USING THE POPULATION-BASED INCREMENTAL LEARNING ALGORITHM WITH
COMPUTER SIMULATION: SOME APPLICATIONS

J. Bekker and Y. Olivier'

Department of Industrial Engineering
University of Stellenbosch, South Africa
ib2@sun.ac.za

ABSTRACT

The integration of the population-based incremental learning (PBIL) algorithm with
computer simulation shows how this particular combination can be applied to find
good solutions to combinatorial optimisation problems. Two illustrative examples
are used: the classical inventory problem of finding a reorder point and reorder
quantity that minimises costs while achieving a required service level (a stochastic
problem); and the signal timing of a complex traffic intersection. Any traffic control
system must be designed to minimise the duration of interruptions at intersections
while maximising traffic throughput. The duration of the phases of traffic lights is of
primary importance in this regard.

OPSOMMING

Die integrasie van die population-based incremental learning (PBIL) algoritme met
rekenaarsimulasie word bespreek, en daar word getoon hoe hierdie spesifieke
kombinasie aangewend kan word om goeie oplossings vir kombinatoriese
optimeringsprobleme te vind. Twee voorbeelde dien as illustrasie: die klassieke
voorraadprobleem waarin 'n herbestelvlak en herbestelhoeveelheid bepaal moet
word om koste te minimeer maar nogtans ’n vasgestelde diensvlak te handhaaf ('n
stochastiese probleem); en die bepaling van die seintye van ’n komplekse
verkeerskruising. Enige verkeerbeheerstelsel moet ontwerp word om die duur van
die vloeionderbrekings by verkeerskruisings te minimeer en verkeerdeurset te
maksimeer. Die tydsduur van die fases van verkeersligte is dus baie belangrik.

'The author was enrolled for a B Eng degree in the Department of Industrial
Engineering, Stellenbosch University

South African Journal of Industrial Engineering May 2008 Vol 19(1): 53-71

1. INTRODUCTION

The population-based incremental learning (PBIL) algorithm belongs to the family of
metaheuristics used for finding near-optimal solutions to complex problems that are
usually at least NP-hard. This generally implies problems with large, discrete
solution spaces, for which the time to solve the problem grows polynomially with
the problem size (number of variables). A classic example of this type of problem is
the ‘travelling salesperson problem’ (TSP, see Winston [23], 519 and 526).
Metaheuristics search these large (often infinite) solution spaces in a structured,
incremental manner and attempt to find ‘good’ solutions to problems for which the
solutions cannot be found using exact methods or exhaustive enumeration.

There are many metaheuristics available for optimisation. One of the best-known
ones is the genetic algorithm (GA) — see for example Goldberg [12], Thomas et al.
[20], Dereli et al. [9], Zhou et al. [26], Coit et al. [8], and Kreng et al. [15] - but
simulated annealing, ant colony optimisation, and tabu search are also widely
known and applied. The PBIL is perhaps less known, and it is our objective to
introduce this algorithm to the local industrial engineering community. Since
metaheuristics are often used in combination with computer simulation for
optimisation (Fu et al.[10]), we present the PBIL algorithm while using computer
simulation as the evaluation function.

The PBIL algorithm will now be outlined, followed by discussions of two applications
of the PBIL using computer simulation. Aspects of the simulation model and
optimisation with the PBIL algorithm are considered, and lastly, the results are
presented and evaluated.

2. THE POPULATION-BASED INCREMENTAL LEARNING (PBIL) ALGORITHM

Baluja [3] developed the PBIL algorithm. The basic concepts of the PBIL algorithm
are as follows:

Set-up of the solution structure. The solution structure on which the PBIL algorithm
operates is similar to that of the general genetic algorithm. The decision variables
of the problem are identified and encoded as adjacent binary sub-strings to form a
complete string, called a solution vector. The nature of the decision variables
determines the length of the string. When a decision variable can assume values
between, for example, 0 and 100, a sub-string of seven binary digits is sufficient.
The digits in the string (solution vector) are randomly assigned binary values (0 or
1). After the sub-strings have been decoded and the appropriate values assigned to
the respective variables, such a string constitutes one possible solution. A finite set
of these solution vectors forms a population of possible solutions; the analyst must
select this population size.

