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ABSTRACT

The synthesis of nine novel protected amino acid cavitands is reported. All have four pendant z-undecyl chains and “headgroups’
connected by a two-carbon spacer at eight positions on the aromatic rings. The amino acids employed are glycine, alanine,
phenylalanine, leucine, proline, tryptophan, serine, glutamine and lysine. The structures of the compounds were elucidated
using one and two-dimensional NMR techniques which verified that all octa-substituted cavitands have symmetrical
C,, conformation at room temperature. These compounds have potential synthetic ion channel applications.
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1. Introduction

Resorcin[4]arenes are well-known macrocyclic oligomers
formed when resorcinol condenses with aliphatic or aromatic
aldehydes under acidic conditions." The reaction with formalde-
hydeis excluded from this ‘family” asit often forms linear polymers.
Even though itis possible to form resorcinarenes with formalde-
hyde,” the use of aliphatic aldehydes resulting in side chains or
‘feet’ is preferred for potential synthetic ion channels.” These
macrocyclic compounds are known to possess hydrophilic
(upper rim) and hydrophobic (lower rim) regions and a cavity,
that can accommodate small organic molecules.*

Resorcin[4]arenes are not planar and can adopt five possible
conformational arrangements: the C,, symmetrical ‘crown’ con-
formation, C,, symmetrical ‘boat’ conformation, C,, symmetrical
‘chair’ conformation, C, symmetrical ‘diamond conformation,
and S, symmetrical ‘saddle’ conformation asillustrated in Fig. 1.*

The presence of two electron-releasing hydroxyl groups on the
aromatic rings especially at the “ortho’ position makes compounds
of this family a convenient platform for the design and synthesis
of various supramolecular structures. To obtain these architectures,
various methods have been developed for selective chemical
modifications of the resorcin[4]arenes.*®® Functionalization of
the resorcin[4]arene platform with amino acid moieties could
create structural features that provide valuable insight into fac-
tors governing biologically relevant host-guest chemistry.®
These types of compounds also have found applications as
synthetic ion channels.”.

This study demonstrates an effort to functionalize resorcin[4]
arene with amino acid residues at the upper rim. Very few exam-
ples have been reported where ‘flexible’ resorcin[4]arenes have
been modified with amino acids. An example employing
L-proline via Mannich reactions has been reported by several
researchers.® Botta et al. using a different approach have modi-
fied resorcin[4]arenes at the lower rim with several amino acids
for chiral recognition.’

The synthesis of our target compounds began by utilizing

* To whom correspondence should be addressed. E-mail: maguireg@ukzn.ac.za

dodecanal, as the alkyl aldehyde component for the condensa-
tion reaction with resorcinol, to produce the resorcin[4]arene,
1in good yield as reported in literature.™" Acylations and alky-
lations of hydroxyl groups have produced cavitands,
carcerands, hemicarcerands, velcrands,® molecular capsules,"
receptors and sensors for biologically-active compounds,'
and metal ion extraction agents."

The synthetic route towards novel compounds 4a-i (Scheme 1),
involves alkylation of compound 1 with methyl-2-bromoacetate
in dry acetonitrile in the presence of potassium carbonate and a
catalytic amount of sodium iodide. The reaction occurs at
elevated temperature for 48 h and after workup and recrystal-
lization pure 2 was obtained in 77 % yield."”*"

2. Results and Discussion

These compounds may find application as synthetic ion
channels, but testing of the compounds reported herein for that,
falls outside the scope of the current NMR investigation.

The structures of these compounds were established on the
basis of one- and two-dimensional NMR experiments. A discus-
sion of the complete elucidation of compound 4a is presented,
followed with a short discussion of 2D results for 4b. Elucidation
of the remainder of the compounds is presented in the online
supplement. A summary of the NMR data are presented in
Tables 1-3.

Octa-acid resorcin[4]arene 3 was transformed into the
octa-acyl chloride upon treatment with oxalyl chloride in dry
CH,CL, (Scheme 1). Since the acyl chloride is very unstable and
undergoes rapid hydrolysis if moisture is present, it was used in
the next step without further purification and characterization.
This acyl chloride was reacted with nine equivalents of each
amino acid, to the get the novel derivatives.”” A number of the
amino acids required side chain protection (e.g. L-glutamic acid,
L-serine, and L-lysine). The crude materials obtained were puri-
fied on silica gel chromatography, using 3 % methanol in chloro-
form. The octa-amino acid resorcin[4]arene derivatives 4a—i were
obtained in good yields (59-76 %).
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HOOH
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Figure 1 The different conformations of macrocyclic resorcin[4]arene.*

The 'H NMR spectra of these derivatives (4a-i) in CDCl,
at room temperature showed a considerable broadening of
the various signals. The relatively broad signals from these
compounds are a result of the multiple conformations possible
for the cavitand bowl. On the NMR timescale, they have a slow

diamond-Cg

saddle-S 2

rate of interconversion. Boat conformations convert to a symmet-
rical crown conformation and wvice versa''**'°. A similar
observation was made when the spectra of these molecules were
taken in polar organic solvents at room temperature (d,-acetone
and d,-DMSO). Figures 2, 3 and 4 illustrate these observations
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Methy-2-bromoacetate, CH3CN
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2 MKOH, EtOH,
reflux, 3 h

R' R’ OH OH

N o 0 0
0 o) i) Oxalyl chloride, dry CH,Cl,, le) 0
z‘k _ reflux
ii) Amino acid ester, Et3N,
CiHz 4y CH,Cl,, 0 °C, rt Cy1Ha3
4a-i (59-76%) 3(93%)

4a R'= Gly ethyl ester

4b R' =L-Ala methyl ester
4c R'=L-Phe methyl ester
4d R'= L-Leu methyl ester
4e R' = L-Pro methyl ester

4f R =L-Trp methyl ester

4g R'= L-Ser (Ot-but) t-butyl ester
4h R'=L-Glu (OMe) methyl ester
4i R = L-Lys (Z) benzyl ester

Scheme 1 Synthetic pathway towards the octa-amino acid-resorcin[4]arene derivatives 4a—i via modification of all eight hydroxyl groups.
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Table 1 'H NMR data for compounds 4a—c in DMSO-d, at 70 °C (600 MHz).

29

Chemical shift/ppm (multiplicity, coupling constant, integration)

4a

4b

4c

Feet

4.69 (t,] = 8.0Hz, 4)
6.73 (s, 4)

6.57 (5, 4)

4.36 (d,] = 14.7 Hz, 8);
427(d,] = 14.7 Hz, 8)
7.72(t,] = 5.1 Hz, 8 H)
7.82.(d,] =73Hz,4)
4.12(q,] = 7.0 Hz, 16);
3.96 (dd,] = 5.1Hz,8);
3.85(dd,] = 5.8 Hz, 8);
1.20 (t, ] = 8.5 Hz 24)

1.81(q,] = 6.5Hz, 8);
1.22-1.27 (m, 72);
0.84 (t,] = 7.5 Hz, 12)

4.67 (t,]J=5.0Hz, 4)
6.73 (s, 4)

6.56 (s, 4)

4.35(q,] = 5.0 Hz, 8);
424 (q,] =5.0Hz, 8)
7.80 (d,] = 7.3 Hz, 4);
7.77 (d,] = 82Hz, 4)
4.42(q,] = 8.5Hz, 8);

