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ABSTRACT 

 
This research presents a methodology for determining the optimal location of a new 
facility, having physical flow interaction of various degrees with other existing 
facilities in the presence of barriers impeding the shortest flow-path as well as the 
sub-optimal iso-cost positions. It also determines sub-optimal iso-cost positions with 
additional cost or penalty for not being able to site it at the computed optimal 
point. The proposed methodology considers all types of quadrilateral barrier or 
forbidden region configurations to generalize and by-pass such impenetrable 
obstacles, and adopts a scheme of searching through the vertices of the 
quadrilaterals to determine the alternative shortest flow-path. This procedure of 
obstacle avoidance is novel. Software has been developed to facilitate computations 
for the search algorithm to determine the optimal and iso-cost co-ordinates. The 
test results are presented.   
 

OPSOMMING 
 
Die navorsing behandel ‘n procedure vir die bepaling van optimum stigtingsposisie 
vir ‘n onderneming met vloei vanaf ander bestaande fasiliteite in die 
teenwoordigheid van ‘n verskeidenheid van randvoorwaardes. Die prodedure lewer 
as resultaat suboptimale isokoste-stigtingsplekke met bekendmaking van die koste 
wat onstaan a.g.v. afwyking van die randvoorwaardlose optimum oplossingskoste, 
die prosedure maak gebruik van ‘n vindingryke soekmetode wat toegepas word op 
niersydige meerkundige voorstellings vir die bepaling van korste roetes wat 
versperring omseil. Die prosedure word onderskei deur programmatuur. 
Toetsresultate word voorgehou. 
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1.  INTRODUCTION  
 
The problems of locating a new manufacturing plant, distribution warehouse or 
similar facilities always involve the consideration of transport costs, which are 
dependent on the distance involved in moving materials between such a new facility 
and other existing facilities with which it has logistic interactions, such as a raw 
materials depot, a feeder factory, or a customer’s warehouse. The distances 
between the new facility and each of the existing facilities determines the optimal 
new facility location such that the total transportation cost is minimised. 
Alternatively, if the location so determined is not actually available owing to certain 
constraints, other possible locations have to be considered, despite the additional 
cost or penalty cost for the sub-optimal placement of the new facility. The quantum 
and frequency of material movement load – the weight – influences the 
considerations for fixing distances. Hence optimality is dependent on the weight, 
which is the product of the cost per unit distance of travel and frequency of trips 
per unit of time. The distance between facilities for material flow has been 
considered here on the Euclidean distance metric with a minimum summation or 
mini-sum objective. In many real-life situations the straight path for material flow 
between facilities is not available owing to the presence of forbidden regions or of 
barriers such as protected land, lakes, other plants, or other physical obstacles 
placing constraints on movement.  
 
However, often the optimum position of a new facility may not be physically 
available for economic, social, or other reasons; so a sub-optimal position, even 
though associated with resulting penalty costs, often has to be determined. In 
searching for such a location, the issue of the size of the penalty, which increases 
because the facility cannot be placed at the computed optimal location co-ordinate, 
has been a major criterion. Furthermore, the specifications affecting the choice of a 
sub-optimal location for the new facility often determines the decision. An 
analytical technique has been modeled in this research to cover both the above-
mentioned aspects – that is, value (the cost associated with placing the facility with 
penalty) and the preferred zone for a sub-optimal placement of the facility, making 
the approach to a solution multi-criterial. The selection of the preferred zone 
configuration, bounded by spans in four cardinal directions, makes the facility 
placement process more convenient. 
      