Evaluation function. The quality of each possible solution suggested by a
metaheuristic must be evaluated - hence the need for an evaluation function. The
result of the evaluation function must usually be minimised or maximised. This
function is usually a mathematical function (Thomas et al. [20], Zhai et al. [25]),
but for dynamic, complex stochastic systems, simulation models can be used as
evaluation functions. This principle is applied in this paper and is shown in Figure 1.

54

]
=2| X,
a L.
=X, . . Metaheuristic:
a2 Simulation
& ™ Model »® Evaluates output
g o Modify X,
E Xn
a2
i Solution
Y or

no convergence

Figure 1: Principle of simulation optimisation with metaheuristics

A large variety of literature exists on simulation optimisation with metaheuristics -
see for example Andradottir [2], Glover et al. [11], Baesler and Sepulveda [5], Law
and Kelton [17], Lacksonen [16], Olafsson and Kim [18], and Truong and Azadivar
[21].

Probability vector. The probability vector is an additional structure and has as many
elements as the solution vectors, but each element contains a probability value
instead of a binary number. The value in a specific element shows the probability
that a given digit in a solution vector contains a ‘1’. A low value in element i thus
indicates a low probability of finding a ‘1’ in digit i of a solution vector. The
probability vector is the core of the PBIL algorithm. The elements of the vector are
initialised to contain probabilities of 0.5 each, but a selected solution vector from
the population modifies the contents of each element during a given iteration.

To illustrate: Suppose the objective function of a given complex problem must be
maximised. All the solution vectors in the population are decoded and evaluated
through the appropriate evaluation function. The solution vector resulting in the
maximum value of the evaluation function is selected from the population to modify
the probability vector. This modification is done as follows:

Pj(i)<—Pj(i)x(1fLR)+SVé.(i)><LR ™)
where

P(i) = value of the i-th cell in the probability vector in the j-th generation
LR = learning rate (typically 0.1-0.4)

svg (i) = value of the i-th digit in the solution vector (0 or 1) yielding the q

maximum Evaluation value (the current ‘best’), j-th generation

A simple example (one variable of four bits and a fictitious evaluation function) to
illustrate the above three concepts is shown in Figure 2.

55

Encoded variable 1.1.1.1.1.1.

N
o
o i
£ o
]
T 9
g > [svi[1 0 1 0 0
o2 Vo[0 0 0 1 3.6
23 svs[0 0 1 0 6.4
"t v
30 sv. 1 0 0 1 3.6
K svs[1 1 1 1 -30
< AN 1 0 0 9.6
sv,[0 0 1 0 6.4
SARE 1 0 1 -15.6
SVo| 0 1 1 1 8.4
\ SVio| 0 1 0 0 9.6

Probabilityvectorl 0.5 | 0.5 | 0.5 | 0.5 |

Figure 2: Example of the set-up of the PBIL structure

Mutation. To avoid premature convergence, mutation is applied to the probability
vector as follows:

PJ (i) < P (i) x (1— MS) + Random(Oor1) x MS)
where
MS = the degree to which mutation is applied; a typical value is 0.05.

Mutation is applied with a set probability, typically 0.02. Note that the term
Random(0 or 1) means that either a ‘0’ or a ‘1’ is selected with probability 0.5.

Formation of the next generation. The solution vectors of the next generation are
formed using the probability vector. A random number is created for each element
of each solution vector in the population. If the random number is less than the
probability value in the corresponding element of the probability vector, a ‘1’ is
assigned to that element of the solution vector, otherwise a ‘0’ is assigned. This is
repeated for each solution vector in the population.

Convergence. If the algorithm converges, the elements of the probability algorithm

converge to either 0 or 1. Threshold values are set to prevent unnecessary
iterations; for example if an element reaches a value below 0.05, it is considered to

56

have converged to 0, while an element that has a value above 0.95 has converged to
1. If all elements satisfy one of these conditions, the algorithm is stopped. A hard-
stopping criterion is also used to prevent endless iterations with optimisation
problems that behave badly, e.g. 200 iterations. There is of course a risk that the
algorithm can stop prematurely while it is converging.

