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ABSTRACT 

 
This paper considers the problem of minimizing the number of tardy jobs with 
release time on a single machine. Given that the problem has been classified as 
strongly NP-Hard, three heuristics (EOO, HR2, and HR3) are proposed for this 
problem. They are compared with a heuristic by Dauzere-Perez (selected from the 
literature). Randomly-generated problems ranging from 3 to 500 jobs are solved. 
Experimental results show that one of the proposed heuristics (EOO) outperforms 
other heuristics, both in terms of quality of solution (effectiveness) and speed of 
execution (efficiency). 
 

OPSOMMING 
 

Die navorsing behandel die ministering van voltooiingstyd van die aantal draaltake 
by ‘n enkele werktuig. As aanvaar word dat die problem geklassifiseer word as 
hoofsaaklike NP-hard, word voorgestel dat die vraagstuk bestudeer word deur 
gebruik te maak van drie heuristiese metodes (EOO, HR2, HR3). Die metodes word 
vergelyk ten opsigte van vertoning met die Dauzere-Perez-metode. 
Toevalsgegenereerde probleme wat strek vanaf 3 tot 500 draaltake word behandel. 
Die eksperimentele werk lewer bewys dat die EOO-metode ander metodes die loef 
afsteek ten opsigte van oplossingsgoedheid en –snelheid. 
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1.  INTRODUCTION 
 
Scheduling is concerned with the problem of allocating resources (machines) over 
time to perform a number of tasks (jobs) [19]. Scheduling problems arise in a variety 
of situations, such as jobs in a manufacturing plant, or airplanes waiting for 
clearance to land or take off at an airport  
 
The real problem of scheduling is how to determine the schedule that best meets 
the set objectives [18]. Scheduling objectives are usually measures of goodness of 
solution [19]. The objectives often vary from firm to firm. Some of the objectives of 
scheduling problems include minimising the total completion time, the number of 
tardy jobs, the maximum completion time, maximum lateness, etc [8].  
 
Scheduling problems are combinatorial in nature [9]. As an example, for n jobs, m 
machines (n x m), the number of possible schedules is (n!)m. This may look tractable 
when n and m have small values. However, as the values of n and m increase, the 
problem becomes complex. For example, there are 720 possible schedules for a 6 x 
1 problem, while a 10 x 1 problem requires nearly 4 million schedules. A 20 x 1 
problem solved on a computer that evaluates a million schedules per second would 
take nearly 80,000 years to evaluate all possible schedules. The difficulty of 
enumerating all the possible schedules in good time spurred the need to develop 
polynomial-time algorithms (heuristics methods) for solving scheduling problems. 
Heuristic methods are techniques for obtaining acceptable solutions to scheduling 
problems at a reasonable computational cost. While they do not guarantee optimal 
results, the techniques are relatively economical in terms of the computational 
resources used. Polynomial-time algorithms are algorithms whose number of 
computational steps does not grow exponentially with the input value. 
 
In this work, the objective is to minimise the number of tardy jobs. A job is said to 
be tardy if it is completed after its due date. The number of tardy jobs is an 
important performance measure in scheduling, as it has great practical implications 
in an organization. When jobs are tardy, the goodwill of customers who own such 
jobs may be lost. This may have grave consequences for the organization. In some 
situations the lateness penalty may be large. It is therefore the desire of decision-
makers to satisfy as many customers as possible by ensuring that jobs are completed 
on or before the due dates.  
 
However, because of problem complexities (release and due dates constraints), it 
may be practically impossible to complete all jobs by their respective due dates at 
all times. So a schedule that yields lower values of the number of tardy jobs for any 
given problem is preferable.  
 
The ‘number of tardy jobs’ criterion is particularly useful in organisations where the 
lateness penalty depends on whether or not a job is late, as against how late a job 
is. For example, if an aircraft is scheduled to land at a time after which it will have 
exhausted its fuel, then the results are just as catastrophic, whatever the scheduled 
landing time. So considering the number of tardy jobs as a performance measure is 
much more relevant in practical scheduling problems. 
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2.  THE PROBLEM 
 
Given the general one-machine scheduling problem, where a set J of n jobs has to 
be sequenced on a machine in order to minimize the number of tardy jobs, only one 
job can be processed at a time. The arrival time of every job Ji at the machine is 
known and denoted by ri (release date). Each job Ji needs pi time units on the 
machine (processing time), with a due date designated by di.  
 
The time the processing of job Ji starts on the machine (start time) is designated as 
si with the property: 
si ≥ ri   (1) 
 
while its completion time (Ci) is defined as: 
 
Ci = si + pi   (2) 
 
A job Ji is said to be tardy if it is completed after its due date (Ci > di).  
 
