
South African Journal of Industrial Engineering November 2009 Vol 20(2): 145-162

A GENETIC ALGORITHM FOR TWO DIMENSIONAL STRIP PACKING PROBLEMS

V. Mancapa1, T.I. van Niekerk2 and T Hua2

1Department of Electrical Engineering
Nelson Mandela Metropolitan University, South Africa

mancapa@nmmu.ac.za

2Department of Mechatronics
Nelson Mandela Metropolitan University, South Africa

theo.vanNiekerk@nmmu.ac.za

ABSTRACT

Cutting and packing problems are combinatorial optimisation problems. In most
manufacturing situations a raw material, usually in some standard size, has to be divided or
cut into smaller items to complete the production of some product. It is therefore desirable
that this raw material be used efficiently. A novel placement heuristic, hybridised with a
genetic algorithm, is presented in this paper. A general solution encoding scheme, which is
used to encode two dimensional strip packing problems, is also introduced in this study.

OPSOMMING

Die optimisering van sny- en pakprobleme vorm deel van die kombinasieleer. Dit is dikwels
so by vervaardiging dat grondstof onderverdeel (gesny) word om te pas by die samestelling
van ‘n gegewe produk. Sodanige onderverdeling moet doeltreffend verrig word. ‘n
Veredelde heuristiese genetiese algoritme word hiervoor bekend gestel. ‘n Algemene
koderingsmetode vir tweedimensionele strookverpakking word voorgehou.

1 The author was enrolled for an MTech (Electrical Engineering) degree at the Department
of Electrical Engineering, Nelson Mandela Metropolitan University.

 146

1. INTRODUCTION

Cutting and packing (C&P) problems are combinatorial optimisation problems of practical
significance. In most manufacturing situations it is required that the raw material be cut
into smaller pieces. This process usually results in waste. It is therefore desirable to reduce
the waste that results as much as possible, and hence maximise material utilisation.
Examples of this can be seen in the glass, paper, steel, semiconductor, textile, and many
other industries. The two-dimensional (2D) packing problems can be classified as bin
packing problems and strip packing problems (SPPs). The bin packing problem is concerned
with minimising the number of bins into which small items need to be packed. Strip packing
involves packing rectangular or irregular items on to a strip of constant width and unlimited
height, and the objective is to minimise strip height without overlapping the items.

Solution approaches to SPP can be divided into two categories: exact methods, and
heuristics. SPP is a non-deterministic polynomial complete (NP-complete) problem[1]. The
objective function of an NP-complete problem is often multi-modal, non-smooth, or even
discontinuous, and thus causes exact gradient-based optimisation algorithms to fail[2]. Few
exact methods for the 2D-SPP have been used so far, with applicability limited to piece sets
within 200 pieces. Martello et al. proposed a branch-and-bound algorithm for the 2D-SPP[3],
while Fekete and Schepers developed a general framework for exact approaches to more-
dimensional packing problems[4], and Hifi presented an improvement of Viswanathan and
Bagchi’s exact algorithm based upon branch-and-bound procedures for strip cutting/packing
problems[5].

In recent decades, heuristics have received considerable attention, and have been deemed
most suitable for solving the 2D-SPP. Stochastic search techniques, such as genetic
algorithm (GA), simulated annealing (SA), tabu search (TS), naïve evolution (NE),
population heuristic (PH), and other meta-heuristics, have been combined with a placement
algorithm (decoding algorithm) for solving 2D-SPPs[2]. Hopper and Turton provided an
extensive up-to-date overview of the meta-heuristics that have been developed for the
different variants of the 2D-SPPs. They hybridised two different placement algorithms (BL,
BLF) with three meta-heuristic algorithms (GA, SA, and NE) and local search heuristic (hill-
climbing) for the two-dimensional rectangular packing problem[1; 6]. Leung et al. applied a
pure GA and a mixed SA–GA, which used SA to decide which two parents and children should
be selected after crossover and mutation, for 2D orthogonal packing problems. The mixed
heuristic SA–GA was found to produce better results in a test of 19 cutting problems[7].

Genetic algorithms utilise search and optimisation procedures that operate in a similar way
to the evolutionary processes observed in nature. The GA search is guided, using the
‘survival of the fittest’ principle, by extracting the most desirable features from a
generation of solutions, and combining them to form the next generation. The quality of
each solution is evaluated, and the ‘fitter’ individuals are selected for the reproduction
process. Continuation of this process through a number of generations will result in optimal
or near-optimal solutions[8].