//Start Algorithm
1: Assign LR, Pr(Mutation), MS, MaxGenerations, PopulationSize
2: Initialise Probability Vector P
3: k1
4: Converged«False
5: While Not Converged AND k < MaxGenerations
6: For j = 1 To PopulationSize
7: Generate solution vectors in population
8: Evaluate the solution vectors
9: Next j
10: Find the best solution vector
//Update probability vector P:
11: For i = 1 To Number of Elements of P
12: P (i)« P (i)x(1-=LR)+ SV} (i)x LR
13: Next i
//Do mutation
14: For j = 1 To Number of Elements of P
15: If (Random(0,1) < Pr(Mutation)) Then
16: PY(j) <« P*(j)x(1=MS)+ Random(0 or 1)x MS
17: End If
18: Next j
19: kek +1
20: Converged « Call Function CheckConvergence

21: End While
22: Return Result
//End Algorithm

Figure 3: General PBIL algorithm

Evaluation function. Each solution vector is decoded from binary format to decimal
format, and the value of the evaluation function is determined for the value(s)
represented by the given solution vector. The evaluation function can assume many

57

forms - for example, a mathematical function for which the optimum cannot be
determined analytically, or a simulation model, as is the case in this article.

The general algorithm is shown in Figure 3.

Variations of the PBIL algorithm include a negative learning ability (Baluja [3]) as
well as duality (Yang and Yao [24]). The PBIL algorithm has been widely used in
many applications; see, for example, Chen and Petroianu [6], Al-Sharhan et al. [1]
and Gosling et al. [13]. Baluja applied it to the j x m job shop scheduling problem
(scheduling j jobs on m machines, an NP-complete problem), a 50-city travelling
salesperson problem, as well as the bin-packing problem (Baluja [3]).

Computer simulation and the PBIL algorithm were applied to an inventory problem
and a traffic intersection (system) problem. These problems are described in the
next section.

3. DETERMINING THE REORDER LEVEL AND REORDER QUANTITY IN AN (s, S)
INVENTORY PROBLEM

The (s, S) inventory problem requires a reorder point s and a reorder quantity S to
be determined for a commodity that has a stochastic demand profile. Cost must be
minimised while a desired customer service level must be maintained. This problem
is well-known, and is covered in almost every operations management textbook
(e.g. Hanna and Newman [14], 595-599).

For this application of the PBIL algorithm, assume a simple inventory process in
which a single, discrete commodity is sold to customers who arrive according to a
Poisson process, with the rate of arrival 4. Assume the demand of customer i is
distributed [20-beta(2, 1)] and the order lead time is U(1h, 2h). The following

notation applies:

inventory level at time t when customer i arrives
= starting inventory (at time 0)

= reorder point
= reorder quantity
= service level

= stock-out (i.e. inability to fulfil demand) experienced by customer i
= demand of customer i

= total number of customers that arrived in period T

N.qz.b”hhh%hoNNN

= customer number at time t

In this problem, the service level is defined as the ratio of units of the commodity
supplied to the total demand. It is expressed as follows:

58

Nc¢ Nc¢
>0
i=1

L

_a=t =

== 100% (3)
20
i=1

The inability to fulfil demand is the stock-out, determined by

S — 0: ItZDi (4)
e I[’_Di I[’<Di

or S; =min(0,l; — D;)

S

The commodity inventory consumption profile is shown in Figure 4.

The following assumptions apply:
The system operates for 8 hours every day. The inventory level at the end of a given
day is carried over to the following day.

1. Theinitial inventory is Ig =100 units.

2. The customer arrival rateis 21 =2/h.

3. In this problem, no backlog is allowed - if D; >l and I >0, the customer
takes I units and after that /¢ becomes 0. If It =0 and a customer arrives,
It remains 0, but the stock-out is adjusted according to Equation (4). When
the replenishment quantity arrives, I is adjusted according to ¢ < /I¢ +S.
Note that the stock-out quantity shown in Figure 4 is for illustration purposes
only; our replenishment starts at I =0 if a complete stock-out has occurred.

4. The cost to reorder S items is R100/order, and the overall holding cost per
item is R10/item-day.

The desired service level is 95%.

The PBIL parameters were: LR = 0.3, mutation probability = 0.08 and mutation shift
factor MS = 0.05. We did not evaluate the sensitivity of each parameter, but found
that a learning rate of less than 0.3 caused very slow convergence.A simulation
model of this problem was developed, and s and S were specified as variables that
must be altered by the PBIL algorithm. A response function is needed in the
simulation model to quantify the effect of the choices for s and S. The following
response function, measured as a pseudo-cost, was used:

£=1000(S, —S.)* +10D+100N ()
where
S1 = the estimated service level resulting from values chosen for s and S

59

Sy = the desired service level

D = the estimated average daily inventory level

N = the estimated number of orders placed per day.
“
If-.

