie artikel is om die insig in vervaardigingshulpbronbeplanning 
onder onsekerheid te bevorder. Die huidige stand van sake word ondersoek en gapings word 
uitgewys aan die hand van literatuur beskikbaar in gesaghebbende joernale. Die outeurs 
bevind in die studie dat die sisteemparameters en die invloed van onsekerheid daarop nog 
nie voldoende bestudeer is nie. Geen navorsing is nog onderneem om wiskundige modelle te 
ontwikkel om op holistiese wyse die impak van onsekerheid in multi-periode, veelvoudige 
produk en multi-stadium omgewing te bestudeer nie.   
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1. INTRODUCTION 
 
The fundamental concern of manufacturing resources planning is to guarantee that the 
most promising quantity of the item is released at the best time, at the lowest cost, within 
the given constraints of the system, such as availability of the needed resource(s). Planning 
in a manufacturing environment is commonly carried out on the basis of material 
requirements planning (MRP) logic [1-3]; but the MRP logic has a major shortcoming in being 
unable to deal with uncertainty. 
 
MRP, manufacturing resource planning (MRP II), enterprise resource planning (ERP), and ERP 
II are used to control production-planning activities, and have been widely implemented in 
contemporary manufacturing enterprises. They become the central systems in 
manufacturing environments within which production data such as demand, supply, 
product, inventory, accounting, costing, lead-time, and routing are kept in an integrated 
manner. The same MRP logic is used in MRP II and ERP in their production-planning modules 
[4]; thus their inability to cope with and respond to uncertainty remains, and the planned 
order release (POR) schedules are different from those generated from an MRP system [1, 
5]. Also, MRP logic does not take capacity constraints into account [6, 7]. As MRP planning 
systems do not offer a solution to these fundamental issues, planners frequently have to 
adjust their planning [8]. In addition, implementation of these systems is very expensive 
and time-consuming. According to Fortune 500 companies, it costs US$30 million in licence 
fees and US$200 million in consulting fees – not to mention additional millions in computers 
and networks – and can take three years or more before the system yields its maximum 
benefit [9]. It was estimated that the spending on ERP systems in 1998 was about US$17 
billion [10]. Therefore these planning and control tools are neither suitable nor affordable 
for SME/SMIs. 
 
Today’s manufacturing enterprises must be responsive and able to tackle uncertainty 
quickly and robustly in order to sustain and enhance business competitiveness. In order to 
respond to uncertain demand, supply, and production processes, the role and performance 
of a production planning and control system within a manufacturing enterprise is a vital 
issue [11]. 
 
In general, optimisation problems include uncertainty in the problem structures, which are 
usually defined by probability distributions. Uncertainty causes a loss of dependability in 
the output of models, and therefore constrains the applications of models, especially multi-
stage models, where uncertainty may increase and accumulate. Consequently the primary 
issues of concern in this review are: i) to identify the uncertainty factors in the 
manufacturing area, ii) to enhance the understanding of manufacturing resource planning 
models under uncertainty by documenting the current state of affairs, and iii) to instigate 
fruitful future research by identifying gaps between the relevant issues and the available 
literature.  
 
2. METHODOLOGY 
 
The criteria for choosing articles for this review are as follows. First of all, the article must 
have been published in a peer-review/archival journal, proceedings, or edited book. 
Second, to avoid never-ending revision of this article, June 2009 was selected as the cut-off 
date. Third, only articles with ‘uncertainty’ and ‘MRP’ or ‘manufacturing’ or ‘production’ 
as a part of their titles were selected. The exceptions are those articles that explicitly deal 
with ‘uncertainty’, but whose authors decided for some reason not to use ‘uncertainty’ in 
the title. The inclusion of such articles is inevitably ad hoc. Consequently it is possible that 
more such articles exist that are not surveyed in this article. Fourth, no restrictions were 
imposed on the field of the surveyed journal. This should allow a comprehensive set of 
viewpoints on uncertainty in different fields. For the mathematical modelling, the articles 
with ‘model’ and different combinations of ‘uncertainty’, ‘production/manufacturing’ and 
‘MRP’ as a part of their titles were selected. According to these criteria, an attempt has 
been made to collect all the available journal articles. However, it is always possible that 
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some articles are missing from this list. Figure 1 shows the number of articles that have 
been cited in this paper by year of publication. The article sources and names of the major 
journals are given in Tables 1 and 2 respectively. 
  