We define: 

 Ui = 
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Then define, the number of tardy jobs (NT) as: 

NT = ∑
=

n

i
iU

1

  (4) 

The symbolic representation of scheduling problems can be described by a three 

parameter notation: α | β | γ [10] 

where: 

α = machine environment (single machine, parallel machine (P), flow shop 

(F), job shop (J), etc) 

β = Job characteristics (prec, pmtn, ri , di etc.) 

  γ = Objective functions or performance measures 
 
Using the above notations, the particular problem being considered is represented 
as 

1 | ri |∑
=

n

i
iU

1
  

We assume that pre-emption is not allowed and that the problem is static and 
deterministic – i.e. the number of jobs, their processing times, due dates, and ready 
times are all known and fixed. These assumptions seem reasonable, as many real-
life problems can be so modeled. 
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3.  PREVIOUS WORK 
 
The problem of minimizing the number of tardy jobs on a single machine with 

release dates (1 | ri |∑
=

n

i
iU

1

) is NP-Hard in the strong sense [1]. Many special cases 

and/or relaxations of the problem have been studied by many researchers. 
 
The first special case of the problem to be studied is problems for which all release 

dates are zeros. Moore [17] proposed an algorithm that solves the 1 | | ∑
=

n

i
iU

1

 

problem in O(nlogn) time. Later, Lawler and Moore [16] showed that, using dynamic 

programming, the 1 | | ∑
=

n

i
iiUw

1

 problem is solvable in O(nΣ ) time. They were able 

to solve problems with up to 1,000 jobs. Potts and Wassenhove [21] considered the 
problem of scheduling n jobs, each having a processing time, a due date, and a 
weight, on a single machine to minimize the weighted number of late jobs. They 
proposed a branch and bound (B&B) algorithm that uses the linear programming 
lower bound. Also, computational results for problems with up to 1,000 jobs were 
given. Hallah and Bulfin [11] proposed a branch-and-bound algorithm that uses the 
bounds obtained from a surrogate knapsack, to solve the single machine weighted 
number of tardy jobs scheduling problem. They showed that instances with 2,500 
jobs can be solved optimally in a reasonable amount of time. Phojanamongkolkij et 
al. [20] studied the single machine scheduling problem with a sequence-independent 
setup in which the weighted number of late jobs is minimized. A heuristic (called 
weighted forward algorithm) was proposed for the situation where jobs have zero 
release dates. Hatice and Fatih Tasgetiren [12] proposed a discrete particle swarm 
optimization algorithm and a traditional genetic algorithm to determine a sequence 
of n jobs to be processed through m machines, which minimises the number of tardy 
jobs.  
 
The next set of problems studied by researchers is those problems with compatible 
release and due dates. Kise et al. [13] showed that the problem can be solved in 
O(n2) time provided that the release dates and due dates are compatible (that is, 
the jobs can be indexed so that r1 ≤ r2 ≤ …≤ rn and d1 ≤ d2 ≤ …≤ dn ). Lawler [15] 
proposed an O(n5) dynamic programming algorithm for the pre-emptive case (1 | ri, 

pmtn |∑
=

n

i
iU

1

). Also, Carlier [2, 3] showed that, when the processing times are 

equal, the problem (1 | pi = p, ri, |∑
=

n

i
iU

1

) can be solved in O(n3 log(n)) time. 

 
Van den Akker and Hoogeveen [25] considered the single machine scheduling 
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problem of minimising the number of late jobs under stochastic situations. Four 
probability distributions on the processing times were considered. These are 
gamma, binomial, normal, and general (with the characteristic that all processing 
times are equally disturbed) distributions. Lambrechts et al. [14] proposed a Tabu 
Search procedure for generating robust project baseline schedules under stochastic 
resource availabilities. The Tabu Search uses a double neighborhood structure to 
allow for the generation of feasible project schedules that respect precedence, 
resource, and due dates constraints.  
 
So far all the above literature addressed different special cases or relaxations of the 
general problem. 

The general problem (1 | ri |∑
=

n

i
iU

1

) requires that each job has distinct release and 

due dates. The literature reveals that not many researchers have addressed the 
general problem. This is probably due to the fact that the general problem is NP-
Hard in the strong sense [1].  A number of researchers have considered the general 
problem, including Dauzere-Perez and Sevaux [5, 6, 7]. They have presented three 
mixed-integer linear programming formulations of the general problem, adopted a 
lagrangean relaxation approach for the weighted version of the problem (1 | ri 

|∑
=

n

i
iiUw

1

), and a branch and bound scheme for the same problem. Baptiste et al. 