Y
‘si Safety
. : >t
Lead time® [«)
/]4\ The area is equal
— t)\
Stock out period i e

Figure 4: Typical (s, S) inventory profile

In our inventory problem, the value of f must be minimised. The difference
(Sp—S1) implies that there is always a positive difference between the estimated

service level and the desired service level. We chose a quadratic relationship so that
the response function could be penalised for both cases of deviation, i.e. when

Sp > Sr and when § < S - The difference is multiplied by a pseudo-cost (i.e. not a

tangible cost) of 1,000 to make it dominant for large differences, and comparable to
the other terms for small differences. Note that if the difference is 0, the average
inventory level and the number of orders placed become dominant. A desired
service level can thus not be reached without a minimum inventory level and the
minimum number of orders. All these then minimise f.

The estimations were done with the simulation model, using the terminating system
approach as prescribed by Law and Kelton ([17] 505-515). Ten independent
replications per solution vector of each PBIL generation were executed, for each
combination of s and S. Ten replications would generally be insufficient from a
statistical perspective, but the simulation model must only provide estimations for
the evaluation function; if more replications per combination are executed, the
execution time will increase. The analyst thus has to find a trade-off between
precision of estimation and computer time. The ranges of s and S were each limited
to 2", or 1,024. The solution space thus contained 1,024? possibilities, and the
solution vectors consisted of 20 bits each. The stock-out g is often difficult to

60

determine in practice, but in this problem it was determined by the simulation
model, since the demand of each arrival was known.

It was found that s = 97 units, and S = 57 units; the algorithm terminated after 17
generations. The values of s and S were verified by running 100 independent
replications of the simulation model. The results are shown in Table 1..

Parameter Point estimator Confidence interval half-width (95%)

St 95.05% 0.17%
D 63 units/day 3.90
N 3.57 orders/day 0.14

Table 1: Results for estimating the (s, S) parameters with 100 replications

The convergence of the two parameters is shown in Figure 5. The mean values per
generation for the variables s and S are shown for each generation.

600
500 A

400 \

300 —e— Averages
—a—Average S

200

o
m

0 5 0 %5 20
Generation number

Figure 5: Convergence of the mean response function value
for the (s, S) inventory problem

It took less than three minutes for the problem to converge on a Dell computer with
two 1.66 GHz processors.

Next, the use of the PBIL algorithm for a more complex, practical optimisation
problem will be demonstrated.

61

4. DETERMINING SIGNAL TIMING AT A COMPLEX TRAFFIC INTERSECTION

Traffic streams require the option of being diverted or converged, which imposes
conflict. These conflicts may be reduced by space or time separation of the streams
(Chou et al. [7]). Time separation requires signal control, which in its simplest form
provides a sequence of green, orange (amber) and red displays. The duration of
these display phases is critical for optimum control of traffic, and must be well
planned to minimise vehicle delay and simultaneously maximise vehicle throughput
at the control point.

Durbanville

Cape Town @

~ @,
...... ﬁ Junction lable
ff—@)—‘ ¢ @@ Traffic light pair

Number of lanes
Bellville — Traffic flow direction

Figure 6: Schematic plan view of the intersection investigated (not to scale)

Computer simulation enables one to study dynamic systems (Law and Kelton [17]),
and can therefore also be applied in traffic control system design, as was shown by
Chou et al. [7]. The effect of changing the durations of phases can be observed for a
given arrival pattern of vehicles. A large number of possible values can be selected
for the phase durations, which results in a large solution space. If one accepts
integer values for the phase durations, combinatorial optimisation with
metaheuristics is possible. As explained previously, a metaheuristic linked to
simulation enables one to improve dynamic (and often stochastic) systems to near-
optimality. In this case, the PBIL algorithm will specifically be used. Although not
new [19], the combination of computer simulation and the PBIL is applied to
improve the throughput of a traffic light control system. Advanced traffic signal
timing and optimisation can be achieved with dedicated applications, e.g. Synchro
and the various forms of Passer Il, 1l and IV [19].