There are not many solution procedures for handling such location search problems 
involving any number and shape of barriers or forbidden areas between facilities, 
thus impeding direct traffic between them. For unconstrained situations – that is, 
when no barrier is present to obstruct the straight path between facilities – the 
procedure proposed by Kuhn, as referred to by Francis and White (1974), can be 
deployed to find the optimal location of the new facility. However, in the recent 
past, the facility location problems involving barriers or forbidden regions have 
drawn the attention of researchers in this area. Aneja et al. (1994) have dealt with 
the barriers and forbidden regions through an approach based on network formation 
in location problems, while Batta et al. (1989) proposed a solution through their 
approach of cell formation. Eckhardt, as mentioned by Katz et al. (1981), dealt with 
some problems caused by forbidden regions by using a polygonal configuration in 
which paths are allowed through the forbidden region but the location of the facility 
itself within the region is prohibited. Brady et al. (1980) deployed interactive 
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graphics to solve facility location problems with a minimax objective function 
involving single as well as multiple new facilities in a forbidden region that had an 
arbitrary configuration. Katz and Cooper (1981) studied the problem of single 
facility location involving a Euclidean distance metric in the presence of a circular 
forbidden region with a minisum objective. Larson and Sadiq (1983) have solved 
location problems in the presence of irregular and multiple forbidden regions 
involving a rectilinear distance metric. Hamacher and Nickel (1994) studied the 
location problem involving the restrictions of a forbidden region, developing the 
solution algorithms for median problems in the plane. Most of the aforementioned 
studies consider either a single forbidden region or a restricted region of a specific 
shape. The objective of the present study, therefore, is to formulate a single facility 
location model amidst a host of existing facilities, adhering to the Euclidean 
distance norm and restricted by single or multiple forbidden regions. The 
configuration of forbidden barriers in most of the existing research is presumed to 
be either rectangular or circular. This model is generalized in the sense that it 
considers multiple forbidden barriers with arbitrary quadrilateral shapes, including 
rectangles or irregular polygons, covering most applications with a single solution 
framework. In order to bypass the barrier contour and establish a flow route 
between facilities, earlier approaches used a cardinal grid element search method, 
or cell formation, or network formation, to explore alternative flow paths. But such 
methods are inefficient when handling multiple barriers of different geometries that 
obstruct the flow path, and cannot be deployed suitably to determine the 
constrained shortest flow path. This research adopts a completely new approach by 
formulating the least-path search through the vertices of forbidden barriers, and 
developing an appropriate algorithmic computational methodology for a single 
facility location problem. The necessary generalisation has also been done by way of 
considering the constraints of multiple barriers with arbitrary quadrilateral 
contours. The solution software that has been developed, DANSORK (Dan, 2004), 
determines the optimal location of a new facility under both constrained and 
unconstrained situations, and runs on a PC. 
 
 
2.  KUHN’S PROCEDURE FOR DETERMINING OPTIMAL LOCATION 
 
The modality of the distance between any two location points immediately presents 
itself as the module of distance, expressed as a straight line or ‘Euclidean’ distance. 
If the co-ordinates for the new facility are considered to be xm and ym , and those for 
the existing facility ei are chosen to be xei and yei , so that P = (xm , ym) and Ei = (xei , 

yei), then the Euclidean distance between P and Ei is given by : 
 
di = d(P, Ei)= [(xm–xei)2+(ym–yei)2]1/2   (1) 
 
In the single facility location problem, the objective criteria will be taken to 
determine the location of the new facility – say P = (xm , ym), which will minimize 
the total transportation cost function f(xm , ym), based on the adoption of the 
Euclidean distance norm for all the facility locations. Thus the objective of the 
location decision problem can be formulated as: 
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f (xm , ym) = ∑
=

n

1ei

wi [(xm – xei)2 +( ym –yei)2]1/2  (2) 

where wi denotes the interacting weight between an existing facility and the new 
facility.  
 
The two-tuple approach based on Kuhn’s modified gradient procedure provides the 
necessary solution. The two-tuple, T(xm , ym) is defined for all points in the plane. 
The established, necessary and sufficient condition for (xm , ym) to be a minimum 
cost new facility location is  
 
T(xm , ym) = (0,0)   (3) 
 
The two-tuple can be manipulated to provide the basis for a computational 
procedure for determining the location (xm , ym), and consequently the following 
expressions will be obtained: 
            

xm ∑
=

n

1ei

 wi / Dme = ∑
=

n

1ei

 wi xei / Dme  (4) 

and  ym ∑
=

n

1ei

 wi / Dme = ∑
=

n

1ei

 wi yei / Dme  (5) 

 
where Dme = [(xm – xei)2 +( ym –yei)2]1/2   (6)  
 
letting,  gi (xm , ym) = wi / Dme  (7) 
 
where, i = 1………n 
 
The equations are transformed to:  

xm = ∑
=

n

1ei

 xei gi (xm , ym) / ∑
=

n

1ei

 gi (xm , ym) (8) 