[1] presented a branch and bound algorithm for the general problem. Sevaux and 
Dauzere-Peres [23] used a genetic algorithm to minimize the weighted number of 
late jobs on a single machine. Also, Sevaux and Thomin [24] developed two types of 
metaheuristic (simulated annealing and Tabu Search) for the parallel machine 
problem. They concluded that instances of up to 100 jobs can be solved efficiently. 
Sevaux and Sorensen [22] studied the single machine scheduling problem of 

minimizing the weighted number of late jobs (1 | ri |∑
=

n

i
iiUw

1

) and proposed a 

genetic algorithm to compute robust schedules when release dates are subject to 
small variations. To the best of our knowledge, only Dauzere-Perez [4] has 
presented a heuristic for the general problem (that in which jobs have different 
release and due dates). Since we are addressing this general problem in this paper, 
this heuristic has been selected for evaluation. Since the general problem has been 
proved to be NP-Hard in the strong sense [1], we propose three heuristics for the 
general problem. 
 
4.  SOLUTION METHODS 
 
The problem of minimizing the number of tardy jobs with release dates on a single 

machine (1 | ri |∑
=

n

i
iU

1
) is strongly NP-Hard [1]. Hence, polynomial-time 

approximation algorithm (such as heuristic) methods are needed to solve such 
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problems. Heuristics are methods of obtaining solutions to scheduling problems 
based on conjectures, insights, rule-of-thumb, etc. In this work, three heuristics are 
proposed for this problem. 
 
4.1  Proposed heuristics 
 
The three heuristics are now reviewed. 
 
4.1.1  HR2 heuristic 
 
The interval between the time when the job is released to the shop (release date) 
and the time the job is needed (due date) can be called the job’s allowance. This is 
the maximum time a job can stay in the shop without being tardy. We propose to 
reduce the number of tardy jobs by scheduling the jobs according to an ascending 
order of the job allowance. This rule is called HR2 in this work. Scheduling jobs 
according to HR2 ensures that jobs with shorter allowances are scheduled in the 
earlier positions, while jobs with longer allowances are scheduled later. The steps 
for the HR2 heuristic are outlined as: 
 
Step 1: Compute HR2 (job allowance) index by HR2i = di – ri  
Step 2: Form a list L by arranging jobs according to the ascending order of the 

HR2 index computed in Step 1 

Step 3: Schedule jobs according to list L which was obtained from Step 2 
 
The HR2 heuristic is easy to apply.  
 
4.1.2  HR3 heuristic 
 
A careful examination of equations (1) to (4) reveals that the number of tardy jobs 
is indeed a function of three given parameters – namely, pi, ri, di. So it was proposed 
that scheduling jobs according to the ascending order of the sum of the above three 
parameters would minimize the number of tardy jobs. The HR3 heuristic ensures 
that earlier released, due, and short jobs are scheduled in the earlier positions. The 
steps for the HR3 heuristic are now outlined: 
  
Step 1: Compute HR3 index by HR3i = pi + ri + di  
 

Step 2: Form a list L by arranging jobs according to the ascending order of the 
HR3 index computed in Step 1 

Step 3: Schedule jobs according to list L which was obtained from Step 2 
The HR3 heuristic is also easy to apply.  
 
4.1.3  EOO heuristic 
 
One of the assumptions made in this paper is that the scheduling problem being 
considered is static and deterministic. It is static in the sense that, although the 
jobs have release dates, these dates are known and fixed. Because the processing 
and due dates are also known with certainty, the problem is deterministic. The third 
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proposed heuristic (called EOO) makes use of this vital information. If jobs are not 
to be tardy, priority must be given to the due dates of the jobs. What the EOO does 
is to consider the next job that is due (out of all the given jobs, but still to be 
scheduled) and checks if scheduling the job at that time makes the job tardy. If the 
job is likely to be tardy, the EOO will not schedule the job but rather consider the 
next job that is due while adding the previous job to the list of tardy jobs. If the job 
is unlikely to be tardy, the EOO will schedule the job before considering other jobs. 
The key is that if a job is tardy at time t1, the job might as well be scheduled at any 
other time t2 (where t2>t1). The EOO heuristic is now outlined: 
 
Step 1: Initialization 

 Job_Set1 = { }niJi 1=   This is the set of given jobs 

 Job_Set2 = {.}  This is the set of jobs tested and found to be early 
Job_Set3 = {.}  This is the set of jobs tested and found to be tardy 
i = 1 

Step 2: Select the job with the lowest due date from Job_Set1 
Step 3: Check  if scheduling the job selected in Step 2 in the ith position will 

make the job tardy or not. 
Step 4: If the job will be tardy, do not schedule it, but add the job to Job_Set3; 

otherwise schedule it and add the job to Job_Set2. Remove the job from 
Job_Set1. 

Step 5: i = i + 1 , if Job_Set1 is not empty then go to Step 2; otherwise go to Step 
6 

Step 6: The required sequence of jobs is formed by appending jobs in Job_Set2 to 
jobs in Job_Set3. The number of jobs in Job_Set3 is the number of tardy 
jobs. 