 
 

Figure 1:  Article map (by year of publication) 
 

Source Number 
Journal 92 
Proceedings 8 
Book 15 
Web 1 

 
Table 1:  Definition of uncertainty 

 
Name of the Journal Number 
International Journal of Production Economics 19 
European Journal of Operational Research 12 
International Journal of Production Research 10 
Management Science 5 
Journal of Operations Management 4 
Fuzzy Sets and Systems 4 
International Journal of Advanced Manufacturing Technology 4 
International Journal of Production Planning and Control 2 
Journal of Intelligent Manufacturing 2 
Journal of Global Optimization 2 
Other journals 28 

 
Table 2:  List of major journals 

 
3.  UNCERTAINTY 
 
‘Uncertainty’ refers to measuring the degree of difference between models and the 
respective real systems’ values, or between the estimation of variables and their true 
values. The uncertainty can be caused by the errors associated with the model itself and by 
the uncertainties of the model inputs. One of the challenges of multi-stage manufacturing 
systems is the propagation and accumulation of uncertainty, which influences the 
conformity of the outputs. Modern manufacturing enterprises face increasing pressure to 
respond to production dynamics caused by the disruption of uncertainty [12]. This section 
reviews the perspectives sources and factors for uncertainties in manufacturing systems.  
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3.1  Perspectives, sources, and factors of uncertainty 
 
Uncertainty means different things to different people. For example, the error-estimation 
for a measurement is referred to as uncertainty [13]. Yen and Tung [14] attributed 
uncertainty mainly to a lack of perfect understanding with regard to phenomena or 
processes. Ayyub and Gupta [15] characterised uncertainty as an inseparable companion of 
any measurement at the experimental level, and as the vagueness and incompleteness of 
understanding of complex real problems at the cognitive level. Zhao et al. [16] defined 
uncertainty as the differences or errors between models and reality. Oberkampf et al. [17] 
described uncertainty as a potential deficiency in any phase or activity of a modelling 
process due to lack of knowledge. Delaurentis and Mavris [18] defined uncertainty as 
incompleteness in knowledge (either in information or context) which causes model-based 
predictions to differ from reality in a manner described by some distribution functions. 
Zimmermann [19] defined stochastic uncertainty as the unknown of the future state of a 
system due to lack of information, and fuzziness uncertainty as the vagueness concerning 
the description of the semantic meaning of events, phenomena, or statements themselves. 
Some researchers referred to uncertainty as a form of disturbance [20-22]. More definitions 
of uncertainty found in the literature are listed in Table 3. 
 
Definition Ref. 
Uncertainty is defined as any unpredictable event that disturbs the production 
process in a manufacturing system that is planned by MRP, MRP II, or ERP system. 

[5] 

Uncertainty is defined as any unplanned events that occur during production, 
which disrupt orders execution. 

[12] 

Uncertainty can be defined as any unpredictable event in manufacturing 
environments that disturbs operations and performance of an enterprise. 

[23] 

Uncertainty can be defined as any unpredictable event that disturbs the 
operation and production in a manufacturing system. 

[24] 

Uncertainty is the dissimilarity between the amount of information required to 
execute a task and the amount of information already infatuated. 

[25] 

Situation where the current state of knowledge is such that (1) the order or 
nature of things is unknown, (2) the consequences, extent, or magnitude of 
circumstances, conditions, or events are unpredictable, and (3) credible 
probabilities to possible outcomes cannot be assigned. 

[26] 

Degree to which available choices or the outcomes of possible alternatives are 
free from constraints. Situation where neither the probability distribution of a 
variable nor its mode of occurrence is known. 

 
Table 3:  Definition of uncertainty 

 
The definitions in the literature indicate that context and intent are important factors in 
determining the viewpoint taken. This is not surprising, since uncertainty is present in all 
engineering models, regardless of the type of phenomena under study. Control system 
design, structural design, and financial forecasting are examples (both within and outside 
the bounds of engineering) of the wide range of activities where uncertainty modelling and 
management play a central role. 
 