62

4.1 Traffic intersection system description

A relatively complex traffic intersection system exists where the national road (N1)
is connected to the two suburbs of Bellville and Durbanville in the Western Cape,
South Africa. The N1 consists of two lanes per direction, while exit and entry routes
connect it to streets running across the N1 via an overpass. These streets have three
or four lanes in each direction. A schematic plan of the intersection is shown in
Figure 6. (Note that vehicles in South Africa keep left, as opposed to keeping right
in many other countries.) Circled numbers indicate the number of lanes per route.

At each junction there is a set of traffic lights that operate in pairs. These lights
provide the typical display sequence of green, orange/amber and red to control
traffic flow. The system is pre-timed, which means that it repeats a preset constant
cycle that constitutes the sum of the durations of the three display colours. Chou et
al. [7] explain the pre-timed principle.

Table 2 shows the results of traffic counts that were made at this intersection
during the morning peak hour.

Number of Number of
Arriving from vehicles Depart vehicles Percentage
(at junction) arriving per to departing per g
hour hour
P?:)" 1,120 Bellville 520 46
Durbanville 600 54
Bel(l;;“e 1,500 Cape Town 420 28
Durbanville 870 58
Paarl 210 14
Cap‘(’CTfW" 2,330 Durbanville 1,480 64
Bellville 850 36
Durbanville 2,510 Paarl 380 15
(D)
Bellville 1,000 40
Cape Town 1,130 45

Table 2: Traffic volumes during peak period (07:00-08:00)

63

4.2 Implementation

The simulation model of the system described above was developed in Arena 9.0,
and the PBIL algorithm was coded in Visual Basic for Applications (VBA). The VBA
code executes the algorithm using the Arena model as the evaluation function. This
is repeated until convergence takes place or the termination criterion is satisfied.

4.3 Assumptions and simplification
The following assumptions were made:

e When the green phase starts, the first vehicle in each lane that may continue
will take longer to proceed through the system than the vehicles following it,
because of the starting delay. This time is taken as 5 seconds, while the other
vehicles take 3 seconds each to proceed through the system. These times are
only estimates, and may be different in other studies. Chou et al. [7] took the
starting delay as 0 seconds, and consecutive delays of 2.2 seconds per vehicle.

e The duration of the orange/amber phase is a constant. It will be divided equally
between the red and the green time and will therefore be ignored.

e Although vehicles arrive according to a varying daily pattern at the various
junctions, it was assumed that they arrive at a constant arrival rate during the
peak hours of the day.

e No distinction is made between types of vehicles - for example, motorcycles or
cars.

e The space in the system is limited (see Figure 6), and it is assumed that on
average a vehicle occupies five metres of a lane. When these internal lanes are
fully occupied, vehicles wishing to enter the system from other lanes cannot
proceed even if they receive the green signal. The distance between the
junctions marked ‘P’ and ‘D’ in Figure 6 is 130 metres, while the distance
between ‘P’ and ‘B’ is 80 metres. The system is symmetric.

e The period studied was from 07:00 to 07:30, which is a reasonable
representation of the worst conditions during the peak hour. The simulation
model was allowed to ‘warm up’, i.e. to reach a steady state during each
replication, after which the system performance was measured for 1,800
seconds. The vehicles in process are disposed at the end of the simulation run.

4.4 Input variables and performance measures

The input variables that are controlled by the PBIL algorithm are the time durations
for the phases of the traffic light sets. The variables are only defined for the traffic
lights giving way to the traffic arriving in the system, i.e. for traffic arriving from
Paarl at junction ‘P’, from Bellville at junction ‘B’, from Cape Town at junction ‘C’
and from Durbanville at junction ‘D’ (see Figure 6). This approach is followed
because the opposite traffic lights in each set are always in the opposite state for
the same time duration as the given traffic light set, which means the number of

64

variables manipulated by the algorithm can be reduced. Each traffic light set also
has an offset time, which is a once-off time delay starting at t = 0. Before the
timing of a set starts, it is thus delayed by this period, which determines the
synchronisation of the system. The times to be varied are as follows:

e Paarl_Green - Duration of the green phase for the traffic light system at the
junction receiving traffic from Paarl and Durbanville.

e Bellville_Green - Duration of the green phase for the traffic light system at the
junction receiving traffic from Bellville and Paarl.

e CapeTown_Green - Duration of the green phase for the traffic light system at
the junction receiving traffic from Cape Town and Bellville.

e Durbanville_Green - Duration of the green phase for the traffic light system at
the junction receiving traffic from Durbanville and Cape Town.