 

and ym = ∑
=

n

1ei

 yei gi (xm , ym) / ∑
=

n

1ei

 gi (xm , ym) (9) 

 
3.  DISTANCE COMPUTATION INVOLVING QUADRILATERAL BARRIERS 
 
The minimum distance between existing facilities and a new facility in the presence 
of a quadrilateral obstacle (as shown in Figure 1) has been either the path 
connecting the points (xe, ye) ; (x2, y2) ; (xm, ym) – that is, through one vertex point 
of the barrier quadrilateral, where the distance is 

  
d1 = [(xe- x2)2 + (ye- y2)2]1/2 + [(x2- xm)2 + (y2- ym)2]1/2  (10)  
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4.  A NEW METHODOLOGY FOR DISTANCE COMPUTATION ON THE  
     IDENTIFICATION OF BARRIERS   
 
4.1  Identification of obstructive quadrilateral 
 
In order to establish a relationship between an existing facility and the 
corresponding obstructive quadrilateral impeding a straight path to the new facility, 
a mathematical identification of the particular barrier is necessary for software-
based iterative computation. If a quadrilateral obstructs the straight line between a 
new and an existing facility, then logically the line has to intercept at least two 
arms of that polygon. It is imperative to check mathematically whether the 
intersection points are on or within the polygon arm segment. The polygon would be 
treated as an obstacle if more than one such intersection point is obtained for any 
particular polygon. The mathematical equation of a polygon arm can be expressed in 
the general form thus; 
 
ax + by + c = 0  (12) 
  
where x and y are cardinal variables, and  a, b, c are coefficients. Such coefficient 
values [a; b; c] for each arm of a particular polygon connecting two vertices (xs, ys) 
and (xt, yt) would be given by: [(yt-ys)/(xt-xs) ; -1 ; ys-(yt-ys)/(xt-xs) *xs] 
 
Similarly, the coefficients [a’; b’; c’] for the line equation joining the new facility 
location point  
(xm, ym) and each of the existing facility location points (xe ,ye) would be given by 
[(ym-ye)/(xm-xe); -1 ; ye-(ym-ye)/(xm-xe)*xe] . 
 
The coefficients of line equations for each arm of all polygons, as well as of lines 
joining the new facility and each of the existing facilities, are computed using 
developed software. The aforementioned intersection points, xint and yint, are 
derived as follows: 

 
[xint ; yint] = [(c’-c)/(a-a’) ; (c’a-a’c)/(a-a’)]  (13) 
 
subject to the following sets of conditions:    
 
(xs � xint �xt) or (xs < xint < xt ) ; while [ys( or t) � yint � yt( or s)] or [ys( or t) < yint < yt( or s)]  
and 
(xe � xint � xm) or (xe < xint <xm) ; while [ye( or m) � yint � ym( or e)] or [ye( or m) < yint < ym( or e)] 
 
A polygon is treated as an obstacle for the particular existing facility if the above 
conditions are satisfied together. This procedure is repeated successively for all 
obstacles for every existing facility. The next step is to compute the minimum 
distance involved in bypassing the polygon, in case it has been identified as an 
obstacle. This step follows. 
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4.2 A methodology for computation of minimum distance in the presence of 
obstacle 
  
Lines joining a new facility and all four vertex points of the particular obstructive 
polygon generate equations of two lines that are tangential to the polygon at two 
vertices, and two other lines that will intersect the polygon. So the next 
computational step is to identify a pair of tangent vertices out of all four in a 
polygon. This is accomplished by following a similar procedure to that adopted for 
the identification of obstacles. Here, the coefficients [ a” ; b” ; c”] of a line equation 
joining a vertex (xs, ys) of the obstructive polygon and the new facility point (xm, ym) 
is given by; [(ym-ys)/(xm-xs) ; -1 ; ys-(ym-ys)/(xm-xs)*xs], and the intersection point 
produced by this line with one of the polygon arms would be given by: 
        
