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ABSTRACT
The kinetics of Cu(II) accelerated oxidation of L-phenylalanine (Pheala) oxidation in cetyltrimethylammonium bromide (CTAB) by 
hexacyanoferrate(III) was investigated by registering the decline in absorbance at 420 nm. Employing the pseudo-first-order condition, the 
reaction’s advancement has been examined as an indicator of [CTAB], [Cu(II)], [OH−], [Pheala], [Fe(CN)6

3−], temperature, and ionic strength. 
The results show that [CTAB] is the critical parameter with a discernible influence on reaction rate. Pheala interacts with [Fe(CN)6]3− in a 
1:2 ratio, and this reaction exhibits first-order dependency with regard to [Fe(CN)6

3−]. In the investigated concentration ranges of Cu(II), 
[OH−], and [Pheala], the reaction demonstrates fractional-first-order kinetics. A positive salt effect is indicated by the linear rise in reaction 
rate with additional electrolytes. CTAB catalyzes the process substantially, and once at its peak, the rate remains basically constant as 
[CTAB] grows. Reduced repulsion between surfactant molecules’ positive charge heads brought on by the negative-charged [Fe(CN)6]3−, 
OH−, and [Cu(OH)4]2− molecules may be responsible for the witnessed drop in CTAB CMC.
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INTRODUCTION

Amino acids are crucial for metabolism as well as serving as the 
building blocks for the creation of proteins. Numerous fields, 
including biochemistry, fortification of feed and food, metabolism, 
microbiology, medicines, and nutrition use amino acids. Oxidation 
of amino acids plays an integral role in metabolism and medicine as 
organisms employ the oxidation of amino acids to control the quantity 
of protein in the body. Several scientists have already investigated 
the kinetic and mechanistic aspects of amino acid oxidation.1−5 The 
mechanism, however, varies amongst the various reaction systems. 
The oxidation of amino acids is extremely exciting since different 
oxidants result in diverse oxidation products.1−5 The mechanism via 
which various amino acids are oxidized must therefore be studied in 
detail. 

A potent oxidizing agent, hexacyanoferrate(III) [HCF(III)] can 
oxidize a variety of organic and inorganic substrates in acidic as well as 
alkaline mediums.6−9 HCF(III) reactions in acid mediums are limited 
by its complexation with its reduced form HCF(II), which interferes 
with spectrophotometric monitoring. HCF(III) is very useful because 
of its stable reduction product as [Fe(CN)6]4−, high stability, water 
solubility, and moderate reduction potential.7 The nature of the 
substrate and the reaction media are crucial factors in the HCF(III) 
oxidation process, which, according to literature, proceeds via an 
outer-sphere electron transfer mechanistic pathway.9 Although several 
readily oxidizable substrates have been successfully oxidized using 
HCF(III), reactions involving amino acids with this oxidant are very 
slow and necessitate the addition of a catalyst. Pt(II), Ir(III), Ru(VI), 
Os(VIII), Ru(III), and Pd(III) were discovered to be the catalysts for 
these oxidation reactions.1−5,10 When coupled with HCF(III), Cu(II), 
one of the aforementioned metal ions, is especially potent at oxidizing 
amino acids. Several research articles describe the Cu(II) catalyzed 
oxidation of amino acids, antibiotics, alcohols, monosaccharides, and 
amines by HCF(III) in an aqueous environment.11−15 The generation of 

various intermediate complexes makes the catalytic mechanism highly 
complex.

The basic importance and applicability of the oxidation-reduction/
ligand exchange processes of complexes containing transition metals 
in analytical, organometallic, and synthetic chemistry encouraged 
a large number of scientists to explore their kinetics.16−19 Kinetic 
analyses on the oxidation of Co(II) or Fe(II) complexes and metal-
catalyzed cyanide substitution from [Ru/Fe(CN)6]3− by nitrogen 
heterocyclic ligands have been reported by a number of authors.20−22 
The procedures listed above have also been used to evaluate catalysts 
at the trace-level and drugs and other substances that have a strong 
affinity for catalysts.23−25 