An important part of managing uncertainty is identifying as many sources/factors of 
uncertainty as possible. Koh and Saad [12] identified eight uncertainties that are most 
likely to affect customer delivery performance. The factors pertinent to uncertainty 
reported in different issues of publications are summarised in Table 4. 
 
Ho [27] categorises uncertainties into two groups: (i) environmental uncertainty, and (ii) 
system uncertainty. Environmental uncertainty includes uncertainties outside the 
production process, such as demand uncertainty and supply uncertainty. System uncertainty 
is allied to uncertainties within the production process, such as operation yield uncertainty, 
production lead-time uncertainty, quality uncertainty, failure of production system, and 



 21

changes to product structure, to mention a few. Uncertainty can also be classified 
differently from the viewpoint of its sources, as below: 
i. Natural uncertainty, also referred to as inherent uncertainty and physical randomness, 

which is due to the physical variability of a system [14, 28, 29] 
ii. Model uncertainty due to simplifying assumptions in analytical and prediction models, 

simplified methods, and idealising representations of real performances [14, 18, 28, 
30, 31] 

iii. Measurement uncertainty resulting from the limitation of measurement methodologies 
and the capability of measurement systems [14, 18, 29] 

iv. Operational and environmental uncertainty [14, 18] 
v. Statistical uncertainty due to incompleteness of statistical data and the use of sampled 

information to estimate the characteristics of these parameters [28] 
vi. Subjective uncertainty related to expert-based parameter selection, human factors in 

calculation, fabrication, and judgment [28] 
 

Factor(s) of uncertainty  Reference
System uncertainty [32-35]
Lead-time uncertainty [11, 36-41]
Environmental uncertainty, supply uncertainty [42-44]
Operation yield uncertainty [45-47]
Interrelationship between levels [48]
Demand uncertainty [11, 33, 37, 38, 42, 49-65] 
Probabilistic market demand and product sales price [46, 57, 66, 67] 
Capacity [48, 55, 57, 68] 
Resource breakdown / uncertainty [11, 56, 59, 69, 70] 
Changing product mix situation [71]
Labour hiring, labour lay-offs [67]
Quantity uncertainty [72, 73]
Cost parameters [41, 68]
Quality [41, 47, 64, 74] 

 

Table 4:  Factors of uncertainty 
 

The model uncertainty is further classified as i) input uncertainty (referred to as ‘input 
parameter uncertainty’), external uncertainty, and precision uncertainty [30, 31]; ii) bias 
uncertainty, which is induced in transforming the physical principles of scientific theory 
into analytical or raw models for engineering use, and in transforming the analytical or raw 
models into numerical simulation models [31]; iii) model parameter uncertainty, arising 
from limited information in estimating the characteristics of model parameters [28, 75]; iv) 
model structure uncertainty [76], which is due to the assumption and simplification of the 
model structure. 
 
4.  MEASURES FOR AND EFFECTS OF UNCERTAINTY 
 
Uncertainty can be measured by the frequency of its occurrence, and by analysing the 
relative contribution and resulting effect on delivery performance. It can quantify whether 
the impact is minor or major. 
 
Uncertainties in manufacturing have heterogeneous effects due to the interrelationships 
between resources and operations. The lead-time and demand uncertainties are 
individually and interactively significant determinants of system performance [38]. 
 
A high level of lead-time and demand variability has a strong effect on both the level of 
optimal safety lead-times and optimal safety stocks. In the event of high demand variability 
and low lead-time variability, the lowest costs are obtained by using safety stocks. In cases 
with simultaneously high variability in demand and lead-time, the lowest cost was obtained 
by using safety lead-times. When uncertainty in processing time increases, the algorithmic 
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scheduling policies become complex [77]. Again, increasing manufacturing flexibility leads 
to increased performance and to lower uncertainty [78]. 
 
Koh and Saad [1] have shown that poor supplier delivery performance, uncontrolled 
schedules/work-to-list, machine capacity shortages, finished products not being delivered, 
unacceptable product quality, and engineering design changes during or after production 
have significant effects on late delivery. The causes of uncertainty have compound knock-
on effects on late delivery. Compound effects are more difficult to control, compared with 
knock-on effects. The occurrence of uncertainty at a different time does not change the 
characteristic and nature, but may change the effect.  
 
Many conceptual and mathematical models are proposed and used to manage competitive 
production/manufacturing under conditions of uncertainty. This section reviews the 
factors, their effects, and the models found in the literature. 
 