3.64 (d,] = 7.0 Hz, 24);
1.34 (t, ] = 7.2 Hz, 24)

1.83(q,] = 6.5 Hz, 8);
1.20-1.28 (m, 72);
0.84 (t, ] = 6.0 Hz, 12)

464 (t J= 8.0 Hz, 4)
6.89 (s, 4)
6.33 (s, 4)

420(q,] =71Hz,8);
428(q,] =71Hz,8)

7.60 (d, ] = 8.2 Hz, 4);

7.04-7.15 (m, 40);

4.64 (q,] = 6.3Hz, 8);
3.59 (d, ] = 7.1 Hz, 24);
3.11(dd, ] = 6.0 Hz, 4);
3.04(dd,] = 6.0Hz, 4);
3.03 (dd,] = 6.3 Hz, 4);
2.87 (dd,] = 6.3Hz, 4)
217 (q,] = 7.0 Hz, 8);
1.20-1.28 (m, 72);

0.83 (t,] = 6.3 Hz, 12)

AAH* denotes amino acid ester peaks.

for compound 4a in different solvents. The '"H NMR spectra of
this derivative show relatively broad signals corresponding to
the aromatic protons (assigned a and b).

In an attempt to confirm that the broadening in the 'H NMR
spectra is the result of these conformational changes, 4a in
d,-DMSO was heated in the NMR spectrometer (600 MHz). By
increasing the temperature stepwise, the various signals began
to sharpen. At 70 °C, only the signals of the crown conformation
are visible in the spectrum. 'H NMR spectrum of this compound
shows sharp single peaks corresponding to the aromatic protons
(assigned at 6.73 ppm and 6.57 ppm) (Fig. 5).

To further establish the conformational behaviour for these
compounds (4a-i), a low temperature 'H NMR experiment was
recorded for compound 4a in d,-acetone at 600 MHz from 0 °C to
-60 °C. The most notable change in the 'H NMR spectrum
occurred for the signals of the aromatic protons (H, and H,,

Fig. 3). As the solution cooled down to —40 °C, the signals for H,
and H, broadened and separated into four signals (6.30 ppm
and 6.57 ppm for H,, and 6.89 ppm and 7.47 ppm for H,) (Fig. 6).

Figure 6 illustrates the splitting of the aromatic protons signals
into four broad singlets at low temperature, indicating the
flattened conformations corresponded to a C,, symmetry for 4a,
in which the aromatic rings lie spatially in pairs. As anticipated,
the '"H NMR spectrum in Fig. 3 also displayed some changes in
the non-aromatics regions for this compound.

To discuss the proton (‘H) NMR spectrum of compound 4a in
DMSO-d, at 70 °C reference will be made to Fig. 7, which shows
the numbering of the protons present in this molecule. Accord-
ing to this expanded structure, the various resonances present
in the "H NMR spectra of the macrocycles 4b—i were assigned.

The '"H NMR spectrum for compound 4a in d,-DMSO at 70 °C
demonstrates signals characteristic for the glycine ethyl ester

Table 2 'H NMR data for compounds 4d—f in DMSO-d, at 70 °C (600 MHz).

Chemical shift/ppm (multiplicity, coupling constant, integration)

Proton 4d 4e af
H, 4.77 (t,] = 7.5 Hz, 4) 468 (t,] =79Hz, 4) 4.63(t,] =8.0Hz, 4)
H, 6.89 (s, 4) 6.82 (brs, 4) 6.80 (s, 4)
H, 6.53 (s, 4) 6.38 (brs, 4) 6.47 (s, 4)
H, 4.46 (q,] = 7.1Hz, 8); 4.48 (br d, 16) 4.32(q,] = 7.0Hz, 8);
436 (t,] =7.6Hz,8) 426(q,] =7.2Hz,8)
NH 8.02(d,] = 8.1Hz, 4); - 7.63 (d,] = 7.56 Hz, 4);
7.79 (d,] = 8.1 Hz, 4) 7.55(d,] = 7.68 Hz, 4)
AAH* 4.47 (q,] = 3.56 Hz, 8); 4.38 (q,] = 5.66 Hz, 8); 10.42 (s, 4); 10.32 (s, 4);
3.62(d,] = 17.5Hz, 24); 3.69 (d, ] = 7.3Hz, 24); 7.48 (t,] = 6.5Hz, 8);
1.45-1.67 (m, 24); 3.56 (m, 16); 729 (dd,] = 8.10 Hz, 8);
0.87 (t,] = 7.5 Hz, 24); 1.90 (3,] = 4.3 Hz, 8); 7.02(t,] = 74 Hz, 8);
0.77 (t,] = 7.2 Hz, 24) 2.00 -2.15 (m, 24) 7.00 (t,] = 7.5Hz, 8);
6.90 (s, 4);
4.71(q,] = 71 Hz, 8);
3.68 (d,] = 6.5 Hz, 24);
Feet 1.81 (g,] = 6.7 Hz, 8); 2.41 (m, 8); 1.83 (g, ]= 7.7 Hz, 8);

1.20-1.28 (m, 72);
0.84 (t,] = 7.1 Hz, 12)

1.20-1.30 (m, 72);
0.86 (t, ] = 6.5 Hz, 12)

1.20-1.28 (m, 72);
0.85 (t, ] = 6.5 Hz, 12)

AAH* denotes amino acid ester peaks.
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Table 3 'H NMR data for compounds 4g-i in d,-DMSO at 70 °C (600 MHz).

30

Proton

Chemical shift/ppm (multiplicity, coupling constant, integration)

4g

4h

4i

T T T T

o

Feet

463 (t,] = 8.0 Hz, 4)
6.73 (s, 4)

6.53 (s, 4)

436 (d, ] = 14.70 Hz, 4);
428 (d,] = 14.94 Hz, 4);
4.25 (d, ] = 14.88 Hz, 4);
418 (d,] = 14.82 Hz, 4)

727 (d,] = 8.2 Hz, 4);
7.24(d,] = 8.1 Hz, 4)
4.46 (q9,] = 5.72Hz, 8);
3.70(dd,] = 3.1 Hz, 8);
354 (dd, ] =26Hz,8);
1.40 (d,] = 3.5 Hz, 72);
1.09 (d, 72)

1.86 (g, ] = 6.4 Hz, 8);
1.20-1.28 (m, 72);
0.86 (t,] = 6.5 Hz, 12)

469 (t,] = 7.2 Hz, 4)
6.81 (s, 4)
6.55 (s, 4)

4.32(q,] = 8.56 Hz, 8);
4.30(q,] =79 Hz, 8)

7.66 (dd,] = 7.4 Hz, 8)

444 (q,] = 8.56 Hz, 8);

468 (t ] = 7.2 Hz, 4)
6.84 (s, 4)
6.59 (s, 4)

4.35(q, ] = 8.42Hz, 8);
427 (q,] = 8.0Hz, 8)

7.61(dd,] =7.8Hz, 8)

7.26-7.36 (m, 80);

3.70 (s, 24); 6.61 (br t, 8);
3.58 (d, ] = 3.81 Hz, 24); 5.13 (m, 16);
2.36 (q,] = 4.2 Hz, 16); 4.77 (s, 16);

2.13 (m, 8); 1.96 (m, 8)

1.86 (, ] = 5.1 Hz, 8);
1.20-1.29 (m, 72);
0.87 (t,] = 6.5 Hz, 12)

4.44 (q,] = 6.1 Hz, 8);
3.10 (g, ] = 5.2 Hz, 16);
1.82 (m, 8); 1.78 (m, 8);
1.39 (m, 32)

1.86 (g, ] = 6.8 Hz, 8);
1.20-1.28 (m, 72);

0.80 (] = 6.7 Hz, 12)

AAH* denotes amino acid ester peaks.

and the resorcin[4]arene scaffold. The signal related to the
methylene group of the ethyl ester at 4.12 ppm appears as a
quartet, integrating to 16. The signal associated with the methyl
group of this ester at 1.20 ppm is a triplet, integrating to 24. The
signal related to the a-protons (Fig. 7) appears as two pairs of
doublets at 3.96 ppm and 3.85 ppm, each of these integrates to
eight. The signal for the amide NH protons for this derivative ap-
pears as a triplet at 7.72 ppm, integrating to eight.

