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ABSTRACT 
 

The integration of the population-based incremental learning (PBIL) algorithm with 
computer simulation shows how this particular combination can be applied to find 
good solutions to combinatorial optimisation problems. Two illustrative examples 
are used: the classical inventory problem of finding a reorder point and reorder 
quantity that minimises costs while achieving a required service level (a stochastic 
problem); and the signal timing of a complex traffic intersection. Any traffic control 
system must be designed to minimise the duration of interruptions at intersections 
while maximising traffic throughput. The duration of the phases of traffic lights is of 
primary importance in this regard.  

 
OPSOMMING 

 
Die integrasie van die population-based incremental learning (PBIL) algoritme  met 
rekenaarsimulasie word bespreek, en daar word getoon hoe hierdie spesifieke 
kombinasie aangewend kan word om goeie oplossings vir kombinatoriese 
optimeringsprobleme te vind. Twee voorbeelde dien as illustrasie: die klassieke 
voorraadprobleem waarin ’n herbestelvlak en herbestelhoeveelheid bepaal moet 
word om koste te minimeer maar nogtans ’n vasgestelde diensvlak te handhaaf (’n 
stochastiese probleem); en die bepaling van die seintye van ’n komplekse 
verkeerskruising. Enige verkeerbeheerstelsel moet ontwerp word om die duur van 
die vloeionderbrekings by verkeerskruisings te minimeer en verkeerdeurset te 
maksimeer. Die tydsduur van die fases van verkeersligte is dus baie belangrik. 
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1.  INTRODUCTION 
 
The population-based incremental learning (PBIL) algorithm belongs to the family of 
metaheuristics used for finding near-optimal solutions to complex problems that are 
usually at least NP-hard. This generally implies problems with large, discrete 
solution spaces, for which the time to solve the problem grows polynomially with 
the problem size (number of variables). A classic example of this type of problem is 
the ‘travelling salesperson problem’ (TSP, see Winston [23], 519 and 526). 
Metaheuristics search these large (often infinite) solution spaces in a structured, 
incremental manner and attempt to find ‘good’ solutions to problems for which the 
solutions cannot be found using exact methods or exhaustive enumeration. 
 
There are many metaheuristics available for optimisation. One of the best-known 
ones is the genetic algorithm (GA) − see for example Goldberg [12], Thomas et al. 
[20], Dereli et al. [9], Zhou et al. [26], Coit et al. [8], and Kreng et al. [15] – but 
simulated annealing, ant colony optimisation, and tabu search are also widely 
known and applied. The PBIL is perhaps less known, and it is our objective to 
introduce this algorithm to the local industrial engineering community. Since 
metaheuristics are often used in combination with computer simulation for 
optimisation (Fu et al.[10]), we present the PBIL algorithm while using computer 
simulation as the evaluation function. 
 
The PBIL algorithm will now be outlined, followed by discussions of two applications 
of the PBIL using computer simulation. Aspects of the simulation model and 
optimisation with the PBIL algorithm are considered, and lastly, the results are 
presented and evaluated. 
 
2.  THE POPULATION-BASED INCREMENTAL LEARNING (PBIL) ALGORITHM 
 
Baluja [3] developed the PBIL algorithm. The basic concepts of the PBIL algorithm 
are as follows: 
 
Set-up of the solution structure. The solution structure on which the PBIL algorithm 
operates is similar to that of the general genetic algorithm. The decision variables 
of the problem are identified and encoded as adjacent binary sub-strings to form a 
complete string, called a solution vector. The nature of the decision variables 
determines the length of the string. When a decision variable can assume values 
between, for example, 0 and 100, a sub-string of seven binary digits is sufficient. 
The digits in the string (solution vector) are randomly assigned binary values (0 or 
1). After the sub-strings have been decoded and the appropriate values assigned to 
the respective variables, such a string constitutes one possible solution. A finite set 
of these solution vectors forms a population of possible solutions; the analyst must 
select this population size. 
 