Due to their surface-active characteristics, surfactants are frequently 
employed in modern industries.26−28 Surfactants’ amphiphilic structure, 
which includes both a tail (hydrophobic) and head (hydrophilic), is what 
gives them their surface activity.29 At modest concentrations, the water-
based solution of the surfactant behaves as an electrolyte. Micellization 
takes place in an aquatic environment because one substrate contains 
both hydrophilic and hydrophobic components. The typical surfactant 
concentration at which micellization starts spontaneously is defined as 
the critical micelle concentration (CMC).30 Due to the repulsive and 
attractive interactions that exist between surfactant molecules, the 
molecules will self-associate beyond CMC and constitute micelles of 
different shapes and sizes. At 298 K, the CMC value of the cationic 
surfactant cetyltrimethylammonium bromide (CTAB) ranges from 
0.8 × 10−3 mol dm−3 to 1.0 × 10−3 mol dm−3.31−33 In comparison to pure 
solvents, micelle-bound reactants experience a totally distinct reaction 
environment. The extent of substrate interaction with the micelle 
aggregates in a micellar medium determines the reaction rate.

The amino acids oxidation by HCF(III) in an aqueous alkaline media 
under Cu(II) catalysis has been reported in numerous studies.11−15 
However, very few such studies have been performed in surfactant 
medium.34−35 Therefore, in the current study, an effort is made to 
comprehend how cation ionic surfactant affects the Cu(II) promoted 
oxidation rate of Pheala by HCF(III).
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MATERIALS and METHODS

Reagent used 

All chemicals utilized were of analytical grade. The stock solution of 
each reagent was directly prepared by weighing its accurate amount 
and further dissolving it in double-distilled water. To avoid the 
potential photo-decomposition of K3[Fe(CN)6].3H2O (Merck India, 
99% pure), an amber-colored bottle was used to preserve its stock 
solution. L-phenylalanine (99% pure), sodium dodecyl sulfate (SDS) 
(99% pure), and Cetyltrimethylammonium bromide (99% pure) were 
purchased from Himedia, India, and utilized directly. The solution of 
Cu(NO3)2 (Sigma-Aldrich USA, 99% pure) was prepared by dissolving 
its calculated amount in distilled water. NaClO4 (Fisher Scientific, 
India, 99% pure) was utilized to control the reaction mixture’s ionic 
strength, while Molechem’s NaOH (99% pure) was employed for 
adjusting the reaction medium’s pH.

Instrumentation

Using a DD LAB (model LAB.PHM.66800620) auto digital pH meter 
(DD Bioinfotech, New Delhi, India), verified with a predefined buffer 
solution, the pH of the reaction mixture was monitored. A double-
beam UV-Visible spectrophotometer made by Electronics India, 
Haryana, India, model 2375, was deployed for the reaction’s repeated 
spectrum scan and for measuring absorbance at 420 nm associated 
with the deterioration of HCF(III). Calibration of spectrophotometer 
was done by acidic potassium dichromate solution. IR spectra of the 
final product 3-methylbutanal was recorded on a Thermo Nicolet 
NEXUS 470 FTIR spectrophotometer (Spectralab Scientific Inc., 
Canada). 

Kinetic procedure

The absorption values were not modified since, with the exception of 
the oxidizing agent, none of the reacting solutions exhibit significant 
absorption at the pertinent wavelength. Following 30 minutes of 
thermal equilibration at 298 K, all of the reactive solutions were quickly 
mixed in the sequence: Pheala, Cu(II), NaOH, CTAB, NaClO4, and 
[Fe(CN)6]3−. Immediately following a thorough shaking, the reaction 
mixture was poured into the spectrophotometric cell. An ingeniously 
constructed system of circulating water arrangement kept the cell 
compartment at a constant temperature. The absorbance decrease 
caused by [Fe(CN)6]3− was documented. The gradient of the line 
linking log(A∞ - At) and time has been employed to calculate the rate 
constant (k’) of the addressed reaction. Using calculated k’ values, the 
impact of [OH−], [CTAB], [Pheala], ionic strength, and [Fe(CN)6

3−] 
on the oxidation rate has been addressed. Calculated amounts of 
HCF(III) were allowed to stand with a tenfold surplus of Pheala in the 
presence of 0.20 mol dm−3 OH− and a fixed amount of Cu(II) at 298 
K in a closed vessel until the reaction was completed. By determining 
the non-reacted [Fe(CN)6]3− spectrophotometrically at 420 nm, the 
reaction’s stoichiometry is established. Based on the results, Pheala 
and [Fe(CN)6]3− interact at a mole ratio of 1:2, as demonstrated by the 
equation below.