The signal for the methylene protons (H;) of the OCH,CO
groups appears as two doublets at 4.36 ppm and at 4.27 ppm,
each of these signals integrates to eight. This splitting could be
attributed to the presence of two glycine residues on each

aromatic ring. The signals related to the protons of aromatic
rings (H, and H,) appear as two singlets at 6.73 ppm for H;
protons and at 6.57 ppm for H, protons, each of these integrates
to four. The signal associated with the methine protons (H,) at
4.69 ppmisa triplet, integrating to four. The signals related to the
undecyl ‘feet’ (R) have resolved into three signals: a quartet at
1.81 ppm, integrating to eight, multiplets at 1.22-1.27 ppm, inte-
grating to 72, and a triplet at 0.84 ppm, integrating to 12.

The IR spectrum for 4a shows the characteristic appearance of
the amide NH stretching peak at 3414 cm™ whereas the carbonyl
peaks at 1757 and 1731 cm™ corresponding to the ester and amide
carbonyl stretching frequencies, respectively. Mass spectrometry

Figure 2 '"H NMR spectrum of compound 4a in CDCl, at room temperature (400 MHz).
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Figure 3 "H NMR spectrum of compound 4a in ds-acetone at room temperature (400 MHz).

(MS) (using ESI-TOF methods) additionally gave a molecular
ion m/z signal of 2273.2926, which matches the expected mass
for 4a of 2273.2942.

Compound 4b was synthesized in 73 % yield by reacting
L-alanine methyl ester with the octa-acid resorcin[4]arene 3. The
"H NMR data for compounds 4a—c are summarized in Table 1.

Subsequent COSY and HSQC NMR analysis confirmed the
presence of the target compounds, showing the expected
couplings between the various protons. Figure 7 displays 'H-"H

Lo

COSY couplings for compound 4b, as an example of a two-
dimensional NMR experiment at 70 °C (600 MHz.)

Analysis of the COSY spectrum shows (Fig. 8) that the a-protons
(Ala-CH-) at 4.35 ppm are coupled to the amide NH protons at
7.82 ppm and 7.80 ppm as well as the g-protons (Ala-CH,) at
1.34 ppm. The methine protons (H,) at 4.67 ppm which bridge
the aromatic moieties, are coupled to the methylene protons of
the ‘feet’ (-CH,-) at 1.83 ppm. The methylene protons at 1.83 ppm
are coupled to the protons of the ‘feet” at 1.20-1.28 ppm. The

T T T T T T T T T T T

10 8 6

Figure 4 "H NMR spectrum of compound 4a in d,-DMSO at room temperature (400 MHz).



ResearcH ARTICLE I. Elidrisi, P.V. Bhatt, T. Govender, H.G. Kruger and G.E.M. Maguire 32
S. Afr. J. Chem., 2015, 68, 27-38,
<http://journals.sabinet.co.za/sajchem/>.

10 8 6 4 2 o [ppm]

Figure 5 "H NMR spectrum of compound 4a in d,-DMSO at 70 °C (600 MHz).

terminal methyl groups of the ‘feet” at 0.84 ppm are coupled to  Reaction of the octa-acyl chloride resorcin[4]arene 3 with
the methylene groups at 1.20-1.28 ppm. L-proline methyl ester afforded compound 4e in 69 % yield. The

Compound 4d was synthesized in 72 % yield by reacting octa-acyl chloride resorcin[4]arene 3 reacted with L-proline
L-leucine methyl ester with the octa-acid resorcin[4]arene 3. methylesterafforded compound 4ein 69 % yield. Compound 4f

; ;
10 8 ] 4 2 0 ppm]

Figure 6 'H NMR spectrum of compound 4a in d.-acetone at —40 °C (600 MHz).
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Figure 7 Expanded structure of 4a-i, showing distinctive protons.

was synthesized in 64 % yield by reacting L-tryptophan methyl
ester with the octa-acid resorcin[4]arene 3. The '"H NMR data
for compounds 4d—f are summarized in Table 2.

Subsequent COSY and HSQC NMR analysis confirmed the
presence of the target compounds, showing the expected
couplings between the various protons.

Reaction of O-t-butyl-L-serine t-butyl ester with the acyl
chloride resorcin[4]arene gave compound 4gin 59 % yield. Com-
pound 4h was synthesized in 60 % yield by reacting L-glutamic
acid dimethyl ester with the octa-acid resorcin[4]arene 3. Com-
pound 4i was isolated in 67 % yield by reacting Ne-Cbz-L-lysine
benzyl ester with the octa-acid resorcin[4]arene 3. The "H NMR
data for compounds 4g-i are summarized in Table 3.

Subsequent COSY and HSQC NMR analysis confirmed the
presence of the target compounds, showing the expected
couplings between the various protons.

With reference to Fig. 7, the 'H NMR data (Tables 1, 2 and 3)
for these compounds clearly demonstrated that: all compounds

O 0O

R'= WL
= HCO OCH,;
NH

e

had characteristic appearance of the amide NH protons, which
appear at a lower frequency indicating the involvement of these
protons in intermolecular hydrogen bonding with the water
molecules present in the NMR solvent (DMSO), except com-
pound 4e.” The signal for the diastereotopic methylene protons
(H,, Fig. 6) appears as a pair of quartets in the "H NMR spectra
for compounds 4b, 4c, 4d, 4f, 4g, 4h, and 4i. This splitting can be
attributed to the presence of two chiral amino acid units on each
aromatic ring™". In compound 4a where there is no chiral
centre, this signal appears as a pair of doublets since the protons
are enantiotopic.

The signals for the aromatic protons (H; and H,) appear as two
singlets for all compounds. This indicates the symmetric positions
of these protons in a crown (C,) conformation at elevated
temperature. Therefore, at high temperature, the rate of
conformational interchange is high on the NMR timescale
and only the signals associated with the crown conformation are
observed'™.
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Figure 8 The 'H-"H COSY spectrum for compound 4b in d,-DMSO at 70 °C (600 MHz).

The signal related to the methine protons (H,) which bridge
the aromatic moieties, appears as a triplet in '"H NMR spectra
for these compounds. The signals associated with the undecyl
‘feet’ remain essentially unchanged in terms of multiplicity
and integration. However, these protons have experienced very
small changes in terms of chemical shift.