4.1  Conceptual models under conditions of uncertainty 
 
Various techniques are used to tackle the effect of uncertainty, such as overtime 
production, subcontracting, outsourcing, holding safety stock, and keeping safety lead-
time. These techniques are adopted to minimise the effect of uncertainty on delivery to 
the customer. Buffering and dampening are well-known techniques [1, 11, 20-22]. The 
buffering technique is a more physical arrangement, such as inventory buffer; while the 
dampening technique is a relatively intangible arrangement, such as safety lead-time [11, 
79]. 
 
Safety stock and safety lead-time are the key robust techniques used by many researchers 
[73]. This justifies the research effort in applying safety stock or safety lead-time to 
manage uncertainty. But more system nervousness might be produced when using safety 
stock [80]. This finding aligns with the conclusion from Ho et al. [42]. Buzacott and 
Shanthikumar [81] found that the use of safety lead-time is preferred over safety stock 
when it is possible to make accurate forecasts of future shipment requirements over the 
lead-time. These findings limit the robustness of safety stock and safety lead-time, given 
the constraint of the lead-time variation information [11]. Within the MRP controlled batch-
manufacturing environment (using simulation modelling), Guide and Srivasta [73] and Koh 
et al. [79] suggested the use of safety stock when faced with quantity uncertainty, or 
safety lead-time when faced with timing uncertainty. Overtime and multi-skilling labour 
techniques are also used by practitioners, although they have conflicting effects on delivery 
performances [79]. SMEs usually apply fire-fighting techniques to deal with uncertainty 
[79]. This implies that they do not manage uncertainty systematically, and hence do not 
prepare themselves for the future, when the same uncertainty might recur [1]. 
 
Vargas and Metters [52] proposed a ‘dual-buffer’ heuristic: the first for triggering 
production, and the second for replenishing stock internally. This outperforms a single 
buffer heuristic in tackling demand uncertainty. Ho et al. [42] developed an uncertainty-
dampening framework to reduce system nervousness caused by external supply uncertainty, 
external demand uncertainty, and internal supply uncertainty. It was found that holding 
safety stock, safety capacity, and safety lead-time, as well as rescheduling, are useful to 
buffer and dampen these uncertainties. Ho and Carter [50] simulated static dampening, 
automatic rescheduling, and cost-based dampening techniques to tackle external demand 
uncertainty. They concluded that system improvement is dependent on the appropriate use 
of dampening techniques and lot-sizing rules. Holding safety capacity and rescheduling 
were also found to be the common buffering and dampening techniques used by many 
practitioners [11]. 
 
Pagell and Krause [82] suggested that there is no relationship between the measures of 
environmental uncertainty and operational flexibility, nor is there any relationship between 
an enterprise’s performance and its effort to align the level of operational flexibility with 
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its external environment. It means that fitness of flexibility in managing uncertainty 
depends on specific types of uncertainty and on an enterprise’s environment.  
 
Enns [83] investigated the effects of forecast bias and demand uncertainty in a batch 
production environment using integrated MRP planning and an execution test bed. The 
effects of uncertainty on delivery performance in an MRP-controlled batch manufacturing 
environment with multi-product and multi-level dependent demand is modelled using 
simulation [24]. Also an MRP order release timing logic is developed and modelled with a 
unique method called the tagging configuration, which is conceptualised from the parent 
and child in MRP systems [12]. The knowledge management approach is used by Koh and 
Gunasekaran [11] to manage uncertainty in manufacturing enterprises that use MRP, MRP II, 
or ERP for production planning. Manufacturing enterprises should simultaneously use both 
tacit knowledge of uncertainties and buffering and dampening techniques, along with the 
explicit knowledge that is generated by the intelligent agent, to manage uncertainty [11]. 
The effectiveness of the buffering and dampening techniques for specific types/sources of 
uncertainties, and their effects on delivery performance, are also investigated. 
 
Newman et al. [84] proposed a dynamic equilibrium model to demonstrate the trade-offs 
and interrelationships between manufacturing flexibility innate in an enterprise’s processes 
and infrastructure, the uncertainties faced by the enterprise, and the way in which the 
enterprise’s processes and infrastructures are buffered with inventory, lead-time, and 
capacity. A trade-off between flexibility and uncertainty is required to achieve system 
agility [85].  
 