RESULTS and DISCUSSION

The kinetics of Cu(II) accelerated oxidation of Pheala by HCF(III) in 
CTAB micellar medium were investigated by monitoring the decline 
in absorbance at 420 nm. The reduction of HCF(III) to HCF(II) is 
accountable for the apparent drop in absorbance. Neither does the 
reaction take place in an acidic environment, and in a mild alkaline 
medium, it moves along extremely slowly at lower temperatures. 

Therefore, the kinetic study, both in micellar and aqueous medium 
was performed in an alkaline medium (NaOH 0.20 mol dm−3) at 298 
K temperature. The visible region’s 420 nm absorption band is caused 
by [Fe(CN)6]3−. 

Thin-layer chromatography identifies the oxidation product 
of Pheala as phenylacetaldehyde by the production of its 
2,4-dinitrophenylhydrazone derivative. A chromatogram displaying 
only one peak for the prepared derivative indicates that only one 
product was formed. Previous research on amino acid oxidation 
via different oxidizing agents has also supported the production of 
phenylacetaldehyde.3−5

A polymerization test has been performed to assess the free radicals’ 
existence during the oxidation process. Reaction mixtures are inertly 
stored for six h with known concentrations of acrylonitrile scavenger. 
Dilution with methanol produces white precipitates, demonstrating 
free radical involvement in this process. These trials failed without 
Pheala under similar settings, indicating the involvement of Pheala in 
free radical formation.

The end product, phenylacetaldehyde, has a distinctive FTIR 
spectrum with absorption bands at ~2900-3100 cm−1, 2730 cm−1, 

and 2831 cm−1, and 1734 cm−1, which correlate to C-H str., C-H 
str. (aldehyde proton), and C=O str. respectively (Figure 1). Phenyl 
acetaldehydes’ production is further supported by the elemental 
analysis data for H, 6.73; O, 13.36; and C, 79.91.

We have not obtained and change in the absorbance maximum 
of Fe(CN)6

3− after mixing Fe(CN)6
3− and Cu2+ (both in aqueous and 

micellar medium). The result confirms that Fe(CN)6
3− will not exhibit 

any type of interaction with Cu2+ under the studied reaction conditions 
(Figure S1 and S2). 

Impact of variation of [OH−] on oxidation rate 

Previous research on organic moieties’ oxidation by [Fe(CN)6]3− has 
demonstrated the importance of [OH−] in determining the reaction 
rate. By calculating the rate constant at various [OH−] concentrations, 
the oxidation rate was initially explored in the [OH−] range of 
0.05 mol dm−3 to 0.8 mol dm−3.

The graph of k’ versus [OH−], illustrated in Figure 2, shows a 
linear relationship with positive intercepts. In the investigated range 
of OH− concentrations, the reaction rate is slower at lower [OH−] 
and accelerates significantly with [OH−]. The occurrence of a lesser 
responsive protonated state of Pheala and [Fe(CN)6]3− is thought 
to be the cause of the lowered rate at lesser pH. At greater [OH−], 
[Fe(CN)6]3−, like Pheala, appears primarily in its deprotonated 
state.36−37 The occurrence of merely a deprotonated version of the 
reducing and oxidizing agent accounts for the increment in reaction 
rate observed in a strongly alkaline solution. The reaction moves 
roughly 4.5 times faster in CTAB micellar media compared to 
aqueous conditions (Figure 2), which seems consistent with previous 
findings on the oxidation of organic substrates catalyzed/mediated by 
micelles.38−39

Figure 1: The final product’s (phenylacetaldehyde) FTIR spectrum

(1)
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Impact of variation of [CTAB] on oxidation rate 