As a relatively new technique for the packing industry, GAs have already been used
successfully in a variety of industrial applications. Jakobs developed an order-based GA
with a bottom left (BL) algorithm to place rectangles and polygons on to a rectangular main
object. The GA in the study was combined with embedding a shrinking algorithm in place of
polygons[9]. Liu and Teng improved Jakobs’ work by developing a more effective version of
the BL algorithm for the orthogonal packing of rectangular pieces[10]. Hopper and Turton
described two GAs hybridised with two heuristic placement algorithms – the bottom left (BL)
algorithm and the bottom left fill (BLF) algorithm – for rectangular packing problems[11].
Yeung and Tang proposed a GA combined with a novel heuristic allocation method to
transform the 2D-SPP into a simple permutation problem that could be effectively solved by
a GA and a greatly reduced searching domain[12]. Bortfeldt suggested a GA working without
any encoding of solutions by using specific genetic operators to manipulate the fully

 147

defined layouts. The GA showed good performance on a comprehensive test using
benchmark instances with up to 5,000 pieces[13].

Despite decades of academic research into regular packing problems, the work on two-
dimensional irregular problems is recent. A major reason for this is the extra dimension of
complexity generated by the geometry. However, irregular problems occur within several
important industries; examples include die-cutting in the engineering sector, parts nesting
for shipbuilding, and marker layout in the garment industry. Gomes and Oliveira presented
a hybrid algorithm that uses simulated annealing (SA) to guide the search over the solution
space, and linear programming models to generate neighbourhoods during the search
process, to solve irregular strip packing problems[14].

In this study, a novel placement heuristic hybridised with GA, and a general solution
encoding scheme used to encode two dimensional strip packing problems, were introduced.
In the remainder of this paper, Section 2 provides a description of the proposed GA used for
the 2D-SPP; Section 3 subjects the GA for 2D-SPP to benchmark tests; and Section 4 gives
the study’s conclusions.

2. THE GENETIC ALGORITHMS FOR STRIP PACKING PROBLEMS

The two strip packing problems addressed in this paper are described below:

 Given n items of small rectangles each having width iw and height ih , and one large

rectangular strip with constant width W and infinite height, the objective is to
minimise the packing height H of the strip such that all items can be packed into the

strip without overlap. The small rectangular items can be rotated by 90 . This
problem is known as the two dimensional strip packing problem (2D-SPP).

 Given n items of arbitrary shapes and one strip with constant width W and infinite
height, the objective is to minimise the packing height H of the strip such that all
items are contained in the strip without overlap. The irregular items can be rotated at

fixed 90 increments. This problem is known as the two dimensional irregular strip
packing problem (2DISP).

GA is the mathematical procedure based on analogies to the natural evolutionary process. It
is different from random algorithms, and combines elements of directed and stochastic
search. Figure 1 illustrates the pseudo code of a simple GA.

Algorithm 1 Simple GA
 begin
 t←0
 initialise P(t)

evaluate P(t)
 While (!(halting condition)) do
 begin
 t←t+1
 select P(t) from P(t-1)
 alter P(t)
 evaluate P(t)
 end
 end

Figure 1: Pseudo code of a simple GA

 149

 The identification of the k th item in a solution is given by its item index ki . The item

indices are randomly generated in the initial population, and will stay unchanged
during packing. The appearance sequence of the item indices in the solution represents
the placing order of the items. In the example solution

)}90,2,(),0,1,(),90,3,{(213  xxx illustrated in Figure 1, the three items with an

index of ‘1’, ‘2’, and ‘3’ are to be placed in the order ‘3’→’1’→’2’ – that is, item 3 is
to be placed first, and item 2 last.

 The orientation angle k of the k th item reflects the angle that the item rotated from

its initial orientation. In this study, the orientation angle is defined as }90,0{ k

for a rectangle item and }270,180,90,0{ k for an irregular item. Figure 1

shows the orientation angles for the three items:  01 for item 1, and

 9032  for item 2 and item 3.

