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ABSTRACT 
 
This paper studies a new continuous single facility location problem. In this problem the 
locations of the customers (or the previously located facilities) vary, randomly, and the 
objective is to locate a new facility so as to maximise the mean service level considered to 
be the mean number of the customers whose distances from the new facility are smaller 
than a predefined desirable distance. The problem is formulated, and then an approximate 
solution method is presented to solve the problem. Also, we apply our results to locate the 
capital of Iran as a case study. 
 

OPSOMMING 
 
Die navorsing behandel ‘n enkele vestigingsvraagstuk.  Die probleem vereis bepaling van 
die maksimum waarde van gemiddelde dienspeil aan verbruikers teen ‘n agtergrond van 
toevalligverdeelde afsetpunte.  ‘n Benaderde  oplossingsmetode word voorgehou.  By wyse 
van illustrasie word die metode gebruik om die gewensde geografiese posisie van die 
Iranese hoofstad te bepaal. 
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1. INTRODUCTION  
 
Facility location problems are about optimally locating new facilities to serve previously 
located customers or old facilities. We refer to the books by Daskin [2], Drezner [3], or 
Drezner & Hamacher [4] for an introduction to deterministic facility location theory, and to 
Louveaux [5] and Snyder [6] for a comprehensive survey of issues and models regarding 
stochastic and uncertain facility location. 
 
In this article we study a new continuous single facility location problem called the Facility 
Location based on Service Level (FLSL) problem. We explain it below. 
 
 Parameters: 
 

:m  The number of customers or previously located facilities. 
 ii YX , : The location of the ith customer (or the ith previously located facility) where 

,,...,1,, miYX ii   are arbitrary random variables. 

:dd  A given parameter representing the desirable distance for all the customers.  
 
 Decision variables: 
 
 yx, : The location of the new single facility.  
 
 Objective: 

 
Maximisation of the mean number of customers whose distances from the new facility are 
smaller than the desirable distance dd .  
 
Generally service level is a measure of the performance of a system, and is defined as the 
number of well-served customers out of the total number of served customers; the ratio 
between the services that are desirable for customers and the total services; or the 
percentage of fulfilled services out of all services ordered in the system. In fact, in our 
problem we can define the service level of the new facility as the number of customers 
whose distances from the new facility are desirable, and so the objective of our problem 
can be interpreted as the maximisation of the mean service level of the new facility. The 
desirable distances of customers may be different, but to simplify the problem without loss 
of generality we assume that all the desirable distances are the same. We also assume that 
all the distances are Euclidean, although other types of distances can be considered. 
 
To compare our new model with the old single facility location models, we present a brief 
review of the most important traditional approaches. Traditionally, under assumptions 
similar to our problem, when the locations of customers are precise, i.e. 

     miyxYX iiii ,...,1,1,,Pr  , locating the new facility is considered by means of several 
classical problems. Two of the most important ones are the 1-Median and 1-Center 
problems. The 1-Median (or Weber or MinSum) problem can be written as: 
 

 
    



m

i
iii

yx
yxyxdw

1,
,,,min          1-Median (1.1) 

 
where  22:d  is a meter on 2  and is used to measure the distances between the 
new facility and old facility locations. Also, miwi ,,1,  , are the weights considered for 
the old facilities to encounter their relative importance with respect to the new facility. 
Two common choices for the distance meter d  are the rectilinear distance RLd  (or 
Manhattan distance or taxicab metric) and the Euclidean distance Ed , which are defined 
respectively as: 
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      
10000 ,,,, yyxxyxyxdRL   

      
20000 ,,,, yyxxyxyxdE  .  

where 2:.
p

 is the pl  norm on 2  and defined as     ppp

p
yxyx

1

,   for 1p . 

 
The 1-Center (or MinMax) problem can be formulated as: 
 

 
     iii

miyx
yxyxdw ,,,maxmin

,1, 
.            1-Center (1.2) 

 
Both the 1-Median and 1-Center problems can be straightforwardly extended for cases that 
the locations of the customers are random as: 
 

 
    











m

i
iii

yx
YXyxdw

1,
,,,Emin Stochastic 1-Median  (1.3) 

 
     




 iii

miyx
YXyxdw ,,,maxEmin

,1, 
 Stochastic 1-Center  (1.4) 

 
For more references and details concerning the above models, we refer to Daskin [2], 
Drezner & Hamacher [4], and Snyder [6]. 
 
As we see in models (1.1) to (1.4), their goals are to locate the new facility such that a 
general performance measure – e.g. the sum or maximum of transportation costs or total 
weighted distances – is optimised. However, they do not directly attempt to improve some 
service level based on customer desirability. Consequently we are motivated to introduce 
and study the FLSL problem in this paper. This study could be very beneficial in the field of 
industrial engineering and management because in the past two decades the design of 
systems that consider customer desirability have gained more and more attention from 
companies and supply chains. 
 
The rest of this paper is organised as follows. Section 2 studies the problem and presents 
an exact solution method. Section 3 gives an approximate method. In Section 4 the case 
study is presented, and several experiments are conducted to compare the new model with 
traditional models. Section 5 concludes the paper. 
 