To investigate how [CTAB] impacts the oxidation rate, every other 
parameter was kept constant while [CTAB] was adjusted from 0.5 x 
10−4 mol dm−3 to 8.5 x 10−4 mol dm−3. The [CTAB] against k’ graph 
(Figure 3) demonstrates the increases in oxidation rate with [CTAB] 
up to 6.5 x 10−4 mol dm−3 (around CTAB’s CMC) and then remains 
nearly constant in the examined [CTAB] range. At 6.5 × 10−4 mol dm−3 
[CTAB], the maximum oxidation rate was observed; this result is 
somewhat lower compared to the CMC for previously reported 
aqueous CTAB. CTAB’s calculated CMC in the studied reaction state 
is 6.12 × 10−4 mol dm−3 which is slightly less compared to the published 
data in an aquatic environment.31−33 This is determined by the junction 
of the two straight lines in the graph of k’ versus [CTAB] (Figure S3).

The acceleration or suppression of the rate of reaction in a micellar 
media is caused by the disbursement of reactants in micellar and 
aqueous pseudophases and the variation in their reaction rates.40−43 
Electrostatic and/or hydrophobic interactions between reactants and 
surfactant aggregates, as well as structural changes in water molecules, 
influence reaction rate. At concentrations lower than CMC, the 
surfactant in monomeric form serves as a catalyst, accelerating the 
reaction rate. Catalytic micelles are formed by monomeric surfactant 
and substrate molecule aggregation, which speeds up the process. 
Premicellar regions also impact surfactant medium reaction rates.44−45 
The substrate is less reactive in micellar aggregates compared to 
premicellar complexes.46 Premicellar complexes disintegrate and 
micelles form once the reaction rate peaks at CMC, sustaining the 
reaction rate.

The CTAB medium’s reaction rate is accelerated by the surfactant’s 
capacity to form nanoscale micelles that gather all reacting entities 
closer to promote a smoother reaction. Cationic surfactant CTAB 
creates a micelle with an outer layer that is positively charged. 
Therefore, cationic species shouldn’t get to the substrate and micellar 
surface in the stern layer.47 Because of the significantly positive charged 
micellar exterior, the negatively charged [Cu(OH)4]2−, [Fe(CN)6]3−, 
and OH− are able to come closer to the reactant molecules (in the stern 
layer) despite being repelled electrostatically.48 CTAB thus facilitates 
and accelerates the Cu(II) catalyzed reaction involving [Fe(CN)6]3− 
and Pheala (Figure 4).

The oxidation rate in the current reaction system advances with 
[CTAB] even with [CTAB] is less than its CMC. The creation of a pre-
micellar complex as a result of the agglomeration of the surfactant’s 
monomeric form with the molecules that are reacting is what causes 
the oxidation rate to increase; this aggregation promotes the reaction 
and increases its rate. The peaks in the rate-surfactant pattern are 
caused by two conflicting effects. Reactants started binding in the 
Stern layer promptly as the micelle formation process starts, and they 
are then transferred into a small volume of the micellar pseudophase. 
Because of the concentration effect, the acceleration results. The 
dilution of the interacting reactants in the micellar pseudophase offsets 
the concentration effect as the concentration of surfactant increases. 
In contrast to larger concentrations of surfactant, where these two 
opposing effects are reconciled and the rate-surfactant profile is 
consistent, lower surfactant concentrations are characterized by the 
former influence dominating the latter. CTAB’s CMC is observed to 
be somewhat lower in the examined reaction condition than in the 
aqueous environment. Electrostatically, the negatively charged OH−, 
[Cu(OH)4]2−, and [Fe(CN)6]3− molecules will be drawn to the positively 
charged CTAB molecule. Reduced repulsion between surfactant 
molecules’ positive charge heads brought on by the negative-charged 
[Fe(CN)6]3−, OH−, and [Cu(OH)4]2− molecules may be responsible for 
the witnessed drop in CTAB CMC.49 

Impact of variation of [Pheala] on oxidation rate 

Under the optimal [OH−], the influence of [Pheala] on the rate 
of reaction was examined at 298 K in the 2.0 × 10−3 mol dm−3 to 
10.0 × 10−3 mol dm−3 range. The k’ versus [Pheala] graph (Figure 5) 
produced a straight line with positive intercepts. We found fractional-
first-order kinetics in both aqueous and micellar environments for the 
amino acid. CTAB micellar media oxidizes Pheala faster compared to 
an aqueous medium.