2.2 Initial population generation

To generate the initial population, it is ensured that every individual belonging to the initial

population of solutions is feasible. Every item is represented by a 3-tuple),,(kkk ix  , to

generate initial population, and the following procedure is followed:

 Randomly order items.
 Randomly choose a feasible x -coordinate of the reference vertex for each item

from the set of feasible x -coordinates.
 Randomly choose an orientation from the set of feasible orientation constraints for

each item.

2.3 Crossover operator

Crossover operator is simply a matter of replacing some genes in one parent by the
corresponding genes of the other. The crossover operation can involve more than two
parents. In this study, the crossover operator is randomly chosen from two crossover

variants: cross-var1 and cross-var2. A variable {0,1}CrossVar is randomly generated

to decide which of these two variants will be operational. If 0CrossVar , cross-var1
will be operational, otherwise cross-var2 will be used. A partially mapped crossover (PMX)
of Michalewicz and Fogel[16] is slightly modified and applied for that purpose.

Cross−var1

Of the three components in a solution, the cross−var1 allows the orientation angle and the
x-coordinate value of the reference vertex to be directly inherited from one parent solution;
while the ordering of the items is achieved through breeding between both parent

solutions. For example, let 1pX and 2pX be the two-parent solution representing a layout

of 6 items:

)}90,1,3(),90,4,10(),0,5,2(),90,2,5(),90,3,9(),0,6,0{(000000
1 pX

(1)

)}0,6,8(),0,4,2(),90,5,6(),0,2,4(),90,1,5(),90,3,1{(000000
2 pX

 (2)

Let 1O be the offspring that results from the breeding of the two parent solutions. The
cross−var1 works as follows:

 150

(1) Copy the x -co-ordinate of the reference vertex and orientation angle of every item

from solution 2pX to the offspring 1O . In this example, at this stage, the offspring

becomes:

)}0,,8(),0,,2(),90,,6(),0,,4(),90,,5(),90,,1{(000000
1 UUUUUUO 

 (3)

(The symbol ‘U’ can be interpreted as ‘at present unknown’)

(2) Generate two random positions 1p and 2p , such that 6211  pp . For

example, say 1p is generated to be 1, and 2p to be 3.

(3) Create a one-to-one mapping between item indices in positions decided by 1p and

2p from both parents. For this example, the mapping is created between the item

indices of 2pX and 1pX from the 1st (p1=1) to the 3rd (p2=3) item index. The series

of mappings for this example is:

223
312
631

12





index
index
index

XX pp

 (4)

(4) Copy every item index between positions 1p and 2p from 2pX to 1O to

corresponding positions. After copying the offspring, 1O becomes:

)}0,,8(),0,,2(),90,,6(),0,2,4(),90,1,5(),90,3,1{(000000
1 UUUO  (5)

(5) Item indices in the positions excluding 21 pp  are copied from corresponding
positions from Xp1. To avoid the conflict that might occur when the item index copied

from Xp1 already exists in O1 in 21 pp  positions, the mapping created in stage b is
used to generate a new item index, replacing the conflicting item index, until no
conflict occurs. For this example, the 4th item index ‘5’ and the 5th item index ‘4’ of

Xp1 are not in conflict with the ones of O1 in 21 pp  positions; thus they are copied
as the 4th and 5th item index for O1. The 6th item index in Xp1 is ‘1’ and it conflicts
with the 2nd item index of O1; thus the mapping 1↔3 is used to generate new item
index ‘3’. However, the generated item index ‘3’ conflicts with the 1st item index of
O1; thus the mapping 3↔6 is used to generate new item index ‘6’, and ‘6’ is not in

conflict with the item indices of O1 in 21 pp  positions. Therefore ‘6’ is used as
the 6th item index for O1, as illustrated in Figure 3.

 152

)},,(),,,(),0,5,2(),90,2,5)(90,3,9(),,,{(000
2 UUUUUUUUUO 

 (8)

(The symbol ‘U’ can be interpreted as ‘at present unknown’).