Evaluation function. The quality of each possible solution suggested by a 
metaheuristic must be evaluated – hence the need for an evaluation function. The 
result of the evaluation function must usually be minimised or maximised. This 
function is usually a mathematical function (Thomas et al. [20], Zhai et al. [25]), 
but for dynamic, complex stochastic systems, simulation models can be used as 
evaluation functions. This principle is applied in this paper and is shown in Figure 1. 
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Figure 1:  Principle of simulation optimisation with metaheuristics 
 
A large variety of literature exists on simulation optimisation with metaheuristics –
 see for example Andradóttir [2], Glover et al. [11], Baesler and Sepúlveda [5], Law 
and Kelton [17], Lacksonen [16], Ólafsson and Kim [18], and Truong and Azadivar 
[21]. 
 
Probability vector. The probability vector is an additional structure and has as many 
elements as the solution vectors, but each element contains a probability value 
instead of a binary number. The value in a specific element shows the probability 
that a given digit in a solution vector contains a ‘1’. A low value in element i thus 
indicates a low probability of finding a ‘1’ in digit i of a solution vector. The 
probability vector is the core of the PBIL algorithm. The elements of the vector are 
initialised to contain probabilities of 0.5 each, but a selected solution vector from 
the population modifies the contents of each element during a given iteration.  
 
To illustrate: Suppose the objective function of a given complex problem must be 
maximised. All the solution vectors in the population are decoded and evaluated 
through the appropriate evaluation function. The solution vector resulting in the 
maximum value of the evaluation function is selected from the population to modify 
the probability vector. This modification is done as follows: 
 

LRiSVLRiPiP j
B

jj ×+−×← )()1()()(      (1) 
where  
P j(i) = value of the i-th cell in the probability vector in the  j-th generation 
LR = learning rate (typically 0.1–0.4)  

j
BSV  (i) = value of the i-th digit in the solution vector (0 or 1) yielding the q

 maximum Evaluation value (the current ‘best’), j-th generation 
 
A simple example (one variable of four bits and a fictitious evaluation function) to 
illustrate the above three concepts is shown in Figure 2. 
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 Encoded variable 1.1.1.1.1.1.

SV1 1 0 1 0 0 
SV2 0 0 0 1 3.6 

SV3 0 0 1 0 6.4 

SV4 1 0 0 1 3.6 

SV5 1 1 1 1 -30 

SV6 1 1 0 0 -9.6 

SV7 0 0 1 0 6.4 
SV8 1 1 0 1 -15.6 

SV9 0 1 1 1 8.4 
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SV10 0 1 0 0 9.6 

      
Probability vector 0.5 0.5 0.5 0.5  

 

Figure 2:  Example of the set-up of the PBIL structure 

 
Mutation. To avoid premature convergence, mutation is applied to the probability 
vector as follows: 

MSorRandomMSiPiP jj ×+−×← )10()1()()(     (2) 
where 
MS = the degree to which mutation is applied; a typical value is 0.05. 
 
Mutation is applied with a set probability, typically 0.02. Note that the term 
Random(0 or 1) means that either a ‘0’ or a ‘1’ is selected with probability 0.5. 
 
Formation of the next generation. The solution vectors of the next generation are 
formed using the probability vector. A random number is created for each element 
of each solution vector in the population. If the random number is less than the 
probability value in the corresponding element of the probability vector, a ‘1’ is 
assigned to that element of the solution vector, otherwise a ‘0’ is assigned. This is 
repeated for each solution vector in the population. 
 
Convergence. If the algorithm converges, the elements of the probability algorithm 
converge to either 0 or 1. Threshold values are set to prevent unnecessary 
iterations; for example if an element reaches a value below 0.05, it is considered to 
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have converged to 0, while an element that has a value above 0.95 has converged to 
1. If all elements satisfy one of these conditions, the algorithm is stopped. A hard-
stopping criterion is also used to prevent endless iterations with optimisation 
problems that behave badly, e.g. 200 iterations. There is of course a risk that the 
algorithm can stop prematurely while it is converging. 
 