Impact of variation of [Fe(CN)6
3−] on oxidation rate 

Under the optimum conditions of [Pheala] and [OH−], while fixing the 
rest reaction variables, the rate constant was calculated with reference 
to [Fe(CN)6]3− in the concentration band of 1.0 × 10−4 mol dm−3 to 
7.0 × 10−4 mol dm−3. In accordance with the calculated rate constant 
(k′) for each [Fe(CN)6

3−], the [Fe(CN)6
3−] range under consideration 

exhibits first-order kinetics (Table 1).

Figure 4: Schematic representation of Cu(II) catalyzed Pheala oxidation by 
HCF(III) in CTAB medium

Figure 3: Rate constant’s (k’) dependency on [CTAB] at [Pheala] = 5.0 × 10−3 mol dm−3, 
I = 0.20 mol dm−3 (NaClO4), [OH−] = 0.20 mol dm−3, Temp = 298 ± 0.1 K, [Cu(II)] =  
5.0 × 10−5 mol dm−3, and [Fe(CN)6

3–] = 2.5 × 10−4 mol dm−3

Figure 2: Rate constant’s (k’) dependency on [OH−] at [Pheala] = 5.0 × 10−3 mol dm−3, 
I = 0.20 mol dm−3 (NaClO4), [CTAB] = 6.75 × 10−4 mol dm−3, Temp = 298 ± 0.1 K, 
[Cu(II)] = 5.0 × 10−5 mol dm−3, and [Fe(CN)6

3–] = 2.5 × 10−4 mol dm−3
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Impact of variation of [Electrolyte] on oxidation rate 

Ionic strength’s effect on oxidation rate will be examined by altering 
the concentration of neutral electrolyte (NaClO4) in the 0.1 mol dm−3 
to 0.5 mol dm−3 range. The other variables of the reaction were 
maintained at [Cu(II)] = 5.0 ×10−5 mol dm−3, [Pheala] = 5.0 × 10−3 
mol dm−3, Temp. = 298 ± 0.1 K, [Fe(CN)6

3−] = 2.5 × 10−4 mol dm−3, 
and [OH−] = 0.20 mol dm−3. A positive salt effect could be seen on the 
graph plotted between k’ versus ionic strength (I) (Figure 6). 

Impact of variation of temperature on oxidation rate 

Under the optimum reaction conditions, as anticipated, the increases 
in oxidation rate were observed when the temperature increased (293 
to 323 K). To ensure a minimum probability of product degradation, 
the temperature range was selected. The reaction proceeds uniformly 
at a modest pace at 298 K, hence this temperature was preferred for the 
kinetic investigation. The Arrhenius and Erying equation was exploited 
to calculate the Ea (energy of activation), ∆H# (enthalpy of activation), 
∆S# (entropy of activation), and ∆G# (free energy of activation) values 
which are 19.52 kJ mol−1, 17.02 kJ mol−1, −244.10 J K−1 mol−1, and 
89.74 kJ mol−1, in surfactant medium and 27.67 kJ mol−1, 25.19 kJ mol−1, 

-211.59 J K−1 mol−1, and 88.24 kJ mol−1in an aqueous environment, 
respectively. The lower value of Ea and ∆H# in CTAB micellar medium 
compared to aqueous environment also supports the enhancement of 
reaction rate by CTAB micelles. Large negative entropy of activation in 
both medium also supports the formation of activated complex. 

Impact of variation of [Cu(II)] on oxidation rate 

As Cu(II) catalyzed oxidation of Pheala could eventually be employed 
to measure Cu(II) at trace levels, it is imperative to investigate the 
impact of [Cu(II)] on reaction rate. The valve of k′ was evaluated after 
the reactants were mixed under optimal reaction conditions with 
variable [Cu(II)]. In the examined concentration range, Cu(II) exhibits 
fractional-first-order dependence as shown by a linear relationship 
between [Cu(II)] and k′ (Figure 7).