Molinder [86] proposed simulated annealing to find good safety stock and safety lead-times 
under a stochastic demand and lead-time. He analysed the amount of lead-time and 
demand variability and the influence of the stock-out cost/inventory holding cost ratio. 
Mayer and Nusswald [41] proposed a simulation model with integrated quality factors with 
manufacturing cost and lead-times. The models considered a single stage production 
system. 
 
With the existing manufacturing system’s structures and constraints, considering also 
system reconfiguration and restructure, an agent-based approach was presented by Anosike 
and Zhang [71] to achieve optimised use of resources in a situation of changing demand 
distribution and product mix. A business model to manage the uncertainty in 
manufacturing, which is planning and scheduling of production using MRP, MRP, II or ERP, 
was proposed by Koh and Saad [1]. How, and to what extent, uncertainty disturbs was 
examined, and they diagnosed the underlying causes for uncertainty through a 
questionnaire survey.  
 

The conceptual techniques are summarised in Table 5. 
 

Technique Reference
Buffering  [1, 11, 20-22, 24, 42, 73, 79, 81] 
Dampening [1, 11, 20-22, 24, 42, 50, 73, 79, 81]  
Overtime labour, multi-skilling labour, and 
fire-fighting techniques (SMEs usually apply) 

[1, 79]

Overtime production [1, 11, 72, 79]
Subcontracting and outsourcing [11, 72]
Dual-buffer [11, 52]
Safety capacity and rescheduling [11, 42]
Knowledge management approach [11]
Questionnaire survey [1]
Execution test bed [83]
Simulation model [24, 41, 86]
Agent-based approach [71]
Dynamic equilibrium model [84, 85]

 

Table 5:  Conceptual techniques for uncertainty 
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Conceptual models are widely used in design and manufacturing. However, no models can 
completely capture all the characteristics of the simulated physical system. It is asserted 
that the values of the physical variables that describe the behaviour of the physical system 
in the Heisenberg uncertainty principle are impossible to specify accurately and 
simultaneously. Heisenberg's uncertainty principle states that it is impossible to know both 
the exact position and the exact velocity of an object at the same time.  
 
Increased integration and simplification of both technologies and infrastructures can 
decrease internal uncertainty. Better integrated buyer/vendor relationships have been 
shown to reduce external uncertainty. The use of computers and numerical control 
manufacturing technology has also provided a potentially cost-effective means of 
accommodating manufacturing uncertainty through enhanced flexible automation.  
 
4.2  Mathematical models under uncertainty 
 
In order to address uncertainties, several mathematical models have been proposed. 
Examples include the interval model, the convex model, fuzzy sets, and random models. 
The interval model, introduced in the early 1900s, can give rigorous bounds for a solution 
when applied to different fields [87-93]. The convex model extended the interval model 
from one dimension to multiple dimensions, and has been used in construction engineering, 
mechanical engineering, structural engineering, mechanics, and other fields [94-98]. Fuzzy 
sets, introduced by Zadeh [99], were initially used in fields such as economics and the 
social sciences to address the uncertainties introduced by imprecise and vague information. 
Later they were extended to engineering areas [100-102]. The random model represents 
uncertainty through a probability mass function or a probability density function, and also 
has many applications in engineering [103, 104]. This section reviews the mathematical 
models within the limits of this article. 
 
Mathematical programming (MP) approaches to cope with capacity constraints were devised 
by Billington et al. [43] and Chung and Krajewski [105]. They considered the lead-time as 
an implicit outcome of the alteration of demand and finite capacity. The model mainly 
deals with the scheduling problem in a multi-stage production system with some constraints 
but without any uncertainty. This moved many authors to substitute planning models in a 
rolling schedule context [8]. Spitter et al. [8] talked about the timing of production during 
the planned lead-times of items, and investigated the effects of production timing on 
safety stocks and inventory costs. Similarly, Belvaux and Wolsey [106] produced assorted 
models for lot sizing under capacity constraints, where the lead-times are implicit outputs 
of the optimisation procedure. Bourland and Yano [49] developed a multi-objective 
optimisation model that considers capacity slack, safety stock, and overtime, and that aims 
to minimise the expected cost per unit time of inventory, overtime, and set-up costs 
(where applicable). These models incorporated fluctuation in demand only. Ould-Louly and 
Dolgui [36] investigated a multi-period and multi-component supply planning problem for 
assembly systems with random lead-time and fixed demand. The lead-times of different 
types of components followed the same distribution in the model. 
 