[xint’ ; yint’] = [(c”-c)/(a-a”) ; (c”a-a”c)/(a-a”)]   (14) 
 
subject to  
(xs � xint’ � xt) or (xs < xint’ < xt) ,while, [ys( or t) � yint’ � yt( or s)] or [ys( or t) < yint’ < yt( or t)] 
 
where s and t are the terminal points of the line. Any line joining one of the vertices 
and the new facility would intersect one of the arms of the polygon in the case that 
the particular vertex is not a tangent vertex. Mathematically, in such a case the 
number of intersections computed would be three, including two where it is on the 
same point at the vertex that is the common point lying on two intersecting arms of 
the polygon. This common point, mathematically, is counted twice, and therefore in 
the case of a tangent the number of such intersections is two. A counter for the 
computed number of such intersections has been provided in the software. By 
connecting the two tangent points of the polygon to the location point of the 
existing facility, two separate paths with computed distances following the 
approximation technique (referred to in section (3)) are obtained and the minimum 
of these is selected. The mathematical expression of minimum distance through the 
corresponding polygon vertex points (xsk, ysk) of the jth obstacle at the kth  vertex 

from   the new facility point (xm, ym) to the existing ith facility point (xei, yei) is:                            
 

Distance = [(xjk-xm)2 +(yjk-ym)2]1/2 + [(xjk-xei)2 +(yjk-yei)2]1/2  (15)  
 
The summation of the products of the distances and relative weights (wi) provides 
the total cost (C) Such arithmetic products are computed for both the constrained 
(that is, in the presence of barriers) and the unconstrained (free of barrier) 
situations. The total cost (C) burden for the particular location of the new facility 
can be expressed as:                                                                                                   
 

C = ∑
dconstraine

wi{[(xjk–xm)2 +(yjk–ym)2]1/2 +[(xjk – xei)2 +(yjk –yei)2]1/2}+ 

    ∑
nedunconstrai

wi[(xm – xei)2 +(ym –yei)2]1/2  (16) 

        
   



 156

4.3  Cardinally explorative search procedure for optimal location determination 
 
The new facility, at any sub-optimal or optimal situation – say, at an arbitrary 
location P – can physically be any point within the spatial boundary of existing 
facilities Ei, located at different coordinate points in the cardinal plane, and d* is 
the effective distance. For optimality searching, any coordinate point representing 
the new facility may be selected as the starting point for the search. Assuming that 
the starting point is (x0, y0) for the new facility in the chosen plane, having a 
corresponding value of cost burden (C) as C0  

where C = ∑
=

n

1ei

 wi d*(P, EI)  (17) 

 
the next step is to check the value of C, 1-unit apart in all four cardinal directions 
(2 on the abscissa and 2 on the ordinate) – namely, at (x0, y0+1); (x0+1, y0); (x0, y0-
1); (x0-1, y0). Suppose that in the first iteration the minimum value at any of the 
above cardinal points is C1. Then in the next iteration, the coordinate corresponding 
to the above minimum C (i.e, C1) will be treated as the fresh starting point for the 
next iteration, and so on until the value of C converges to a minimum and the 
coordinate point (xm, ym), corresponding to such minimum value, is the optimal 
location point of the new facility. This algorithmic technique, developed in the 
optimality modeling software with graphical representation, is oriented with a 
cardinal exploration-based search through a converging series of locational values.  
 
4.4  Procedure for determination of iso-cost positions 
 
The search zone has been defined in the present research with four cardinal spans 
around a reference point, which usually is the computed optimal position of a new 
facility. Such span or spread is expressed in ‘Cartesian’ mapping-units in northerly, 
southerly, easterly, and westerly directions to describe a rectangular zone having a 
number of grid points with unit-distance spacing. Therefore, the equal cost (or iso-
cost) search zone is defined through a pair of cardinal spans along the x-axis and the 
y-axis. The iso-cost values are settled with a range instead of a single value, since 
the value searching process uses discrete integer grid co-ordinate points only, and 
therefore a specific value with a decimal component may not actually occur. The 
value at each grid point is derived from a least-distance computation technique (as 
has already been modeled here), and values satisfying the upper and lower bound 
conditions are recorded for iso-cost band searching. Since the values involve a 
range, a curve in the form of a band would emerge instead of a linear curve. The 
values of the test results with respect to the alternative equal cost or iso-cost 
locations are arranged in an ascending order of value in the computerized output, 
following the selected range of desired or acceptable costs associated with the 
placement of a new facility within the specified configuration of the iso-cost search 
zone. Computational parameters for iso-cost determination and the corresponding 
results are presented in the following section.  
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