//Start Algorithm 
1: Assign LR, Pr(Mutation), MS,  MaxGenerations,  PopulationSize 
2: Initialise Probability Vector P 
3: k←1 
4: Converged←False 

5: While Not Converged AND k ≤ MaxGenerations 

6: For j = 1 To PopulationSize 

7: Generate solution vectors in population 

8: Evaluate the solution vectors 

9: Next j 

10: Find the best solution vector 

 //Update probability vector P:  

11: For i = 1 To Number of Elements of P 

12: 1k k k
BP ( i ) P ( i ) ( LR ) SV ( i ) LR← × − + ×  

13: Next i 

 //Do mutation 

14: For j = 1 To Number of Elements of P 

15: If (Random(0,1) < Pr(Mutation)) Then 

16: 1 0 or 1k kP ( j ) P ( j ) ( MS ) Random( ) MS← × − + ×  

17: End If 

18: Next j 

19: k←k + 1 

20: Converged ← Call Function CheckConvergence 
21: End While 

22: Return Result 

//End Algorithm 

Figure 3:  General PBIL algorithm 

Evaluation function. Each solution vector is decoded from binary format to decimal 
format, and the value of the evaluation function is determined for the value(s) 
represented by the given solution vector. The evaluation function can assume many 
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forms – for example, a mathematical function for which the optimum cannot be 
determined analytically, or a simulation model, as is the case in this article. 
 
The general algorithm is shown in Figure 3. 
 

Variations of the PBIL algorithm include a negative learning ability (Baluja [3]) as 
well as duality (Yang and Yao [24]). The PBIL algorithm has been widely used in 
many applications; see, for example, Chen and Petroianu [6], Al-Sharhan et al. [1] 
and Gosling et al. [13]. Baluja applied it to the j x m job shop scheduling problem 
(scheduling j jobs on m machines, an NP-complete problem), a 50-city travelling 
salesperson problem, as well as the bin-packing problem (Baluja [3]).  
 
Computer simulation and the PBIL algorithm were applied to an inventory problem 
and a traffic intersection (system) problem. These problems are described in the 
next section. 
 
3.  DETERMINING THE REORDER LEVEL AND REORDER QUANTITY IN AN (s, S) 
     INVENTORY PROBLEM 
 
The (s, S) inventory problem requires a reorder point s and a reorder quantity S to 
be determined for a commodity that has a stochastic demand profile. Cost must be 
minimised while a desired customer service level must be maintained. This problem 
is well-known, and is covered in almost every operations management textbook 
(e.g. Hanna and Newman [14], 595–599).  
 
For this application of the PBIL algorithm, assume a simple inventory process in 
which a single, discrete commodity is sold to customers who arrive according to a 
Poisson process, with the rate of arrival λ . Assume the demand of customer i is 
distributed 20 2  1beta( , )⋅⎡ ⎤⎢ ⎥  and the order lead time is U(1h, 2h). The following 

notation applies: 
 

tI  = inventory level at time t when customer i arrives 

0I  = starting inventory (at time 0) 

s  = reorder point 

S  = reorder quantity 

LS  = service level 

iS  = stock-out (i.e. inability to fulfil demand) experienced by customer i  

iD  = demand of customer i 

CN  = total number of customers that arrived in period T 

i  = customer number at time t 
 
In this problem, the service level is defined as the ratio of units of the commodity 
supplied to the total demand. It is expressed as follows: 
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The inability to fulfil demand is the stock-out, determined by 
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The commodity inventory consumption profile is shown in Figure 4.  
 
The following assumptions apply: 
The system operates for 8 hours every day. The inventory level at the end of a given 
day is carried over to the following day. 
 
1. The initial inventory is 1000 =I  units. 

2. The customer arrival rate is h/2=λ . 
3. In this problem, no backlog is allowed – if ti ID >  and 0>tI , the customer 

takes tI  units and after that tI  becomes 0. If 0=tI  and a customer arrives, 

tI  remains 0, but the stock-out is adjusted according to Equation (4). When 
the replenishment quantity arrives, tI  is adjusted according to SII tt +← . 
Note that the stock-out quantity shown in Figure 4 is for illustration purposes 
only; our replenishment starts at 0=tI  if a complete stock-out has occurred. 

4. The cost to reorder S  items is R100/order, and the overall holding cost per 
item is R10/item-day. 

 
The desired service level is 95%. 
 