e Paarl_Offset - Offset time duration from t = 0 before the timing cycle starts, for
the traffic light system at the junction receiving traffic from Paarl and
Durbanville.

e Bellville_Offset - Offset time duration from t = 0 before the timing cycle starts,
for the traffic light system at the junction receiving traffic from Bellville and
Paarl.

e CapeTown_Offset - Offset time duration from t = 0 before the timing cycle
starts, for the traffic light system at the junction receiving traffic from Cape
Town and Bellville.

e Durbanville_Offset - Offset time duration from t = 0 before the timing cycle
starts, for the traffic light system at the junction receiving traffic from
Durbanville and Cape Town.

e Cycle_Time - The cycle time is the sum of the three colour phases of a traffic
light set, and must be the same for all sets for the system to be synchronised.
The duration of the green phase and the red phase need not be equal, however.

The relationships among the traffic light control times for a simple traffic
intersection can be schematically explained as shown in Figure 7. Note that the
exact starting positions and durations are not important for the purpose of the
example.

The duration of the red phase is determined by subtracting the duration of the
green phase from the duration of the cycle time. Practical requirements state that
the minimum duration of the green phase is seven seconds, while the maximum
duration is 127 seconds. The nine variables are therefore encoded using seven-bit
binary numbers. The algorithm will only find integer values in one-second resolution
for the solutions, although time is a continuous phenomenon.

65

Set 4 Green Red |

Set 3 F A

Set 2 s 7

Set 1 [) o
Cycle time

-~

Figure 7: Traffic light control times
The measures of performance are:

e The total number of vehicles that left the system over the simulation time
period.

e The mean time in the system. The time in the system is the period measured
from the moment the vehicle enters the system until it leaves. The system could
be entered while all lanes at an entry point are open, or when a queue of
significant length has developed in a given lane at that entry point. This value is
to be minimised.

Although these two parameters are related (i.e., when the number of vehicles per
unit time serviced by the system increases, the mean time in the system must
decrease), both are measured since they must be quantified, while the first
parameter is used for validation.

4.5 Model validation

Simulation is the imitation of a real-world process over time (Banks [4]), and before
results can be generated with such a model, it must be validated. Validation is the
process of ensuring that the model is a sufficient representation of the real-world
process under study, for the particular objectives of the study (Law and Kelton
[17]). At least 75 validation techniques exist; in this case the model was subjected
to informal techniques, which include Desk checking and Face validation (Banks [4]).
The traffic counts of the real system were compared to those of the simulation
model (based on several independent replications), and the results are shown in
Table 3 (Face validation). In this validation run, the various phase durations in the
model were set equal to those of the real system.

The model was considered to be valid, based on the reasonably small differences in
traffic counts.

4.6 PBIL algorithm parameters

The following parameters were used for the application of the PBIL algorithm to this
problem:

66

Number of vehicles

Number of vehicles

Li::ffl;agig?‘gtf ° entering system entering system Diff?;;nce
(Real-world) (Simulated)

DtoP 560 564 0.71%
Paarl to P 1,540 1,486 -3.63%
Bellville to B 750 751 0.13%
PtoB 865 844 -2.49%
C to Durbanville 1,165 1,202 3.08%
BtoC 845 863 2.09%
Durbanville to D 1,255 1,287 2.49%
CtoD 540 504 -7.14%
Jotal number of 3,730 3,797 1.76%

*(see Figure 6)

Table 3: Traffic counts (07:00-07:30) versus simulation results
of the system under study

Learning rate = 0.2

Mutation shift = 0.05

Mutation probability = 0.08
Generations = 50

Solution vectors in the population = 30

The sensitivity of the values of these parameters was not evaluated, but
recommended values from the literature (Baluja [3]) were accepted.

4.7 Results: traffic intersection

Since the duration of the green phase cannot be less than seven seconds, a condition
was added that causes the algorithm to assign a very large value to the evaluation
function if the duration of any green phase is less than seven seconds. The results
are shown in Table 4.

The point estimators and interval estimators (h) (95% level of confidence) for the
performance measures based on 50 independent replications of 1,800 seconds each
are shown in Table 5.

The paired t-test (Walpole and Myers [22]) is applied to determine if the real-world
model and the PBIL-based proposal are significantly different, based on 50
independent replications at the 95% level of confidence. The results are shown in
Table 6.