(4) The solution is completed by copying items from parent Xp2, starting from left to

right, excluding those items in 21 pp  positions. To avoid the conflict between the

item indices copied from Xp2 and those that already exist in O2 at 21 pp  positions,

the mapping list generated in stage (2) is used to obtain new 3-tuples to replace the
conflicting ones. For this example, the 1st, 5th, and 6th 3-tuples are copied from Xp2 to

O2 at corresponding positions. The item index 4 in the 5th 3-tuple)0,4,2(0 and the

item index 6 in the 6th 3-tuple)0,6,8(0 from Xp2 are not conflicting with those

already existing in O2. However, the item index ‘3’ in the 1st 3-tuple)90,3,1(0 from

Xp2 conflicts with the item index ‘3’ in the 2nd 3-tuple)90,3,9(0 of O2; thus the

mapping 3↔1 is used to take the whole 6th 3-tuple)90,1,3(0 of Xp1 to replace the

conflicting one from Xp2. The resulting offspring O2 for this example finally becomes:

)}0,6,8(),0,4,2(),0,5,2(),90,2,5(),90,3,9(),90,1,3{(000000
2 O (9)

2.4 Mutation operator

Mutation is a one-parent variation operator. The mutation operator is an over-simplified
analogue from natural evolution. It usually consists of making small random perturbations
to one or a few genes. One of the major reasons for the mutation operator in GAs is the
introduction of population diversity during the genetic search. Originally, with binary
encoding, a zero would be changed into a one and vice versa. With alphabets of higher
cardinality, there are more optional changes that can be made at random or following a set
of rules.

The 2-swap mutation operator that is usually used in sequencing problems has been
adapted and modified as the mutation operator for 2D problems. The operator works as
follows:

(1) Randomly choose two items, item1 and item2;

(2) Randomly generate a number }1,0{num to decide if the orientation of the
chosen items will be randomly perturbated;

(3) If 1num changes the orientation of both items randomly (this applies if more
than one orientation is allowed);

(4) Exchange the position of item1 with that of item2.

2.5 Evaluation function

The evaluation function is the mechanism used to judge the quality of the evolved
solutions. For the evaluation of the 2D SPP, a placement heuristic is used that considers one
item at a time. Items are placed on the strip in the order in which their item indices appear

in the solution string. For each item k , the placement heuristic carries out the following
steps in turn:

 155

L
Ah

W


 (14)

It is desirable that an individual packing height be as close as possible to this height. To
make infeasible solutions undesirable, they are moved as far as possible from this bound by

a factor K, such that a penalty packing height LLpenalty hKhh  is chosen. The

penalty function 1()P X is:

1()
penalty

AP X
Wh


 (15)

The evaluation function)(2 XF for the 2D irregular strip packing problem is given:









F
U

XXEff
XXP

XF
)(

)(
)(

2

2
2

 (16)

Let kA be the area of the kth irregular piece; the total area A of the pieces is then




n

k
kAA

1
. Let ph be the packing height; the packing area pA is given by (4). Function

)(2 XEff is given by:

p

n

k
k

p Wh

A

A
AXEff


 1

2)(
 (17)

The penalty function)(2 XP for an irregular packing problem is computed similarly to that

for a rectangular packing problem as:

penalty

n

k
k

penalty Wh

A

Wh
AXP


 1

2)(
 (18)

3. NUMERICAL TESTS

In order to evaluate the performance of the GA presented in this work, problematic
instances have been collected from the literature. All experiments were conducted using a
3.4 GHz Pentium 4 processor. The algorithm was coded in Matlab and run using Matlab’s
Genetic Algorithm and Direct Search Toolbox[17]. For every problem the population size
was set at 100 individuals, although this tended to slow down the speed of the algorithm.
After repeated runs for most problems, it was decided that the crossover fraction should be
kept at 0.3 for all problems. Two individual spots in the population were reserved for elite
children – that is, the two best individuals in every generation. A tournament of size 2 was
used as a selection criterion. The GA was run for 2,000 generations for every problem;

 156

however, if the best fitness did not improve after 1,000 generations or 2,000 seconds, the
algorithm stopped.