2.   FORMULATION AND EXACT SOLUTION METHOD  
 
The FLSL problem can be formulated as the following optimization problem: 
 

 
  yx

yx
N ,

,
Emax   FLSL  (2.1) 

 
where  yxN ,  denotes the number of satisfied constraints in the set of uncertain constraints 
 
     middyYxXS iiyx ,...,2,1,, 

2,  . 

 
It should be noted that this problem is related to the yield maximisation problem (YM 
problem), in which we have several hard constraints, and we try to maximise the 
probability that all constraints are satisfied (see Ahmadi-Javid & Seifi [1] for more 
details);while in the FLSL problem we have several soft constraints and we try to maximise 
the mean number of satisfied constraints. 
 
To solve the optimisation problem (2.1), first the expectation   yxN ,E  should be evaluated 
practically. The following proposition shows how this expectation can be computed. 
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Proposition 2.1. 
 

 
     
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,
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Proof. The random variable  yxN ,  can be written as the sum of the random variables 

miIi ,...,1,  , 
 

  



m

i
iyx IN

1
,  

 
where miIi ,...,1,  , are defined as 
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Furthermore, we have: 
 
     middyYxXI iii ,...,1,,PrE

2
 . 

 
Thus, the proof is finished. 
 
Model (2.1) is a nonconvex optimisation problem with only two decision variables. When 
the joint support of the random variables miYX ii ,...,1,,  , is bounded, the global optimum 
can be obtained easily by the direct search method with a given accuracy. 
 
The next proposition presents a special case of the FLSL problem when the locations of the 
customers are deterministic. In this case the FLSL problem can be formulated as a mixed 
integer convex program. 
 
Proposition 2.2. When      miyxYX iiii ,...,1,1,,Pr  , the FLSL problem can be written as 

the following mixed integer convex program: 
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Proof. The proof follows from Proposition 2.1. 
 
3. APPROXIMATE SOLUTION METHOD  

 
The optimisation problem given in (2.1) is a nonconvex program, and cannot be solved 
globally unless we use the direct search method. Also, the evaluation or estimation of 

  yxN ,E  is very time-consuming. Therefore, in this section we present an efficient 
approximate method. To develop this method, first we present an approximation for 

  yxN ,E , and then we use it to approximate Model (2.1) by a mixed integer convex 

program. The approximation for   yxN ,E  is: 

 
    yxyx nN ,,E   

 
where  yxn ,  is the number of satisfied constraints in the set 
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     miyYxXddS iiyx ,...,2,1:0,- E 
2

2
2

,  . 

 
Note that the set  yxS ,  is obtained from  
 

    miyYxXslS iiyx ,...,2,1:0,- 
2

2
2

,   

 

by replacing the terms   2

2
2 ,- yYxXdd ii  , mi ,...,2,1 , with their expectations.  

 
Now Model (2.1) can be approximated by the program: 
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  (3.1) 

 
where M  is a big number. The next proposition studies this problem. 
 
Proposition 3.1. Model (3.1) can be written as the following mixed integer convex program: 
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 (3.2) 

 
Also, the above formulation is equivalent to the formulation given in Proposition 2.2 when 
the locations of customers are deterministic. 
 
Proof. For the ith constraints of model (3.1) we have: 
 

        22222

2
E,E ddyYxXddyYxX iiii  . 

 
By expectation and reformulation, 
 

     22

2
22

2
)var()var(),E()E(,E ddYXyYxXddyYxX iiiiii   

 
Thus, the proof is completed. 
 
4. CASE STUDY AND COMPUTATIONAL RESULTS 
 
This section presents a case study for the FLSL problem. Here the location of the capital of 
Iran is found based on service level. The service level is considered as the number of 
persons who can travel to the capital by covering a desirable distance. Indeed, the location 
of a person who decides to travel to the capital (from the perspective of the designer) is 
not completely known, and also may be dynamically changed, so the locations of persons 
are considered uncertain. To model this uncertainty, we assume that location of each 
person is uniformly distributed in a rectangular area. The people of Iran are classified into 
35 classes by considering their location resemblance. Figure 1 depicts these 35 rectangles.  
 
The objective is to find the location of the capital such that the mean number of people, 
whose distances from the capital are less than a desirable distance, is maximised. Using 
model (2.1) the optimal location of the capital is obtained for 500  dd  by a direct search 
to an accuracy of 25.0  (each unit of the desirable distance is equal to 25 km). The mean 
number of satisfied persons in relation to each point in the direct search method is 
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approximated by a Monte Carlo simulation of 10,000 samples – a number that is found to be 
sufficient for this problem, as the results were not sensitive beyond 10,000. Also, the 
approximate locations of the capital are found by model (3.2) for 500  dd . The model of 
the approximate method is solved by Lingo 8, and the direct search and simulation 
procedures are coded in Visual Basic 6 and implemented in Excel spread sheets. For each 
case the solution time for the exact method is about 3 hours, and the solution time by 
Lingo 8 is less than 5 seconds (CPU: Pentium 4 with 2.8 GB processor, RAM: 512 MB). 
 