67

Variable Values (seconds)

Using PBIL Real values

Offset time Paarl, junction P 96 59
Junction Paarl Green 63 24
Offset time Bellville, junction B 76 51
Junction Bellville Green 63 27
Offset time Cape Town, junction C 57 57
Junction Cape Town Green 114 g5
Offset time Durbanville, junction D 12 65
Junction Durbanville Green 89 34
Cycle time 171 75

Average time spent in the system 63.5 seconds 100.7 seconds*

* Obtained from the output of the validation model.

Table 4: Traffic light control variable values suggested by the PBIL algorithm

Real-world model Using PBIL
Average h* Average H
Time in system (s) 100.7 0.6 63.5 1.3
Vehicles processed 3,291 2 3,750 5

*Confidence interval half-width
Table 5: Point and interval estimators for the performance measures
The expected time a vehicle spends in the real-world system is thus greater than the

time it would spend in a system that used the signal times proposed by the PBIL
algorithm.

Direction of Estimated mean Half-
subtraction difference (s) Width
Real-world model - PBIL-based 37.3 5.34

Reject the null hypothesis Ho:
Means are equal at 95% level of confidence

Table 6: Results of the paired t-test of the expected time in system
The paired t-test is also applied to determine if the number of vehicles processed

during the period of observation differs significantly. The results are shown in
Table 7.

68

Direction of Estimated mean Half-
ubtraction difference (s) width

Real-world model - PBIL-based -459 5.16

Reject the null hypothesis Ho:
Means are equal at 95% level of confidence

Table 7: Results of the paired t-test of the number of vehicles processed

The expected number of vehicles processed by each system during the period of
observation differs significantly - the system using signal times proposed by the PBIL
algorithm processes more vehicles than the real-world system.

Although the research is unable to claim that the results are optimal, they do show
a significant improvement over the current real-world situation.

All the results are of course only valid for the time period under study, i.e. 07:00-
07:30. It took approximately 12 minutes for the problem to converge on a Dell
computer with two 1.66GHz processors. The analysis could be repeated for other
time periods, provided the arrival rates were known. In doing so, an adaptable
traffic control system could be realised, since the signal timings could be adjusted
according to the time of day and even the day of the week.

5. CONCLUSION

This article focused on the integration of the PBIL algorithm with computer
simulation. It was shown how this combination could be applied to improve real-
world systems, in particular the reorder level and reorder quantity of an (s, S)
inventory system. The application of the PBIL algorithm to this problem was
presented as a starting point, while the phase durations of a traffic light system at a
relatively complex traffic intersection were studied as a second, realistic problem.
The PBIL algorithm, in conjunction with simulation, showed that the expected time
vehicles spend in the system is significantly lower, which implies that a higher
traffic volume could be handled. Various other periods of the day should be studied
to provide parameters for the system to be adapted to changing traffic situations.

In general, industrial engineers should take note of the PBIL algorithm and its
potential in optimisation, especially when used with computer simulation. Also, if
traffic authorities could be convinced of the validity of this analysis, it could provide
them with a profitable solution to traffic situations of this kind.

6. REFERENCES

[1] Al-Sharhan, S., Karray, F. and Gueaieb, W. 2001. Approach of optimizing
computer networks using soft computing techniques. Proceedings of the
International Conference on Software, Telecommunications and Computer
Networks (SOFTCOM’01), 847-854.

[2] Andradottir, S. 1998. A review of simulation optimization techniques.
Proceedings of the 1998 Winter Simulation Conference, The Institute of

69

[3]

[4]

[3]

[6]

[7]

[8]

9]

[10]

[11]

[12]

[13]

[14]

70

Electrical and Electronics Engineers (IEEE), Piscataway, NJ 08855-1331, USA,
151-158.

Baluja, S. 1994. Population based incremental learning: A method for
integrating genetic search based function optimisation and competitive
learning. Technical Report, CMU-CS-94-163. Carnegie Mellon University,
Pittsburgh, PA 15213, USA.

Banks, J. 1998. Handbook of simulation: Principles, methodology, advances,
application, and practice, John Wiley & Sons, Inc., New York, NY.

Baesler, F. and Sepulveda, J.A. 2000. Multi-response simulation optimization
using stochastic genetic search within a goal programming framework.
Proceedings of the 2000 Winter Simulation Conference, The Institute of
Electrical and Electronics Engineers (IEEE), Piscataway, NJ 08855-1331, USA,
788-794.