The PBIL parameters were: LR = 0.3, mutation probability = 0.08 and mutation shift 
factor MS = 0.05. We did not evaluate the sensitivity of each parameter, but found 
that a learning rate of less than 0.3 caused very slow convergence.A simulation 
model of this problem was developed, and s and S were specified as variables that 
must be altered by the PBIL algorithm. A response function is needed in the 
simulation model to quantify the effect of the choices for s and S. The following 
response function, measured as a pseudo-cost, was used: 
 

$ 21000 10 100LDf ( S S ) D N= − + +       (5) 

 
where 
$

LS  = the estimated service level resulting from values chosen for s and S 
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4.  DETERMINING SIGNAL TIMING AT A COMPLEX TRAFFIC INTERSECTION 
 
Traffic streams require the option of being diverted or converged, which imposes 
conflict. These conflicts may be reduced by space or time separation of the streams 
(Chou et al. [7]). Time separation requires signal control, which in its simplest form 
provides a sequence of green, orange (amber) and red displays. The duration of 
these display phases is critical for optimum control of traffic, and must be well 
planned to minimise vehicle delay and simultaneously maximise vehicle throughput 
at the control point. 
 

 
 

Figure 6:  Schematic plan view of the intersection investigated (not to scale) 
 
Computer simulation enables one to study dynamic systems (Law and Kelton [17]), 
and can therefore also be applied in traffic control system design, as was shown by 
Chou et al. [7]. The effect of changing the durations of phases can be observed for a 
given arrival pattern of vehicles. A large number of possible values can be selected 
for the phase durations, which results in a large solution space. If one accepts 
integer values for the phase durations, combinatorial optimisation with 
metaheuristics is possible. As explained previously, a metaheuristic linked to 
simulation enables one to improve dynamic (and often stochastic) systems to near-
optimality. In this case, the PBIL algorithm will specifically be used. Although not 
new [19], the combination of computer simulation and the PBIL is applied to 
improve the throughput of a traffic light control system. Advanced traffic signal 
timing and optimisation can be achieved with dedicated applications, e.g. Synchro 
and the various forms of Passer II, III and IV [19]. 
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4.2  Implementation 
 
The simulation model of the system described above was developed in Arena 9.0, 
and the PBIL algorithm was coded in Visual Basic for Applications (VBA). The VBA 
code executes the algorithm using the Arena model as the evaluation function. This 
is repeated until convergence takes place or the termination criterion is satisfied. 
 
4.3  Assumptions and simplification 
 
The following assumptions were made: 
 
• When the green phase starts, the first vehicle in each lane that may continue 

will take longer to proceed through the system than the vehicles following it, 
because of the starting delay. This time is taken as 5 seconds, while the other 
vehicles take 3 seconds each to proceed through the system. These times are 
only estimates, and may be different in other studies. Chou et al. [7] took the 
starting delay as 0 seconds, and consecutive delays of 2.2 seconds per vehicle. 

 
• The duration of the orange/amber phase is a constant. It will be divided equally 

between the red and the green time and will therefore be ignored.  
 
• Although vehicles arrive according to a varying daily pattern at the various 

junctions, it was assumed that they arrive at a constant arrival rate during the 
peak hours of the day. 

 
• No distinction is made between types of vehicles – for example, motorcycles or 

cars. 
 
• The space in the system is limited (see Figure 6), and it is assumed that on 

average a vehicle occupies five metres of a lane. When these internal lanes are 
fully occupied, vehicles wishing to enter the system from other lanes cannot 
proceed even if they receive the green signal. The distance between the 
junctions marked ‘P’ and ‘D’ in Figure 6 is 130 metres, while the distance 
between ‘P’ and ‘B’ is 80 metres. The system is symmetric. 

 
• The period studied was from 07:00 to 07:30, which is a reasonable 

representation of the worst conditions during the peak hour. The simulation 
model was allowed to ‘warm up’, i.e. to reach a steady state during each 
replication, after which the system performance was measured for 1,800 
seconds. The vehicles in process are disposed at the end of the simulation run. 