3. Conclusion

A series of new resorcin[4]arenes appended with amino acid
moieties at the upper rim (4a—i) were synthesized in good yields
(59-76 %). The key step for this synthesis is the amide bond
formation between the amine functional group of amino acid
units and carboxylic acid group of the octa-acid resorcinarene, 3.
The structure of these octa-substituted resorcinarene derivatives
was established on the basis of one and two-dimensional NMR
experiments, and confirmed by IR and MS spectra. The 'HNMR
data obtained for the protons related to the aromatic rings of
resorcin[4]arene scaffold (H, and H,, Fig. 6) verified that these
derivatives adopted stable crown conformations (C,, symme-
try) at high temperature. Low temperature NMR experiments
confirmed that a boat conformation predominates for these com-
pounds, which is expected for resorcinarenes with eight bulky
substituents. These structures are very similar to previously re-
ported ion channel molecules; we presume that they will be ca-
pable of ion translocation activity.

Experimental

Starting materials obtained from commercial suppliers were
used without further purification unless otherwise stated. Air- or
moisture-sensitive reactions were performed using oven-dried
glassware under an inert atmosphere of dry nitrogen. Tetrahy-
drofuran (THF) was distilled from sodium benzophenoneketyl
and dichloromethane was distilled from calcium hydride.
Dimethyl sulfoxide (DMSO) and dimethylformamide (DMF)

were stored over 4 A molecular sieves prior to use. Thin layer
chromatography (TLC) was performed on aluminium-backed,
pre-coated silica gel plates (Merck, silica gel 60 F,;,, 20 cm x
20 cm). Mobile phases are reported as volume ratios or volume
per cent. Compounds were visualized using UV light,
p-anisaldehyde, or iodine stains. Column chromatography was
performed on silica gel 60 (Merck, particle size 0.040-0.063 mm).
Eluting solvents are reported as volume ratios or volume
per cent. Melting points were recorded and are uncorrected.
'H NMR spectra were recorded on a 400 MHz Bruker
AVANCE III or 600 MHz BrukerUltrashield spectrometer, the
chemical shifts were referenced to the solvent peak, namely 6 =
7.24 ppm for CDCL, 6 = 2.50 ppm for (CD,),SO and ¢ = 2.05 ppm
for (CD,),CO atambient temperature. The 'H NMR spectra were
recorded at a transmitter frequency of 600.1 MHz (spectral
width, 12335.5 Hz; acquisition time, 1.328 s; 90 ° pulse width,
15 ps; scans, 16; relaxation delay, 1.0 s) for the Bruker
AVANCE 1III 600 instrument while the '"H NMR spectra were
recorded at a transmitter frequency of 400.2 MHz (spectral
width, 8223.7 Hz; acquisition time, 3.98 s; 90 ° pulse width, 10 us;
scans, 16; relaxation delay, 1.0 s) for the Brucker AVANCE III
400 instrument. The "C NMR spectra were recorded at 150.9
MHz (spectral width, 36057.7 Hz; acquisition time, 0.908 s;
0.908 s, 90 ° pulse width, 9.00 us; scans, 4800; relaxation delay,
2.00 s) for the Bruker AVANCE III 600 instrument while the
“C NMR spectra were recorded at 100.6 MHz (spectral width,
24038.5 Hz; acquisition time, 1.363 s; 90 ° pulse width, 8.40 us,
scans, 3200; relaxation delay, 2.00 s) for the Bruker
AVANCE III 400 instrument.

The 2D experimental data parameters obtained on the Bruker
AVANCE IIT 400 were as follows: 90 ° pulse width, 10 us for all
spectra, spectral width for 'H, 3731.3, 3521.1, 3401.3, 3676.4,
3125.0 and 4065.0, 4065.0, 3731.3, 3546.1 Hz for 4a, 4b, 4c, 4d, 4e,
4f, 4g, 4h and 4i, respectively, (COSY and HSQC) spectral width
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for ®C, 166670.4 Hz (HSQC) for 4a—i, number of data points per
spectrum, 2048 (COSY), 1024 (HSQC) for compounds 4a—i;
number of time incremental spectra 128 (COSY), 256 (HSQC)
for compounds 4a-i; relaxation delays for compounds for com-
pounds 4a, 4f, 4g, 4h and 4i was 1.4s and 4b, 4c, 4d and 4e was
1.3 s for COSY experiments while the relaxation delay for HSQC
experiments had 1.4 s for 4a—i, respectively. Data are reported as
positions in parts per million (6 in ppm), multiplicity (s = singlet,
d = doublet, dd = double of doublets, t = triplet, ¢ = quartet,
m = multiplet, br = broad), coupling constant (J in Hz) and inte-
gration (number of protons). "C NMR spectra were recorded
on a 400 MHz Bruker AVANCE (100 MHz) or 600 MHz Bruker
Ultrashield spectrometer (150 MHz). Data are reported as
positions in parts per million (6 in ppm). Optical rotation data
were acquired on a Perkin Elmer Model 341 Polarimeter using a
1 mL cell with a path length of 100 mm. Infrared (IR) spectra
were recorded on a Perkin Elmer spectrum 100 instrument with
a universal attenuated total reflection (ATR) attachment at room
temperature. Wave numbers are reported in units of cm™. Mass
spectra were recorded using a Burker microTOF-Q II Electron
Spray Ionization (ESI) Mass Spectrometer (MS).

Synthesis

C-undecyl Resorcin[4]arene Octa-ester, (2)"***

To a stirring suspension of octol 1 (5.52 g, 5.0 mmol), oven-
dried (110 °C) K,CO, (7.6 g, 55 mmol) and a catalytic amount of
sodium iodide (Nal) in dry acetonitrile (CH,CN) (50 mL) was
added methyl-2-bromo acetate (3.9 mL, 40.5 mmol). The suspen-
sion was refluxed at 82 °C with stirring under a nitrogen atmo-
sphere for 48 hours. After 24 hours another portion of methyl-2-
bromoacetate (3.9 mL) was added. After cooling to room temper-
ature, the mixture was filtered and the filtrate was extracted
twice with diethyl ether (50 mL). The filtrate was concentrated
under reduced pressure to give the crude product, which was
re-crystallized from dichloromethane-methanolin 1:1 ratio. The
precipitate was filtered and washed with methanol to yield the
title compound as a white crystal. (6.5 g, 77 %); mp 90-93 °C [Lit-
erature mp 92-94°C]; '"HNMR [CDCl,, 400 MHz]: 6 = 6.58 (s, 4 H,
ArH), 6.20 (s,4 H, ArH), 4.57 (t, 4 H, CH (methine)), 4.30 (s, 16 H,
ArOCH,), 3.77 (s, 24 H, OCH,), 1.90 (q, 8 H, CH,(CH,),CH,),
1.20-1.30 (m, 72 H, CH,(CH,),CH,), 0.87 (t, 12 H, CH,) ppmy;
“C NMR [CDCL, 100 MHz]: 0= 169.81, 154.46, 128.51, 126.56,
100.76, 67.14, 51.91, 35.70, 34.52, 31.93, 30.01, 29.88, 29.79, 29.72,
29.39, 28.08, 22.69, 14.10 ppm; FT-IR/ATR: 2920, 2851, 1756, 1729,
1610, 1586, 1501, 1436, 1405, 1303, 1210, 1179, 1105, 1082, 979, 903,
850, 719, 584, 527 cm™.