Chen, L. and Petroianu, A. 1998. Application of PBIL to the optimization of
PSS tuning. 1998 International Conference on Power System Technology
Proceedings, 2, 834-838.

Chou, C., Chen, C. and Li, M.C. 2001. Application of computer simulation to
the design of a traffic signal timer, Computers & Industrial Engineering, 39(1-
2), 81-94.

Coit, D.W. and Smith, A.E. 2002. Genetic algorithm to maximize a lower-
bound for system time-to-failure with uncertain component Weibull
parameters, Computers & Industrial Engineering, 41(4), 423-440.

Dereli, T. and Filiz, I.H. 1999. Optimisation of process planning functions by
genetic algorithms, Computers & Industrial Engineering, 36(2), 281-308.

Fu, M.C., Glover, F.W. and April, J. 2005. Simulation optimization: A review,
new developments, and application. Proceedings of the 2005 Winter
Simulation Conference, The Institute of Electrical and Electronics Engineers
(IEEE), Piscataway, NJ 08855-1331, USA, 83-95.

Glover, F., Kelly, J.P. and Laguna, M. 1999. New advances for wedding
optimization and simulation. Proceedings of the 1999 Winter Simulation
Conference, 255-260.

Goldberg, D.E. 1989. Genetic algorithms in search, optimization, and
machine learning, Addison-Wesley, Boston, MA.

Gosling, T., Jin, N. and Tsang, E. 2004. Population based incremental
learning versus genetic algorithms: Iterated prisoners dilemma. Technical
Report, CSM-401. University of Essex, Essex, England.

Hanna, M.D. and Newman, W.R. 2007. Integrated operations management,
2" edition, Thomson South-Western, Mason, OH.

[13]

[16]

(171

(18]

[19]

[20]

[21]

[22]

(23]

(24]

(23]

[26]

Kreng, V.B. and Lee, T. 2004. Modular product design with grouping genetic
algorithm - a case study, Computers & Industrial Engineering, 46(3), 443-460.

Lacksonen, T. 2001. Empirical comparison of search algorithms for discrete
event simulation, Computers & Industrial Engineering, 40(1-2), 133-148.

Law, A.M. and Kelton, W.D. 2000. Simulation modeling and analysis, 3™
edition, McGraw-Hill, Boston, MA.

Olafsson, S. and Kim, J. 2002. Simulation optimization. Proceedings of the
2002 Winter Simulation Conference, The Institute of Electrical and Electronics
Engineers (IEEE), Piscataway, NJ 08855-1331, USA, 79-84.

Sabra, Wang & Associates. 2003. Signal timing process final report. U.S.
Department of Transportation
http://ops.fhwa.dot.gov/arterial_mgmt/rpt/sig_tim_proc/index.htm,
(accessed 13 June 2007)

Thomas, G.M., Gerth, R., Velasco, T. and Rabelo, L.C. 1995. Using real-
coded genetic algorithms for Weibull parameter estimation, Computers &
Industrial Engineering, 29(1-4), 377-381.

Truong, T. and Azadivar, F. 2003. Simulation based optimization for supply
chain configuration design. Proceedings of the 2003 Winter Simulation
Conference, The Institute of Electrical and Electronics Engineers (IEEE),
Piscataway, NJ 08855-1331, USA, 1268-1275.

Walpole, R.E. and Myers, R.H. 1993. Probability and statistics for engineers
and scientists, 5™ edition. Macmillan Publishing Company, New York, NY.

Winston, W.L. 1994. Operations research applications and algorithms, 3"
edition, Wadsworth, Inc., Belmont, CA.

Yang, S. and Yao, X. 2005. Experimental study on population-based
incremental learning algorithms for dynamic optimization problems, Soft
Computing - A Fusion of Foundations, Methodologies and Applications, 9(11),
815-834.

Zhai, L., Khoo, L. and Fok, S. 2002. Feature extraction using rough set theory
and genetic algorithms - an application for the simplification of product
quality evaluation, Computers & Industrial Engineering, 43(4), 661-676.

Zhou, H., Feng, Y. and Han, L. 2001. The hybrid heuristic genetic algorithm
for job shop scheduling, Computers & Industrial Engineering, 40(3), 191-200.

71

72