Results for the 2D rectangular strip packing problems

The strip packing problems for rectangles that cannot be rotated were first tested with the
GA developed in this study. The test problems used in this work were considered in Martello
et al.[3]. Altogether, 38 test problems were collected from various sources. The number of
items to be packed ranged from 10 to 200. (These test problems can also be downloaded
from the ESICUP (Euro special interest group on cutting and packing) website home
page[18].) Using the GA proposed in this paper, the test results for these 38 problems are
shown in Table 1. For each problem Table 1 gives:

No. n LB z Time PR Eff
1 16 20 23 3581. 1.15 87%
2 17 20 23 2212. 1.15 87%
3 16 20 23 2026. 1.15 87%
4 25 15 18 2121. 1.2 83%
5 25 15 18 2042. 1.2 83%
6 25 15 17 2967. 1.13 88%
7 28 30 36 2150. 1.2 83%
8 29 30 37 3166. 1.23 81%
9 28 30 39 2333. 1.3 77%

10 16 23 25 2204. 1.08 92%
11 23 63 72 2653. 1.14 88%
12 62 636 730 8011. 1.15 87%
13 10 1016 1016 1105. 1 100%
14 20 1133 1215 4028. 1.07 93%
15 30 1803 1866 3818. 1.03 97%
16 50 2934 3340 5658. 1.138 88%
17 10 23 23 1165. 1 100%
18 17 30 30 2082 1 100%
19 21 28 31 2494. 1.11 90%
20 7 20 20 869.8 1 100%
21 14 36 35.3 2245. 1.02 98%
22 15 31 35 1699. 1.13 89%
23 8 20 20 971.2 1 100%
24 13 33 34 3009. 1.03 97%
25 18 49 56 3192. 1.14 88%
26 13 80 80 1754. 1 100%
27 15 52 61 1959. 1.17 85%
28 22 87 87 2246. 1 100%
29 20 30 34 2383. 1.13 88%
30 40 57 65 2623. 1.14 88%
31 60 84 100 4363 1.19 84%
32 80 107 130 4703. 1.21 82%
33 100 134 167 4086. 1.25 80%
34 40 36 44 3121. 1.22 82%
35 80 67 85 3001. 1.27 79%
36 120 101 133 4858. 1.32 76%
37 160 126 160 6903. 1.27 79%
38 200 156 209 4352. 1.34 75%

Table 1: Strip packing problem results where items cannot be rotated

 157

 no the problem number;
 n the number of rectangles in each problem;
 LB the lower bound – that is, the ideal lowest packing height hL as defined in (14);
 z the best solution found by the GA – that is, the lowest real packing height;
 Time the total search time in seconds taken by the GA to find the best solution;
 PR the performance ratio – that is, the ratio of z/LB.
 Eff the packing efficiency of the best solution given by

zLBzWLBWAAEff p /)/()(/  , where W is the width of the strip.

Table 1 shows that generally the packing efficiency of the GA solution decreases with the
number of packed items. The GA, hybridised with the novel placement heuristic, shows
good performance for solving the 2D rectangular strip packing problems where items cannot
be rotated. Some of the problems are solved with a high packing efficiency of 100%. Figure
6 shows an example layout, in which the gray areas are waste, generated by this hybrid
algorithm for problem 21. The item number and packing efficiency of this problem are 14
and 98% respectively. Table 2 shows the width and height of each item shown in Figure 6.

Figure 6: Layout example of rectangular items that cannot be rotated

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Width 50 15 15 5 15 15 15 5 15 10 10 15 5 10

Height 2 10 9 11 10 12 11 11 12 12 12 12 11 12

Table 2: The position of items in GA solution for problem no. 21

The strip packing problems for rectangles that can be rotated by 90° were also tested using
the hybrid GA developed in this study. The test data, which consists of 21 problems
presented in seven different-sized categories, are taken from Hopper and Turton[6]. These
test problems are very difficult to solve as they are ‘perfect packings’ obtained by cutting a
given rectangle of fixed dimensions into smaller rectangular items. Table 3 gives the test
results obtained by the GA developed in this study.

7

11

8

12 13 1410

5

6 9

4 3 2

1

 158

Category no. n LB z Time PR Eff

C1 P1 16 20 22 2587.2 1.1 90%
 P2 17 20 23 2112.5 1.15 87%
 P3 16 20 23 2346.3 1.15 87%
C2 P1 25 15 19 2207.4 1.27 79%
 P2 25 15 19 2211.7 1.27 79%
 P3 25 15 19 2525.4 1.27 79%
C3 P1 28 30 36 3045.9 1.2 83%
 P2 29 30 34 3173.8 1.13 88%
 P3 28 30 36 2496.2 1.2 83%
C4 P1 49 60 70 10122 1.17 86%
 P2 49 60 72 3136.3 1.2 83%
 P3 49 60 75 2661.9 1.25 80%
C5 P1 73 90 117 2567.4 1.3 77%
 P2 73 90 124 3764.8 1.38 73%
 P3 73 90 109 8170.9 1.21 83%
C6 P1 97 120 159 3796.5 1.33 75%
 P2 97 120 160 3422.1 1.33 75%
 P3 97 120 160 3387.5 1.33 75%
C7 P1 196 240 330 6249.2 1.38 73%
 P2 197 240 346 10911 1.44 69%
 P3 196 240 352 5294.4 1.47 68%