A manufacturing resource planning algorithm, matrix based formulation, which can handle 
limited production capacity, was presented by Harris et al. [107], but no information 
imperfection. Shabbir et al. [68] addressed a multi-stage capacity expansion problem with 
uncertainties in demand and cost parameters, and economies of scale in expansion costs. 
Choi and Enns [108] developed the relationship to establish the lot-sizes that minimise costs 
for single and multiple product cases under the particular production rate, as well as the 
link to determine both lot sizes and throughput rates that maximise profits. The model 
deals with variation in the arrival times of components; all other parameters are known 
with certainty. The combinatorial manufacturing resource planning (CMRP) model, with its 
concept of balancing machine productivity and human capability, and its step-by-step 
algorithm to reach a maximum profit solution under deterministic market demand, was 
constructed by Lan and Lan [66]. They extended the applicability of the CMRP model to 
achieve optimum manufacturing resource planning under the forecasts of probabilistic 
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market demand and product sales price. Kim and Hosni [48] formulated a multi-level 
capacitated optimisation model and a relatively efficient heuristic in the MRP II 
environment, which considers work center capacities and interrelationship between levels 
in lot-sizing computation. The model provides an optimal lot size plan for small problems in 
deterministic situations, and does not allow for shortages – which is unrealistic. Escudero 
and Kamesam [51] originated a stochastic programming model for MRP with uncertainty in 
demand, which is given as a random parameter. Though the models considered multiple 
levels, an holistic view of uncertainty is absent. 
 
Under demand uncertainty, i) Ben-Daya and Noman [60] developed integrated inventory 
inspection models with and without the replacement of nonconforming items discovered 
during inspection; ii) Arruda and do Val [59] presented a discrete event model of a multi-
stage, multi-product production and storage, in which a single facility is used to produce 
various products; and iii) Lusa et al. [109] presented a multi-stage scenario stochastic 
optimisation model when planned working time is considered as annualised hours (AH). But 
these articles failed to attend to more frequent uncertain factors – such as lead-time, 
price, etc. – and their combined disruptions and interactions. 
 
Grabot et al. [54] suggested the F-MRP (Fuzzy-MRP) model to handle the uncertainty and 
imprecision of demand passing through all the MRP II steps (material requirement planning, 
load balancing, scheduling). Mula et al. [55] presented a new linear programming model for 
medium-term production planning in a capacity constrained MRP, multi-product, multi-level 
and multi-period manufacturing environment. Mula et al. [57] developed a fuzzy production 
planning model to generate production plans under conditions of uncertainty in important 
parameters such as market demand, capacity, and costs data. Interaction and combined 
impacts were not included in the conclusions. 
 
Xu and Li [69] created a modelling schema to address the manufacturing resource for 
process planning, especially for process reasoning. A robust optimisation model for a 
medium-term planning horizon was developed by Leung et al. [67] to solve multi-site 
production planning problems with uncertain data. Robust optimisation includes two 
distinct constraints: a structural constraint, and a control constraint. Structural constraints 
are formulated using the concept of linear programming, and input data are free of any 
noise; while control constraints are taken as an auxiliary constraint influenced by noisy 
data. The proposed model is more practical for dealing with uncertain economic scenarios 
than with production parameters. 
 
Models for the optimum batch quantity in a multi-stage system with rework process were 
developed for two different operational policies by Sarker et al. [110]. The mathematical 
expression of this model was corrected by Cárdenas-Barrón [111]. The models deal with 
optimal batch-sizing when rework is considered in a stable system. A model of the EOQ type 
was developed and analysed by Dobos and Richter [112], in which a producer serves 
stationary product demand. This demand is met by producing or procuring new items, as 
well as by recycling some of the used products that come back to the producer at a 
constant rate. They examined a production/recycling system with a predetermined 
production-inventory policy, and assumed that there was no difference between newly-
produced and recycled items – which is not realistic. Dobos and Richter [113] extended the 
model with a quality parameter. The models mainly emphasised inventory issues rather 
than the production system. 
 