Step 7: Stop. 
 
4.2  Selected solution methods 
 
Since to the best of our knowledge only Dauzere-Perez [4] has presented a heuristic 
for the general problem (problems in which jobs have different release dates), this 
heuristic has been selected for evaluation. 
 
4.2.1 Dauzere (DAU) heuristic 
 
The steps of the DAU heuristic are now presented. 
 
Dauzere-Perez Stephane (DAU) heuristic 
 
Step 0:  Initialise 
t = iJJ r

i∈min  (i.e. the minimum ready time of all jobs) 

I = {.} (I is the set of early or sequenced jobs, set it to an empty set) 
It = {.} (It is the set of tardy jobs, set it to an empty set) 

I  = { }niJi 1=   ( I  is the set of jobs yet to be sequenced) 
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Step 1:  Choose the job with the smallest due date among the jobs that have 

 arrived at time t from I  

Step 2:  Add the job chosen in Step 1 to I and remove the same job from I . 
 Compute start time Si = t and completion time Ci = Si + pi 
Step 3:  If this job is late (i.e. Ci > di), proceed to Step 4; otherwise jump to Step 6 
Step 4:  Remove this job from I and add it to It 
Step 5:  Update the start and completion time as: Si = t and Ci = Si 
Step 6:  Compute new time as: t = max ( Ci, iIJ r

i∈
min  ) 

Step 7:  If set I  is not empty, go back to Step 1; otherwise proceed to Step 8 
Step 8:  Form the sequence of jobs by appending jobs in set I with jobs in It 
 without changing the sequence. The number of tardy jobs is the number 
 of jobs in set It 
Step 9:  Stop. 
 
5.  DATA ANALYSIS 
 
A software package was developed in Microsoft Visual Basic 6.0 to generate random 
single machine problems. A total of 50 problems for 22 different problem sizes 
(ranging from 3 to 500 jobs) was randomly generated. A total of 1,100 (22*50) single 
machine problems was solved.  
 
The processing time of jobs was randomly generated with values ranging between 1 
and 100 inclusive. The ready time of jobs was also randomly generated with values 

ranging between 0 and ∑
=

n

i
iP

1

 inclusive, while the due date was also randomly 

generated with values ranging between (ri + pi) and (ri + 2*pi) inclusive.  
 
All the above solution methods were included in the program that was developed. 
When the program was run, the value of the number of tardy jobs obtained for each 
solution method and each problem size was computed and saved in a data file, 
which was then exported to Statistical Analysis System (SAS) version 9.1 for detailed 
analysis. (SAS is a versatile statistical package that enables credible conclusions to 
be drawn from the results.) The general linear models (GLM) in SAS were used to 
compute the mean of the number of tardy jobs for each of the solution methods and 
each of the problem sizes. The GLM procedure in SAS was also used to carry out test 
of means (means separation) so as to determine whether the differences observed in 
the mean value of number of tardy jobs obtained by various solution methods are 
significant or just due to chance.  
  
6.  RESULTS 
 
The results obtained when the mean value of number of tardy jobs was computed 
for each solution method and problem size are shown in Table 1. The EOO heuristic 
gave the lowest number of tardy jobs for all the problem sizes considered, 
indicating a better performance when compared with other methods. This was 
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the same significant level, the mean value of the number of tardy jobs given by DAU 
is significantly different from (better than) that of HR3 and HR2. For 300 ≤ n ≤ 500 
problems, there are no significant differences in the performance (effectiveness) of 
all the solution methods at P ≤ 0.05 (Table 2). 
 
When the mean of the time taken was also subjected to statistical test, there was 
no significant difference in the time taken by EOO, DAU, HR2, and HR3 (P ≤ 0.05) for 
3 ≤ n ≤ 500 problems (see efficiency column of Table 2). 
 
7.  CONCLUSION  
 
In this paper, the scheduling problem of minimizing the number of tardy jobs with 
release dates on a single machine is considered. Three heuristics – EOO, HR2, and 
HR3 – were proposed for solving this problem, and were then compared with a 
heuristic (DAU) selected from the literature. The solution methods were all 
evaluated and tested with respect to both effectiveness (closeness of value of 
number of tardy jobs to the optimal) and efficiency (how fast a solution can be 
obtained). 
 
Based on effectiveness, one of the proposed heuristics, EOO, outperformed the 
others for 3 ≤ n ≤ 500 problems. Also, the EOO is as fast as the DAU, HR2, and HR3 
methods when the number of jobs is less than 50; slower than the others for 50 to 
180 jobs; and faster than the others when the number of jobs exceeds 180. The EOO 
heuristic obtains quality solutions that are both effective and efficient. The EOO 
heuristic is, therefore, recommended for the single machine scheduling problem of 
minimizing the number of tardy jobs with release dates.  
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