Impact of anionic surfactant “sodium dodecyl sulfate (SDS)” 
on oxidation rate 

Surfactants, depending on their charges, may enhance the rate in 
addition to homogenizing organic substrates in aqueous media. In 
a micellar CTAB (cationic surfactant) medium, the rate of Cu(II) 
catalyzed L-Leu oxidation is almost 4.5 times faster than in aqueous 
conditions, with the maximum rate near the CMC of CTAB. By taking 
the concentration of SDS in its CMC range (8.2 × 10−3 − 8.5 × 10−3 mol dm−3), 
the effect of anionic surfactant on the oxidation of L-Leu has been 
examined under optimal reaction conditions. The calculated value of 
ko reported in Table 2, demonstrates that the reaction rate in the CTAB 
medium is extraordinarily high whereas it is slowed down in the SDS 
medium even in the presence of Cu(II).

Mechanism

Cu(II) has been established as a potent catalyst in a variety of oxidation 
processes. Taking into account the present kinetic analysis and past 
literature, we outlined the most likely mechanistic pathway for the 
oxidation of Pheala by hexacyanoferrate(III), catalyzed by Cu(II) via 
Equations 2–6 (Scheme 1).50

Figure 6: Rate constant’s (k’) dependency on [Ionic Strength] at [Pheala] = 
5.0 × 10−3 mol dm−3, [OH−] = 0.20 mol dm−3, Temp = 298 ± 0.1 K, [Cu(II)] =  
5.0 × 10−5 mol dm3, [Fe(CN)6

3–] = 2.5 × 10−4 mol dm−3, and [CTAB] = 6.75 × 10−4 mol dm−3 

Figure 7: Rate constant’s (k’) dependency on [Cu(II)] at I = 0.20 mol dm−3 
(NaClO4), [Pheala] = 5.0 × 10−3 mol dm−3, [OH−] = 0.20 mol dm−3, Temp = 298 ± 0.1 K, 
[CTAB] = 6.75 × 10−4 mol dm−3, and [Fe(CN)6

3–] = 2.5 × 10−4 mol dm−3

Figure 5: Rate constant’s (k’) dependency on [Pheala] at [CTAB] = 6.75 × 10−4 mol dm3, 
I = 0.20 mol dm−3 (NaClO4), [OH−] = 0.20 mol dm−3, Temp = 298 ± 0.1 K, 
[Cu(II)] = 5.0 × 10−5 mol dm−3, and [Fe(CN)6

3–] = 2.5 × 10−4 mol dm−3

Table 1: Rate constant’s (k′) dependency on [Fe(CN)6
3–] at I = 0.20 mol dm−3 

(NaClO4), [Pheala] = 5.0 × 10−3 mol dm−3, [OH−] = 0.20 mol dm−3, Temperature 
= 298 ± 0.1 K, [CTAB] = 6.75 × 10−4 mol dm−3, and [Cu(II)] = 5.0 × 10−5 mol dm−3

[Fe(CN)6
3–] × 104 

mol dm−3
k′ × 104 s−1

(without CTAB)
k′ × 104 s−1

(with CTAB)

1.0 10.49 48.65

2.0 10.72 47.83

2.5 10.6 47.7

3.0 10.58 47.62

3.5 10.82 47.78

4.0 10.44 48.14

4.5 10.84 47.36

5.0 10.48 48.83

5.5 10.51 47.39

6.0 10.65 48.71

7.0 10.57 48.02
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According to the findings, hexacyanoferrate(III)-catalyzed amino 
acid oxidation involves multiple steps and advances via the formation 
of a soluble Pheala-Cu intermediate complex (C1) involving Pheala 
and Cu(II). In the next step (slowest step) the complex C1 interacts 
with [Fe(CN)6]3− to produce L-phenylalanine free radical, [Fe(CN)6]4− 

with rejuvenation of catalyst. The resulting free radical quickly 
interacts with [Fe(CN)6]3− in the presence of OH−, and then hydrolysis 
results in the final oxidation product, phenylacetaldehyde.