Kogan and Lou [114] considered a multi-stage, continuous-time dynamic model for 
multistage production and a one-product-type system, which is an extension of the classical 
single-period newsboy problem. Products flow from one stage to the next. It is assumed 
that the demand during the planning horizon is unknown, but that the cumulative demand 
at the end of the planning horizon is known. The objective is to adjust production rates 
during the planning horizon in order to minimise total costs. No uncertainty is considered, 
apart from imperfect in demand. 
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Kim and Gershwin [47] proposed the Markov process model that integrated quality and 
productivity. They considered only one line of production, so this cannot be extended or 
applied to multiple production lines. Dalal and Alghalith [46] modelled for production 
decision-making under price and production uncertainty.  
 
Tang and Grubbström [65] investigated the possibility of establishing a method for a Master 
Production Schedule (MPS) under stochastic demand, evaluated the replanning action, and 
provided a model for estimating appropriate MPS parameters (like length of replanning 
interval, length of time to freeze the plan, etc.). Uncertainty in parameters other than 
demand was ignored. Leung [115] generalised a number of integrated models with or 
without lot streaming and with or without complete backorders under the integer–multiplier 
coordination mechanism, and then individually derived the optimal solution to the three- 
and four-stage model. The models confirm parameters without uncertainty. 
 
Chen and Chang [116] introduced a Fuzzy Economic Production Quantity (FEPQ) model with 
defective results that cannot be repaired. In this model, a fuzzy opportunity cost, and 
trapezoidal fuzzy costs for either crisp production quantity or fuzzy production quantity, 
are considered. 
 
Balakrishnan and Cheng [56] reviewed cellular manufacturing, an important application of 
Group Technology (GT), under conditions of multi-period planning horizons, with demand 
and resource uncertainties. They addressed the change in demand over time caused by 
product redesign and uncertainties due to volume variation, part mix variation, and 
resource unreliability. 
 
Based on the authors’ observations, the broad classifications of the uncertainty models are: 
conceptual models (yield factor, safety stock, safety lead-time, etc.), artificial 
intelligence-based models (fuzzy set theory, fuzzy logic, multi-agent systems, etc.), 
simulation models (the heuristic method, network modelling, queuing theory, etc.) and 
analytical models (mathematical programming, stochastic programming, etc.). Forty-nine 
articles are cited in this section, which is roughly 43% of the total citations. Figure 2 shows 
the number of articles surveyed for mathematical models, and their distribution by year of 
publication. The authors believe that this collection and distribution of articles is sufficient 
to ensure the identification of the ‘flavour of the month’, and to identify the gaps in the 
literature in the area of concern. (In Appendix A the authors compare some major models.) 
 

 
 

Figure 2:  Distribution of articles surveyed for mathematical models 
 
5.  DISCUSSION AND RECOMMENDATIONS 
 
Manufacturing planning and control entails the acquisition, use, and allocation of limited 
resources in production activities so as to satisfy customer demand over a specified time in 
the most efficient and effective way. Planning and control problems are inherently 
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optimisation problems, where the objective is to develop a plan that meets demand at a 
minimum cost, or that meets demand and maximises profit. The available planning tools 
(MRP, MRP II, ERP, ERP II, etc.) are very good for scheduling, but completely ignore the 
uncertainty, capacity, and component commonality issues. Managing uncertainty effectively 
and efficiently requires balanced planning and control. The consideration of uncertainty is 
vital to harvest benefits and to maintain competitive outputs. One must understand which 
uncertainty to tackle, and how to tackle it, in order to obtain the maximum improvement 
of the system.  
 
Any planning problem starts by specifying the customer demand that is to be met by the 
production plan. In most contexts, future demand is only partially known at best, and often 
is not known at all. Consequently, one relies on a forecast of future demand. To some 
extent, any forecast is inevitably inaccurate, and one must decide how to react to this 
demand uncertainty. Most of the optimisation models described in articles treat demand as 
being known; as such they must be periodically revised and rerun to account for forecast 
updates. In some studies, the demand is considered as stochastic, or random data as an 
independent or dependent variable. The identification of the relevant costs is also an 
important issue. For production planning, one typically needs to determine the variable 
production costs, including setup related costs, inventory holding costs, and any relevant 
resource acquisition costs. There might also be costs associated with imperfect customer 
service, such as when demand is back-ordered. There are limited production resources that 
cannot be stored for any length of time. Also, there may be uncertainty associated with the 
production function, such as uncertain yields or lead-times. The selection of the time 
period (big bucket) and planning horizon (small bucket) is another event that requires 
painstaking attention. The choice of planning horizon, appropriate cost parameters, the 
lead-times, service level, safety stocks, input quality, etc. under uncertainty need to be 
analysed in an holistic manner, and incorporated into models for production and resource-
related decisions. 
 