C-undecyl Resorcin[4]arene Octa-acid (3)"

To a stirring suspension of 2 (6.0 g, 3.57 mmol) in a mixture of
100 mL of ethanol and 50 mL of water was added potassium
hydroxide (5.6 g, 99.96 mmol). The mixture was refluxed under a
nitrogen atmosphere for 3 hours. The resulting mixture was
concentrated under reduced pressure. The alkaline solution was
acidified with 6 M HCl, and the suspension was extracted with
ethyl acetate (100 mL X 3). The combined organic layers were
dried over anhydrous Na,SO,. The solvent was removed in
vacuo and the crude product was re-crystallized from methanol/
water in 1:1 ratio. After drying in vacuo the product was obtained
as a white solid. (5.20 g, 93 %); mp 183-185°C [Literature
mp 180 °CJ; '"HNMR [DMSO-d,, 400 MHz]: 6 = 6.49 (s,4 H, ArH),
6.35 (s, 4 H, ArH), 4.48 (t, 4 H, CH (methine)), 441 (d, 8 H, | =
16.3 Hz, OCH,-COOH), 4.23 (d, 8 H, ] = 16.4 Hz, OCH,-COOH),
1.75 (gq, 8 H, CH,(CH,),CH,), 1.20-1.29 (m, 72 H, CH,(CH,),CH.,),

0.82(t, 12 H, CH,) ppm; "C NMR [DMSO-d,, 100 MHz]: 6 =
170.39, 154.00, 126.12, 125.29, 100.02, 65.89, 38.84, 34.93, 34.09,
31.29, 29.50, 29.25, 29.14, 29.06, 28.73, 27.68, 22.06, 13.85 ppm;
FT-IR/ATR: 3195, 2920, 2850, 1719, 1612, 1587, 1499, 1435, 1407,
1298, 1184, 1127, 1105, 1072, 905, 812, 720, 665, 570 cm”.

General Procedure for the Synthesis of Amino Acid
Resorcin[4]arene Derivatives (4a—i)15

To a suspension of 3 (1.0 g, 0.64 mmol) in dry CH,Cl, (30 mL)
was added freshly distilled oxalyl chloride (1.1 mL, 12.80 mmol),
and the mixture was refluxed for 18 hours under a nitrogen
atmosphere. The unreacted oxalyl chloride and solvent were
removed in vacuo, and the product obtained was dried under
vacuum for 1 hour. Subsequently, it was dissolved in dry CH,Cl,
(20 mL), and slowly added to a cooled solution (0 °C) of amino
acid ester hydrochloride (5.74 mmol) and triethyl amine (Et, N)
(1.35mL, 9.80 mmol) in dry CH,Cl, (20 mL). The reaction mixture
was allowed to warm up to room temperature and stirred under
a nitrogen atmosphere for 18 hours. The solution mixture was
treated with 1M HCl (30 mL), and the organic layer was sepa-
rated, washed with water (30 mL), and brine (30 mL). The
organic layer was dried over anhydrous Na,SO,. The solution
was filtered, and the solvent was removed under pressure,
yielding a sticky residue. The residue obtained was purified on
silica gel chromatography using 3 % methanolin chloroformasa
mobile phase. The fractions collected were concentrated with a
rotary evaporator to give a white gum. These products were
triturated with methanol to yield the title compounds as white
solids.

Octa-glycine ethyl ester resorcinarene (4a)

Glycine ethyl ester hydrochloride (0.80 g, 5.74 mmol) was used
asin the general procedure. The product was obtained as a white
solid. (1.09 g, 76 %), R, = 0.42 (3 % MeOH/CH,Cl), mp 97-100 °C;
"H NMR [DMSO-d,, 600 MHz, 70°C]: 6 = 7.72(t,] = 5.1 Hz 8 H,
NH),6.73 (s,4H, ArH), 6.57 (s,4H, ArH),4.69 (t,] = 8.0Hz4 H, CH
(methine)),4.36 (d, ] = 14.7Hz,8 H,ArOCH,),4.27 (d,] = 14.7Hz,
8 H, ArOCH,), 4.12 (q, ] = 7.0 Hz 16 H, COOCH,CH,), 3.96 (dd,
] =5.1Hz8H, Gly-CH,), 3.85 (dd, ] = 5.8 Hz, 8 H, Gly-CH,), 1.81
(9 J = 6.5 Hz 8 H, CH,(CH,),CH,), 1.20 (t, ] = 8.5 Hz 24 H,
COOCH,CH,), 1.22-1.27 (m, 72 H, CH,(CH,),CH,), 0.84 (t, ] =
7.5Hz12H, CH,) ppm; "C NMR [DMSO-d,, 150 MHz,70°C]: d =
169.83, 168.82, 154.16, 127.08, 126.24, 100.84, 68.60, 60.89, 35.27,
35.14, 31.70, 29.90, 29.55, 29.51, 29.44, 29.10, 27.84, 22.44, 14.41,
14.19 ppm; FT-IR/ATR: 3414, 2920, 2851, 1757, 1731, 1664, 1586,
1501, 1437, 1406, 1376, 1293, 1191, 1126, 1085, 1025, 904, 850, 720,
582 cm™'; MS (ESI-TOF) Calculated for C,,,H,,,0,,N,Na
[M+Na]*: m/z = 2273.2942, Found: m/z = 2273.2926.

Octa-alanine Methyl Ester Resorcinarene (4b)

L-Alanine methyl ester hydrochloride (0.80 g, 5.74 mmol) was
used as in the general procedure. The product was obtained as a
white solid. (1.05 g, 73 %); R, = 0.45 (3 % MeOH/CH,Cl); mp
96-99 °C; [a]*, = -9.09 (c = 1.10, CHCL); 'H NMR [DMSO-d,,
600 MHz, 70 °C]: 6 = 7.82(d,] = 73 Hz,4 H,NH), 7.80 (d, ] =
7.3Hz,4H,NH), 6.73 (s, 4 H, ArH), 6.56 (s, 4 H, ArH), 4.67 (t,] =
5.0Hz4H, CH (methine)),4.42(q,] = 8.5Hz8H, Ala-a H),4.35(q,
J=5.0Hz8H, ArOCH,),4.24(q,] = 5.0 Hz8 H, ArOCH,), 3.64 (d,
J = 7.0 Hz 24 H, OCH,), 1.83 (q, ] = 6.5 Hz 8 H, CH,(CH,),CH.,),
1.34 (t, ] = 7.2 Hz 24 H, Ala-CH,), 1.20-1.28 (m, 72 H,
CH,(CH,),CH,), 0.84 (t, ] = 6.0 Hz 12 H, CH,) ppm; “C NMR
[DMSO-d,, 150 MHz, 70 °C]: 6 = 172.92, 172.84, 168.18, 168.09,
154.40, 127.19, 127.13, 126.27, 101.43, 68.80, 68.76, 52.27, 47.83,
47.77, 35.39, 35.13, 31.69, 29.88, 29.50, 29.41, 29.08, 28.09, 22.44,
17.46, 17.43, 14.18 ppm; FT-IR/ATR: 3408, 2923, 2853, 1741, 1676,
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1613,1568, 1521, 1499, 1436, 1345,1293, 1211, 1157,1107, 1055, 987,
905, 851, 756, 720, 634, 541 cm™; MS (ESI-TOF) Calculated
for C,,,H,;,0,,NyNa [M+Na]*: m/z = 2273.2942, Found: m/z =
2273.2969.