The most sluggish step in the provided scheme, Equation 4, is 
regarded as the step that determines the rate.

 

 (7)

Equation 8 reflects the overall [Pheala].

 (8)

Using Equations 2, 3, and 8 we get: 

 (9)

Eq. 7 modifies to the ultimate rate law upon substituting the [Pheala] 
value,

 (10)

At low concentrations of Cu(II), the term K1K2[CuII][OH−] can be 
neglected,

 (11)

Total [CuII] can be represented as:

Using Eq. 3 we get

 (12)

Using Equations 11 and 12 we get;

Due to the low concentration of Pheala, the term can be neglected; 
Equation 12 transforms to;

 (13)

Under pseudo-first-order conditions, the rate of catalyzed reaction 
can be represented by Eq. 13. Where k’ represents the rate constant of 
the catalyzed reaction.

 (14)

From Eq. 13 and 14, we get

 (15)

The first order dependence of reaction rate on [Fe(CN)6
3−] is in 

accordance with the rate law. The fractional-first-order reliance of 
oxidation rate on both [Pheala] and [catalyst] further supports the 
generation of the Pheala-Cu complex in the equilibrium step. The 
positive salt effect also supports the emergence of an intermediate 
complex involving identically charged species which is further 
confirmed by the large negative entropy of activation value. The 
first order dependence on [Fe(CN)6

3−] and fractional-first-order 
dependence on [Pheala] and [catalyst] suggests the involvement of 
intermediate complex and [Fe(CN)6]3− in the rate determining step. 

The oxidation of Pheala by [Fe(CN)6]3− promoted by Cu(II) in a 
basic environment, as seen in the repeating spectral scan recorded 
with the inclusion of CTAB exhibits a constant drop in absorbance at 
420 nm (Figure 8). Pheala consumes the hexacyanoferrate(III) during 
the reaction, causing all peaks attributed to it to get shorter over time 
as [Fe(CN)6]3− is eventually converted to [Fe(CN)6]4−.

Figure 8: Repeating absorption spectra at [Pheala] = 5.0 × 10−3 mol dm−3, I = 
0.25 mol dm−3 (NaClO4), [OH−] = 0.20 mol dm−3, [CTAB] = 6.75 × 10−4 mol dm−3, 
Temperature = 298 ± 0.1 K, [Cu(II)] = 5.0 × 10−5 mol dm−3, and [Fe(CN)6

3–] = 
2.5 × 10−4 mol dm−3 

Table 2: Dependency of reaction rate on surfactant at [Pheala] = 5.0 × 10−3 

mol dm−3, I = 0.20 mol dm−3 (NaClO4), [OH−] = 0.20 mol dm−3, Temp = 298 
± 0.1 K, [Cu(II)] = 5.0 × 10−5 mol dm−3, and [Fe(CN)6

3–] = 2.5 × 10−4 mol dm−3

Without surfactant [CTAB] 
8.0 × 10−3 mol dm−3

[SDS] 
8.0 × 10−3 mol dm−3

ko × 104 
(mol dm−3 s−1) 10.66 48.05 4.63 
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CONCLUSION

This investigation adds to our understanding of the Cu(II) accelerated 
oxidation of amino acids by [Fe(CN)6]3− in CTAB micellar environment. 
In the studied range of [Cu(II)], [OH−], and [Pheala], the reaction 
displays fractional-first-order kinetics. The reaction exhibits first-
order dependency with regard to [Fe(CN)6

3−]. A positive salt effect is 
seen by the reaction rate’s incremental trend with electrolyte content. 
CTAB micellar media has a reaction rate almost 4.5 times swifter 
than an aqueous environment. Reduced repulsion between surfactant 
molecules’ positive charge heads brought on by the negative-charged 
[Fe(CN)6]3−, OH−, and [Cu(OH)4]2− molecules may be responsible 
for the witnessed drop in CTAB CMC. The comprehensive kinetic 
examination can be used to successfully quantify Cu(II) at the micro-
level in the CTAB micellar media.

SUPPLEMENTARY MATERIAL

Supplementary information for this article is provided in the online 
supplement.
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