The results of the exact and approximate methods for several values of desirable distance 
are given in Table 1. From this table it can be seen that the approximate method can give 
suitable results. 

 

 
Figure 1: The plot of the rectangles of the 35 possible locations for the people of Iran 

 

dd  
Exact 

method 
Approximate 

method 

0+ 0.00 0.00
2.5 0.10 0.10
5 0.20 0.16
9 0.33 0.32
15 0.52 0.51
20 0.65 0.64
25 0.74 0.68
30 0.87 0.85
35 0.94 0.94
40 0.98 0.96
45 1.00 0.98
50 1.00 1.00

 
Table 1: The mean service levels obtained by the exact and approximate methods 

 
In Table 2 we report the improvement percentages gained by our model over eight 
traditional models. The eight models are models (1.1) to (1.4), considering both rectilinear 
and Euclidean distances. For models (1.1) and (1.2), the locations of the people are 
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considered to be their expected locations. To solve the deterministic models we use Lingo 
8, and stochastic models are solved by the direct search method to an accuracy of 25.0 .  
 
From Table 2 it can be seen that using the new model dramatically improves the mean 
service levels, especially for medium values of desirable distances which are more 
important in the real world. Moreover, generally the results obtained by the models based 
on the 1-Median problem (i.e. columns 5 to 8) are vastly better for 300  dd , and for 
large values of desirable distance they are similar to, or a little worse than, the results 
obtained by the models based on the 1-Center problem. This leads us to the fact that the 
models based on the 1-Median problem are more reliable and conservative than the ones 
based on the 1-Center problem with respect to service level. Also, we observe that the 
deterministic models (see columns 1, 2, 5 and 6) give better results for the 1-Medium 
problem when 100  dd  and for the 1-Center problem when 4010  dd . In addition, for 
the 1-Medium problem when dd10 , the results obtained by the stochastic models are a 
little better than the results obtained by the deterministic versions of those models. This 
goes somewhat against our initial anticipation that the stochastic models generally perform 
better in solving our problem, due to the randomness of the customer locations. Also, as 
we expected, because the desirable distance is Euclidean, we see that the models based on 
Euclidean distance mostly perform better.  
 
5. CONCLUSION 
 
In single facility location problems, the objective is to locate a new service facility to serve 
the customers or old facilities optimally. The important issue in the classical single facility 
location problems is to locate the new facility such that a general performance measure – 
e.g. the sum or maximum of transportation costs or total transportation distances – is 
optimised. However, these problems do not directly attempt to improve the service level 
based on customer desirability. This motivates us to introduce and study a new continuous 
single facility location problem based on service level. In this problem we assume that the 
locations of customers vary randomly, and the objective is to maximise the mean of the 
service level, defined as the mean number of customers whose distances from the new 
facility are smaller than a desirable distance. 
 
The problem is modeled and solved both exactly and approximately. Then the model is 
implemented to determine the location of the capital of Iran based on service level. The 
desirable distance is considered to be that which is suitable for a person who intends to 
travel to the capital. Since the location of a person wanting to travel to the capital is 
uncertain and unpredictable, it is assumed that the location of each person is uniformly 
distributed in a rectangular area. The people of Iran are classified into 35 classes by 
considering their location resemblance. Then the locations of the capital are found for 
several values of desirable distance by the exact and approximate methods. The results 
show that the approximate method can perform promisingly. 
 
In the next section we conduct several experiments to compare our model with the eight 
classical models, corresponding to the deterministic and stochastic 1-Median and 1-Center 
problems, by considering the rectilinear and Euclidean distances. It is shown that using the 
new model dramatically improves the mean service level, especially for medium desirable 
distance values, which are more important in practical situations. Moreover, generally the 
results obtained by the models based on the 1-Median problem are vastly better for small 
and medium desirable distance values, while for large values of desirable distance they are 
similar to or a little worse than the results obtained by the models based on the 1-Center 
problem. This indicates that, from the viewpoint of the service level defined here, if we 
use the models based on the 1-Median problem, the results are more reliable and 
conservative than those that are obtained based on the 1-Center problem. Also, we 
observe that the deterministic models give better results for the 1-Median problem when 
the desirable distance values are small. In addition, when the desirable distances are 
medium or large, the results obtained by the stochastic models are only a little better than 
the results obtained by the deterministic versions of the models. Similarly, the 
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deterministic models based on the 1-Center problem give better results for a wide range of 
desirable distance values. This is somewhat against our expectation that the stochastic 
models generally perform better for our problem due to the randomness of the customer 
locations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: The improvement percentages obtained by the proposed  
model over the eight traditional models 

 
From our study, we find that directly optimising the service level yields significant 
improvement when our main objective is to improve the service level of the system based 
on some specific desirable distance for customers. This observation is very important for 
designing customer-based systems in competitive business environments. Moreover, when 
our main objective is not the optimisation of the service level, it is very helpful for 
managers and industrial designers to evaluate the selected approach, or to compare 
possible approaches from the viewpoint of service level. 
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