Octa-phenylalanine Methyl Ester Resorcinarene (4c)

L-Phenylalanine methyl ester hydrochloride (1.24 g, 5.74 mmol)
was used as in the general procedure. The product was obtained
as a white solid. (1.30 g, 71 %); R; = 0.56 (3 % MeOH/CH,Cl); mp
58-61°C; [a]”, = +24.24 (c = 1.10, CHCL); '"H NMR [DMSO-d,,
600 MHz, 70 °C]: ddd = 7.77 (d,] = 8.2Hz,4H,NH),7.60 (d, ] =
8.2Hz,4H, NH),7.04-7.15 (m, 40 H, Phe-ArH), 6.96 (s, 4 H, ArH),
6.33 (s, 4 H, ArH), 4.64 (q, ] = 8.0 Hz 8 H, Phe-a H), 4.64 (t, ] =
6.3 Hz 4 H, CH (methine)), 4.28 (q,J = 7.1 Hz, 8 H, ArOCH,), 4.20
(9,/=7.1Hz,8H,ArOCH,),3.59(d,,] =7.1Hz,24H, OCH;,), 3.11
(dd, , ] = 6.0 Hz, 4 H, Phe-ArCH,), 3.04 (dd, , ] = 6.0 Hz, 4 H,
Phe-ArCH,), 3.03 (dd, ] = 6.3 Hz, 4 H, Phe-ArCH,), 2.87 (dd, | =
6.3 Hz, 4 H, Phe-ArCH,), 2.17 (q,] = 7.0 Hz, 8 H, CH,(CH,),CH.),
1.20-1.28 (m, 72 H, CH,(CH,),CH,), 0.83 (t, ] = 6.3 Hz, 12 H,
CH,) ppmy; "C NMR [DMSO-d,, 150 MHz, 70 °C]: ¢ = 171.77,
171.73, 168.32, 168.27, 154.16, 137.27, 137.07, 129.36, 129.33,
128.67, 128.57, 128.52, 127.07, 126.87, 126.77, 126.35, 125.31,
100.43, 68.33, 53.59, 53.42, 52.23, 52.20, 37.39, 37.26, 36.07, 34.78,
34.59, 31.71, 30.95, 29.96, 29.59, 29.52, 29.43, 29.11, 27.86, 22.44,
21.42, 14.17 ppm; FT-IR/ATR: 3411, 3030, 2923, 2853, 1741, 1682,
1607, 1586, 1497, 1436, 1358, 1288, 1192, 1123, 1060, 905, 849,
815, 743, 699, 540, 490 cm™; MS (ESI-TOF) Calculated for
CsH60.NNa [M+Na]*: m/z = 2881.5446, Found: m/z =
2881.7059.

Octa-leucine Methyl Ester Resorcinarene (4d)

L-Leucine methyl ester hydrochloride (1.04 g, 5.74 mmol) was
used as in the general procedure. The product was obtained as a
white solid. (1.22 g, 72 %); R, = 0.56 (3 % MeOH/CH,Cl); mp
61-64 °C; [a]*, = -20.00 (¢ = 1.05, CHCL); '"H NMR [DMSO-d,,
600 MHz, 70 °C]: 6 = 8.02(d, ] = 8.1 Hz, 4 H,NH),7.79(d, ] =
8.1Hz,4 H, NH), 6.89 (s,4 H, ArH), 6.53 (s, 4 H, ArH), 4.77 (t,] =
7.5Hz,4H, CH (methine)), 4.47 (q,] = 3.56 Hz, 8 H, Leu-a H), 4.46
(q,J=7.1Hz,8H,ArOCH,),4.36 (q,] = 7.6 Hz,8 H, ArOCH,), 3.62
(d, ] = 17.5 Hz, 24 H, OCH,), 1.81 (q, ] = 6.7 Hz, 8 H,
CH,(CH,),CH,), 1.45-1.67 (m, 24 H, Leu-CH and Leu-CH,),
1.20-1.28 (m, 72 H, CH,(CH,),CH,), 0.87 (t, ] = 7.5 Hz, 24 H,
Leu-CH,),0.84 (t,] = 7.1 Hz,12H, CH,),0.77 (t,] = 7.2 Hz, 24 H,
Leu-CH,) ppm; "C NMR [DMSO-d,, 150 MHz, 70 °C]: 6 = 172.83,
172.70, 168.36, 168.27, 154.32, 154.11, 127.38, 127.11, 126.41,
100.99, 68.81, 68.55, 52.18, 50.42, 35.82, 34.81, 31.68, 29.96, 29.55,
29.52, 29.50, 29.39, 29.08, 28.05, 24.83, 24.69, 22.98, 22.92, 22.42,
21.80, 21.72, 14.15 ppm; FT-IR/ATR: 3415, 2924, 2853, 1742, 1679,
1613, 1585, 1523, 1498, 1437, 1368, 1275, 1196, 1154, 1104, 1056,
985, 902, 827, 721, 546, 466 cm™; MS (ESI-TOF) Calculated
for C,,,H,,,0,,N;Na [M+Na]*: m/z = 2609.3198, Found: m/z =
2609.3148.

Octa-proline Methyl Ester Resorcinarene (4e)

L-Proline methyl ester hydrochloride (0.95 g, 1.75 mmol), was
used as in the general procedure. The product was obtained as a
white solid. (1.08 g, 69 %); R, = 0.43 (3 % MeOH/CH,Cl); mp
65-68 °C; [a]*, = —80.00 (¢ = 1.00, CHCL); 'H NMR [DMSO-d,,
600MHz,70°C]: 6 = 6.82 (brs,4H, ArH), 6.38 (brs, 4 H, ArH), 4.68
(t,] = 7.9Hz, 4 H, CH (methine)), 4.48 (br d, 16 H, ArOCH,), 4.38
(q,]=5.66Hz,8H, Pro-a H),3.69 (d,] = 7.3Hz,24 H, OCH,), 3.56
(m, 16 H, Pro-0 H),2.41(m, 8 H, Pro-$ H), 2.00-2.15 (m, 24 H, Pro-$
Handy H), 1.90 (q,] = 4.3 Hz, 8 H, CH,(CH,),CH.,), 1.20-1.30 (m,
72H, CH,(CH,),CH,),0.86 (t,] = 6.5Hz,12H, CH,) ppm; "CNMR
[DMSO-d,, 150 MHz, 70 °C]: 6 = 172.61, 167.00, 154.85, 126.46,

99.99, 68.91, 68.82, 59.18, 51.95, 46.39, 41.08, 35.87, 34.89, 31.65,
29.80, 29.50, 29.49, 29.44, 29.37, 29.01, 28.85, 28.00, 24.94, 22.34,
14.01 ppm; FT-IR/ATR: 3473, 2923, 2852, 1740, 1645, 1499, 1433,
1343, 1294, 1171, 1126, 1043, 910, 842, 720, 540, 416 cm™; MS
(ESI-TOF) Calculated for C,,H,,,O,,N,Na [M+Na]*: m/z =
2481.4193, Found: m/z = 2481.4062.