Table 3: Strip packing problem results where items can be rotated by 90°

The test results show that the hybrid GA is also suitable for solving 2D rectangular strip
packing problems where items can be rotated by 90°. The packing efficiency of the GA
solution generally decreases with the number of packed items. Figure 7 shows an example
layout, in which the gray areas are waste, generated by this hybrid algorithm for problem
P1 of category C1. The item number and packing efficiency of this problem are 16 and 91%
respectively. Table 4 gives the width, height, and rotation angle of each item shown in
Figure 7.

Figure 7: Layout example of rectangular items that can be rotated by 90°

11

1

3 4 5

2

9

6 7 8

1312

10

15

14

16

 159

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Width 3 3 6 11 9 6 5 8 11 11 5 8 3 5 11 3

Height 9 12 3 3 3 2 2 3 5 12 12 5 6 4 6 11

Angle 90 90 0 0 0 0 0 0 0 90 90 0 90 0 0 90

Table 4: The position and orientation of items in GA solution for P1 in Category 1

Results for 2D irregular strip packing problem

To test the hybrid GA on 2D irregular strip packing, problems of this type (also featured on
the ESICUP website) were used[18]. The four test problems, all derived from the textile
industry, have been brought to the attention of the academic community. These problem
details, including the literature source, the problem name, the number of shapes to be
packed, the sheet width, and the orientation constraints, are listed in Table 5.

Problem Source Problem
Name

Shape
number

Sheet
width

Rotational
Constraints

Oliveira et al[19] Shirts 99 40 0,180 Absolute

Oliveira et al.[19] Trousers 64 79 0,180 Absolute

Albano and
Sapuppo[20] Albano 24 4900 90 Incremental

Marques et al[21] Marques 24 104 90 Incremental

Table 5: Details about irregular test problems

The test results on this type of problem are listed in Table 6. For the test problems on
which this algorithm was used, the packing efficiencies have been above 60%. For optimum
results an interesting study would be to compare current problems with the best results
available to date.

Problem name Packing efficiency Time (seconds)

Shirts 61% 3409.8

Trousers 64% 4005

Albano 74% 2889

Marques 72% 3001

Table 6: Summary of results for irregular problems

Figure 8 shows an example layout in which the white areas are waste, generated by this
hybrid algorithm for the Albano problem. The item number and packing efficiency of this
problem are 24 and 74% respectively. Table 7 gives the rotation angle, with the best
solution for each irregular item shown in Figure 8.

 160

Figure 8: A textile marker layout generated by the GA for the Albano problem

Item 1 2 3 4 5 6 7 8 9 10 11 12

Angle 90 0 90 90 180 180 270 270 270 180 180 90

Item 13 14 15 16 17 18 19 20 21 22 23 24

Angle 90 90 270 0 90 180 180 180 0 0 0 0

Table 7: The rotation angle of items in the GA solution for the Albano problem

4. CONCLUSION

A genetic algorithm was developed in this study to solve two-dimensional cutting and
packing problems. A novel general solution coding, which makes use of a set of 3-tuples to
represent the position, identification, and orientation of the items to be placed, and a
novel heuristic placement procedure have been introduced in the design of this genetic
algorithm. An initial population was generated such that every individual solution belonging
to the initial population of solutions was ensured feasibility. A partially mapped crossover,
using two crossover variants, was slightly modified and applied in the crossover operator.
The mutation operator and the evaluation function were used to introduce population
diversity during the genetic search and to judge the quality of the evolved solutions.
Computational tests were carried out using the genetic algorithm developed in MATLAB
language for a variety of strip packing problems, including rectangles packing and irregular
items packing. The test results have shown that the algorithm returned quality solutions for
most of the problems. Further study on an alternative implementation of this algorithm by
speeding up the computing time, continued testing of the algorithm on problems from both
the literature and the real world, and a comparative study between layouts generated by a
human expert and those by the general genetic algorithm are needed to improve the
genetic algorithm.