In earlier studies [69, 115-136], the benefits of component commonality in manufacturing 
systems were associated with a decrease in inventory, lowered the costs of proliferated 
product lines, mitigated the effects of product proliferation on product and process 
complexity, reduced the cost of safety stock, decreased the set-up time, increased 
productivity, improved flexibility and permitted greater operating economies of scale. It 
alsofacilitated quality improvement, enhances supplier relationships, reduces product 
development time, risk,-pooling and lead-time uncertainty, simplifies planning, schedules, 
and controls, streamlines and speds up product development process, lowersthe setup and 
holding costs, offers high variety while retaining low variety in operations, lowered the 
manufacturing cost, and obtains design savings. Jans et al. [137] validated the importance 
of the development costs and unit production costs in the component commonality 
decision. But the commonality issue is completely ignored in the existing models.  
 
From the study and discussion, it is clear that very little research has been conducted in the 
field of multi-stage production systems under uncertainty and commonality. So far no 
research has been done into developing any holistic model to study the uncertainty issues in 
multi-period, multiple products, and multi-stage environments for manufacturing resources 
planning. The effects of the incorporation of component commonality in the aforesaid 
models, and on the system parameters, remain unexplored, and thus need research 
attention. 
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Appendix A: Comparison of mathematical models 
Study Model/problem Level Factor of uncertainty 
Billington et al. [43] and 
Chung and Krajewski [105] 

Production scheduling problem Multistage None  

Spitter et al.[8] Timing production in LP model Multistage Demand 
Belvaux and Wolsey [106] Lot-sizing problem Multistage Demand 
Bourland and Yano [49] Economic lot scheduling 

problem 
Single 
stage 

Demand 

Kim and Hosni [48] Capacitated optimization model Multistage None 
Harris et al. [107] Matrix based formulation for 

MRP problem 
Multistage Demand 

Shabbir et al. [68] Multi-period investment model Multistage Demand and cost 
Choi and Enns [108] Capacity-constrained lot-sizing 

problem 
Multistage  Arrival time of 

component is uncertain 
Ould-Louly and Dolgui [36] Multi-component supply 

planning problem 
Multistage Lead-time 

Lan and Lan [66] Combinatorial manufacturing 
resource planning (CMRP) 
model 

Multistage Demand & sales price 

Grabot et al. [54] Fuzzy MRP model Multistage Demand 
Mula et al. [55] Linear programming model Multistage Demand, capacity & 

cost Mula et al. [57] Fuzzy production planning 
model 

Multistage 

Xu and Li [69] Meta modelling paradigm Multistage None 
Leung et al. [67] Robust optimisation model Multistage Capacity, workforce, 

storage & resource 
Ben-Daya and Noman [60]  Integrated inventory inspection 

models 
Multistage Demand 

Arruda and do Val [59]  Discrete event model Multistage Demand 
Sarker et al. [110] Operational policies models Multistage None 
Lusa et al. [109] Scenario stochastic 

optimisation model 
Multistage Demand 

Dobos and Richter [112] Production recycling system Multistage None 
Dobos and Richter [113] Production recycling system Multistage Quality 
Kogan and Lou [114] Continuous-time dynamic 

model 
Multistage Demand 

Chen and Chang [116] Fuzzy Economic Production 
Quantity (FEPQ) model 

Multistage Production quantity 

Dalal and Alghalith [46] Production decision Multistage Price and productivity 
Tang and Grubbström [65] Master Production Schedule Multistage Demand 
Leung [115] Integrated production inventory 

system 
Multistage No 

Sarker et al. [110] and 
Cárdenas-Barrón [111] 

EPQ inventory model Multistage None 

Kim and Gershwin [47] Markov process model Multistage Quality & productivity 
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