Octa-tryptophan Methyl Ester Resorcinarene (4f)

L-Tryptophan methyl ester hydrochloride (1.46 g, 5.74 mmol),
was used as in the general procedure. The product was obtained
as a white solid. (1.29 g, 64 %), R; = 0.42 (3 % MeOH/CH,Cl), mp
64-67 °C; [a]®,, = +50.00 (c = 1.00, CHCL); 'H NMR [DMSO-d,,
600 MHz, 70 °C]: 6 = 10.42 (s, 4 H, NH-Indole), 10.32 (s, 4 H,
NH-Indole), 7.63 (d, ] = 7.56 Hz, 4 H, NH), 7.55 (d, ] = 7.68 Hz,
4H,NH),7.48 (t,] = 6.5Hz,8 H, H7-Indole), 7.29 (dd, ] = 8.10 Hz,
8 H, H4-Indole ), 7.02 (t, ] = 7.4 Hz, 8 H, H5-Indole), 7.00 (t, ] =
7.5Hz, 8 H, H6-Indole), 6.90 (s, 8 H, H2-Indole), 6.80 (s, 4 H, ArH),
6.47 (s,4 H, ArH), 471 (q,] = 7.1 Hz, 8 H, Trp-a H), 4.63 (t, ] =
8.0Hz, 4 H, CH (methine)), 4.32 (q,] = 7.0Hz, 8 H, ArOCH,), 4.26
(9] =7.2Hz 8 H, ArOCH,), 3.68 (d, ] = 6.5 Hz, 24 H, OCH,),
3.11-3.25 (m, 16 H, Trp-8 H), 1.83 (q, ] = 7.7 Hz, 8 H,
CH,(CH,),CH,), 1.20-1.28 (m, 72 H, CH,(CH,),CH.), 0.85 (t, ] =
6.5 Hz, 12 H, CH,) ppm; “C NMR [DMSO-d,, 150 MHz, 70 °C]:
0 = 172.19, 172.14, 168.44, 168.35, 154.46, 139.53, 136.68, 136.65,
127.67, 127.60, 125.33, 123.97, 123.92, 121.36, 118.86, 118.39,
111.82, 111.79, 109.68, 109.56, 101.37, 68.85, 68.72, 53.41, 53.28,
52.12, 52.09, 35.39, 35.26, 34.80, 31.85, 30.96, 29.99, 29.65, 29.53,
29.44, 29.11, 28.02, 27.87, 27.84, 22.44, 21.42,14.19 ppm;
FT-IR/ATR: 3403, 3056, 2923, 2852, 1738, 1671, 1585, 1496, 1435,
1341, 1287, 1213, 1179, 1098, 1059, 928, 860, 739, 548, 424 cm™'; MS
(ESI-TOF) Calculated for C,,H,,,O,,N,.Na [M+Na]": m/z =
3194.6348, Found: m/z = 3194.6451.

Octa-serine (O-t-butyl) £-Butyl Ester Resorcinarene (4g)

O-t-Butyl-L-serine t-butyl hydrochloride (1.46 g, 5.74 mmol),
was used in the general method. The product was obtained as a
white solid. (1.19 g, 59 %), R, = 0.62 (3 % MeOH/CH,Cl), mp
56-59 °C; [a]*’, = +20.00 (¢ = 1.00, CHCL); 'H NMR [DMSO-d,,
600 MHz, 70 °C]: 6 = 7.27 (d,] = 82Hz,4H,NH), 724 (d, ] =
8.1Hz,4H,NH), 6.73 (s, 4H, ArH), 6.53 (s, 4 H, ArH), 4.63 (t, ] =
8.0Hz, 4 H, CH (methine)), 4.46 (q,] = 5.72Hz, 8 H, Ser-a H), 4.36
(d, ] = 1470 Hz, 4 H, ArOCH,), 428 (d, ] = 1494 Hz, 4 H,
ArOCH,), 4.25 (d, ] = 14.88 Hz, 4 H, ArOCH,), 418 (d, | =
14.82Hz,4H, ArOCH,), 3.70 (dd, ] = 3.1Hz, 8 H, Ser- CH,), 3.54
(dd, J = 4.6 Hz, 8 H, Serf CH,), 1.86 (q, ] = 6.4 Hz, 8 H,
CH,(CH,),CH,), 1.40 (d,] = 3.5 Hz, 72 H, Ser-t-But), 1.20-1.28 (m,
72 H, CH,(CH,),CH,), 1.09 (d, ] = 3.8 Hz, 72 H, Ser-t-But), 0.86 (t,
J=6.5Hz,12H, CH,) ppm; "C NMR [DMSO-d,, 150 MHz, 70 °C]:
0 169.19, 168.22, 168.00, 154.69, 154.46, 154.39, 127.69, 127.58,
126.40, 101.57, 81.44, 81.35, 81.33, 73.12, 73.06, 73.03, 69.43, 69.04,
62.37, 62.28, 53.46, 53.40, 53.32,. 35.72, 35.25, 31.61, 30.70, 29.58,
29.49, 29.44, 29.32, 29.00, 27.89, 22.33, 22.31, 14.01 ppm;
FT-IR/ATR: 3430, 2973, 2926, 2855, 1738, 1684, 1587, 1500, 1468,
1365,1293,1247,1192,1147,1098, 1058, 989, 906, 877, 848, 736, 646,
566 cm™'; MS (ESI-TOF) Calculated for C,,;H,,,O,,N¢Na
[M+Na]*: m/z = 3187.1331, Found: m/z = 3187.1433.

Octa-gulatmicacid (O -methoxy) Methyl Ester Resorcinarene
(4h)

L-Glutamic acid dimethyl ester hydrochloride (1.22 g,
5.74 mmol), was used as in the general method. The product was
obtained as a white solid. (1.10 g, 60 %), R, = 0.46 (3 %
MeOH/CH,CI), mp 54-57 °C; [a]”, = —10.00 (¢ = 1.00, CHCL,);
"H NMR [DMSO-d,, 600 MHz, 70 °C]: 6 = 7.66 (d d, ] = 7.4 Hz,
8 H, NH), 6.81 (s, 4 H, ArH), 6.55 (s, 4 H, ArH), 4.69 (t,] = 7.2 Hz,
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4H, CH (methine)), 4.44 (q,] = 8.56 Hz, 8 H, Glu-« H), 4.32(q,] =
8.56 Hz, 8 H, ArOCH,), 430 (q, ] = 7.9 Hz, 8 H, ArOCH,), 3.70 ( s,
24 H, OCH,), 3.58 (d, ] = 3.81 Hz, 24 H, OCH,), 2.36 (q, ] =
42Hz,16 H, Glu-y H), 2.13 (m, 8 H, Glu- H), 1.96 (m, 8 H, Glu-3
H), 1.86 (q, ] = 5.1 Hz, 8 H, CH,(CH,),CH.), 1.20-1.29 (m, 72 H,
CH,(CH,),CH,), 0.87 (t, ] = 6.5 Hz, 12 H, CH,) ppm; "C NMR
[DMSO-d,, 150 MHz, 70 °C]: 6 = 172.89, 172.87, 171.97, 171.93,
168.59, 154.47, 154.37, 127.26, 126.38, 101,26, 68.86, 68.65, 52.33,
52.32, 51.65, 51.62,51.45, 51.40, 35.11, 31.69, 30.12, 30.01, 29.95,
29.58, 29.51, 29.42, 29.09, 28.02, 26.74, 26.70, 22.44, 14.18 ppm;
FT-IR/ATR: 3408, 2924, 2853, 1736, 1680, 1585, 1522, 1499, 1436,
1369, 1293, 1194, 1170, 1126, 1056, 985, 901, 824, 721, 638, 556 cm™;
MS (ESI-TOF) Calculated for C,,,H,,,0,,N,.Na [M+Na]*: m/z =
2849.4632, Found: m/z = 2849.4642.