5. REFERENCES

[1] Hopper, E. and Turton, B.C.H. 2001. A review of the application of meta-heuristic

algorithms to 2D strip packing problems. Artificial Intelligence Review 16, pp. 257–
300.

[2] Soke, A. and Bingul, Z. 2006. Hybrid genetic algorithm and simulated annealing for

two-dimensional non-guillotine rectangular packing problems. Engineering
Applications of Artificial Intelligence, 19, pp. 557–567.

8 9

12

13

20
23

22 21

5

43
10

11

14 15

17
6

7

24

1

2

16

18
19

 161

[3] Martello, S., Monaci, M. and Vigo, D. 2003. An exact approach to the strip-packing
problem. Informs Journal on Computing 15, pp. 310–319.

[4] Fekete, S.P. and Schepers, J. 1997. On more-dimensional packing III: Exact

algorithms. Technical Report ZPR97-290, Mathematisches Institut, Universität zu
Köln.

[5] Hifi, M. 1998. Exact algorithms for the guillotine strip cutting problem. Computers

Ops Res. Vol. 25, No. 11, pp. 925-940.

[6] Hopper, E. and Turton, B.C.H. 2001. An empirical investigation of meta-heuristic

and heuristic algorithms for a 2D packing problem. European Journal of Operational
Research, 128, pp. 34-57.

[7] Leung, T.W., Chan, C.K. and Troutt, M.D. 2003. Application of a mixed simulated

annealing-genetic algorithm heuristic for the two-dimensional orthogonal packing
problem. European Journal of Operational Research 145, pp. 530–542.

[8] Davis L. 1991. Handbook of genetic algorithms. New York: Van Nostrand Reinhold.

[9] Jakobs, S. 1996. On genetic algorithms for the packing of polygons. European Journal

of Operational Research 88, pp. 165–181.

[10] Liu, D. and Teng, H. 1999. An improved BL-algorithm for genetic algorithm of the

orthogonal packing of rectangles. European Journal of Operational Research 112, pp.
413–420.

[11] Hopper, E. and Turton, B. 1999. A genetic algorithm for a 2D industrial packing

problem. Computers & Industrial Engineering, 37, pp. 375-378.

[12] Yeung, L.H.W. and Tang, W.K.S. 2004. Strip-packing using hybrid genetic approach.

Engineering Applications of Artificial Intelligence, 17(2), pp. 169-177.

[13] Bortfeldt, A. 2006. A genetic algorithm for the two-dimensional strip packing

problem with rectangular pieces. European Journal of Operational Research, 172(3),
p. 814-837.

[14] Gomes, A.M. and Oliveira, J.F. 2006. Solving irregular strip packing problems by

hybridising simulated annealing and linear programming. European Journal of
Operational Research, 171, pp. 811–829.

[15] Mitchell, M. 1998. An introduction to genetic algorithms. Cambridge, MA: MIT Press.

[16] Michalewicz, Z. and Fogel, D. B. 2000. How to solve it: Modern heuristics.

Heidelberg: Springer-Verlag Berlin.

[17] MATLAB Version 7, 2006. Genetic algorithm and direct search toolbox 2: User’s

guide. Natick, MA: The Mathworks Inc.

[18] Euro Special Interest Group on Cutting and Packing, Listing Gallery: Data Sets 2D –

Rectangular. Available from http://paginas.fe.up.pt/~esicup/tiki-
list file gallery.php?galleryId=3 (Accessed 8 August 2007).

[19] Oliveira, J., Gomes, A. and Ferreira, J. 2000. A new constructive algorithm for

nesting. OR Spektrum, 22, pp. 263–284.

[20] Albano, A. and Sapuppo, G. 1980. Optimal allocation of two-dimensional irregular

shapes using heuristic search methods. IEEE Trans. Syste., Man, Cybern., SMC IEEE

 162

Transactions on Systems, Man and Cybernetics SMC-10, 5, pp. 242-248.

[21] Marques, V., Bispo, C. and Sentieiro, J. 1991. A system of compaction of two-

dimensional irregular shapes based on simulated annealing. In IECON-91(IEEE).