 
4.4  Input variables and performance measures 
 
The input variables that are controlled by the PBIL algorithm are the time durations 
for the phases of the traffic light sets. The variables are only defined for the traffic 
lights giving way to the traffic arriving in the system, i.e. for traffic arriving from 
Paarl at junction ‘P’, from Bellville at junction ‘B’, from Cape Town at junction ‘C’ 
and from Durbanville at junction ‘D’ (see Figure 6). This approach is followed 
because the opposite traffic lights in each set are always in the opposite state for 
the same time duration as the given traffic light set, which means the number of 
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variables manipulated by the algorithm can be reduced. Each traffic light set also 
has an offset time, which is a once-off time delay starting at t = 0. Before the 
timing of a set starts, it is thus delayed by this period, which determines the 
synchronisation of the system. The times to be varied are as follows: 
 
• Paarl_Green – Duration of the green phase for the traffic light system at the 

junction receiving traffic from Paarl and Durbanville. 
 
• Bellville_Green – Duration of the green phase for the traffic light system at the 

junction receiving traffic from Bellville and Paarl. 
 
• CapeTown_Green – Duration of the green phase for the traffic light system at 

the junction receiving traffic from Cape Town and Bellville. 
 
• Durbanville_Green – Duration of the green phase for the traffic light system at 

the junction receiving traffic from Durbanville and Cape Town. 
 
• Paarl_Offset – Offset time duration from t = 0 before the timing cycle starts, for 

the traffic light system at the junction receiving traffic from Paarl and 
Durbanville. 

 
• Bellville_Offset – Offset time duration from t = 0 before the timing cycle starts, 

for the traffic light system at the junction receiving traffic from Bellville and 
Paarl. 

 
• CapeTown_Offset – Offset time duration from t = 0 before the timing cycle 

starts, for the traffic light system at the junction receiving traffic from Cape 
Town and Bellville. 

 
• Durbanville_Offset – Offset time duration from t = 0 before the timing cycle 

starts, for the traffic light system at the junction receiving traffic from 
Durbanville and Cape Town. 

 
• Cycle_Time – The cycle time is the sum of the three colour phases of a traffic 

light set, and must be the same for all sets for the system to be synchronised. 
The duration of the green phase and the red phase need not be equal, however. 

 

The relationships among the traffic light control times for a simple traffic 
intersection can be schematically explained as shown in Figure 7. Note that the 
exact starting positions and durations are not important for the purpose of the 
example. 

 
The duration of the red phase is determined by subtracting the duration of the 
green phase from the duration of the cycle time. Practical requirements state that 
the minimum duration of the green phase is seven seconds, while the maximum 
duration is 127 seconds. The nine variables are therefore encoded using seven-bit 
binary numbers. The algorithm will only find integer values in one-second resolution 
for the solutions, although time is a continuous phenomenon. 
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Figure 7:  Traffic light control times 

 
The measures of performance are: 
 
• The total number of vehicles that left the system over the simulation time 

period. 
 
• The mean time in the system. The time in the system is the period measured 

from the moment the vehicle enters the system until it leaves. The system could 
be entered while all lanes at an entry point are open, or when a queue of 
significant length has developed in a given lane at that entry point. This value is 
to be minimised. 

 
Although these two parameters are related (i.e., when the number of vehicles per 
unit time serviced by the system increases, the mean time in the system must 
decrease), both are measured since they must be quantified, while the first 
parameter is used for validation. 
 
4.5  Model validation 
 
Simulation is the imitation of a real-world process over time (Banks [4]), and before 
results can be generated with such a model, it must be validated. Validation is the 
process of ensuring that the model is a sufficient representation of the real-world 
process under study, for the particular objectives of the study (Law and Kelton 
[17]). At least 75 validation techniques exist; in this case the model was subjected 
to informal techniques, which include Desk checking and Face validation (Banks [4]). 
The traffic counts of the real system were compared to those of the simulation 
model (based on several independent replications), and the results are shown in 
Table 3 (Face validation). In this validation run, the various phase durations in the 
model were set equal to those of the real system. 
 
The model was considered to be valid, based on the reasonably small differences in 
traffic counts. 
 
4.6  PBIL algorithm parameters 
 
The following parameters were used for the application of the PBIL algorithm to this 
problem: 
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