Octa-lysine (Ne-benzyloxyl) Benzyl Ester Resorcinarene (41)
Ne-Cbz-L-lysine benzyl ester hydrochloride (2.34 g, 5.74
mmol), was used as in the general procedure. The product was
obtained as a white solid. (1.88 g, 67 %), R, = 0.52 (3 %
MeOH/CH,CI), mp 57-60 °C; [a]*, = +7.69 (c = 1.26, CHCL);
'"H NMR [DMSO-d,, 600 MHz, 70 °C]: 6 = 7.61 (dd, ] = 7.8 Hz,
8 H,NH), 7.26-7.36 (m, 80 H, Lys-ArH), 6.84 (s, 4 H, ArH), 6.61 (br
t,8 H, Lys-¢ NH), 6.59 (s, 4 H, ArH), 5.13 (m, 16 H, Lys-cbz-CH,0O),
477 (s, 16 H, Lys-Bn-CH,O,), 4.68 (t, ] = 7.2 Hz, 4 H, CH
(methine)), 4.44 (q, ] = 6.1 Hz, 8 H, Lys-a H), 4.35(q, ] = 8.42Hz,
8H,ArOCH,),4.27(q,] = 8.0Hz,8 H,ArOCH,),3.10(q,] =5.2Hz,
16 H, Lys-e CH,), 1.86 (q,] = 6.8 Hz, 8 H, CH,(CH,),CH,), 1.82 (m,
8H, Lys-fCH,),1.78 (m,8H, Lys-$ CH,), 1.39 (m, 16 H, Lys-6 CH,),
1.39 (m, 16 H, Lys-y CH,), 1.20-1.28 (m, 72 H, CH,(CH,),CH.,), 0.80
(t, ] = 6.7 Hz, 12 H, CH,) ppm, "C NMR [DMSO-d,, 150 MHz,
70 °C]: 6 = 171.84, 171.82, 168.52, 168.44, 156.50, 154.76, 154.66,
137.87, 136.32, 136.29, 128.80, 128.42, 128.33, 128.13, 128.12,
127.96, 127.71, 126.49, 125.29, 101.92, 69.35, 69.14, 66.63, 66.60,
65.73, 52.43, 52.40, 49.05, 35.51, 34.75, 31.63, 31.55, 31.02, 29.99,
29.58, 29.50, 29.46, 29.39, 29.02, 28.05, 22.99, 22.33, 14.00 ppm;
FT-IR/ATR: 3324, 3064, 3033, 2924, 2854, 1682, 1585, 1521, 1498,
1455, 1345, 1244, 1177, 1128, 1055, 1027, 910, 824, 735, 695, 576,
458 ¢cm™; MS (ESI-TOF) Calculated for C,H,,,0,,N,.Na
[M+Na]*": m/z = 2217.1575, Found: m/z = 2217.1494.

Supplementary material
The proton and carbon NMR data can be found in the online
supplement.
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Synthesis and NMR Elucidation of Novel Octa-Amino Acid Resorcin[4]arenes derivatives.
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Glenn E. M. Maguire, "
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X54001, Durban 4000 South Africa,
b School of Pharmacology, University of KwaZulu--Natal, Westville Campus, Private Bag
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Note that the NMR elucidation of the remainder of the compounds (i.e. those compounds that were not
elucidated in the main paper) follows at the end of this document. The carbon 13 data are summarised in
Table 1.

The following spectra are included:

S1: '"H NMR spectrum of 2,3 and 4a-i

S2: 3C NMR spectrum of 2,3 and 4a-i
S3: COSY NMR spectrum of 4a-i

S4: HSQC NMR spectrum of 4a-i

SS: Infrared spectrum of 2,3 and 4a-i

Discussion about the NMR elucidation of the compounds not presented in the manuscript.



syead uoqJed ploe oulwe s8jousp ,IVY

6L V1TV 1T TLIT08'1C LTV
8I'V1 10Vl Y TTYS LT 10¥1°€rCC ‘TY'TTT6'CT TV ITYY T
PPTTLIT  1€TT68LT ‘LYLTTT'6T ‘0'8T°S8'8T  “86°CC'SO8T O8°LTTIT°6C 8I'¥I 61 vIvyTT
0vIeeTe YL°9T°T0°8T 0'6CTE6C Y6 €S 6T ‘T0°6T'LE6T ‘80°6T°6€°6T ‘CV'6TTS 6T Y'CT'60°8T Y8 LTT6C
‘66'CC°S0'8T ‘60°6CTV'6C ‘Y6 6v 6T ‘S9°67°66'6C Y 6C61'6C ‘S6CTS6C ‘65°62°96'6C ‘806 1V'6T  ‘YP6T 1S 6L
"T0'6T°S 6T ‘IS°6T'8S°6T  ‘8S6TLOE 96'0£°S8'1€ ‘C'6T'86T  ‘SS6TIY6T ‘6S°0EILTIE ‘C'6T'88°6C ‘6S°6T°6°6C
TOTESLYE ‘C6'6C°6E1E  1971E6TSE ‘9T 6E6ESE ‘SO 1E°LYSE ‘89°1€T8SE ‘65 vELO9E ‘69 1€°€1 S ‘LTEPYISE «3993,,
- - €eCC - - STyl - vl ‘HO-
So'6v - - - - - - - - 3
Or'6¢ - - - 6£9Y ¢8'CC -
‘66'6C Troe - - Y6'¥C ‘€8T - - - DA
‘€9'1¢€ ‘YL'9T ‘LET9 08¢ 80°1¥ ‘1801 ‘6ELE OF'L1 - ox!
‘€V'TS ‘SY'1S ‘Op'€S ‘I¥'€S 81°6S oS ‘6S°€S ‘€8°LY ‘66'01 0
- - cees - - - - - - ng-10
- ‘TETSIELTS - ‘TICs S6'IS 81°CS ‘€TTS LTTS - *HOO-
9'99°€9'99 - - - - - - - - UYd‘HOO-
- - - - - - - - 68°09 ‘HOO-
- - SEIS PP I8 - - - - - - ong-/
‘TE9ETLYLET - - ‘89°9€1°€S°6€1 - - ‘LOLET'LT LET - - dnewory
TSILIVSILT  STLI'6STLI 61691 ‘T6CTLI 19°CLT ‘€8°€ELI ‘LLTLT P8TLI £€8°691 (0=D)
*JVV
76891 $S°891 ‘TT891 ‘P¥'891 0°L91 ‘9¢°891 T€°891 60891 78891 (0=D)6D
‘SE°69 98°89 ‘€V'69 ‘68'89 ‘1689 ‘18'89 €€'89 ‘8°89 9'89 80
16°6¢ 11°6¢ TL'SE 8¢ 68°7¢ I8¢ 8LYE 6€°S¢ P1°6e LD
6v°9¢CI 8¢°9¢CI 7'9C1 ce9cl 9 9Cl Iv°9¢Cl1 ‘6eoTl LT9CI v oCl 90
¢6'101 9T 101 LS TOT LETOT 66'66 66001 €001 eV 101 78001 150
96°LTI1 9T LTl ‘69°LTl1 ‘LY°LT1 - ‘8E°LTI LOLTT ‘61°LTI 80°LCI 120 7(4Q)
‘9L ¥G1 ‘LY ¥S1 P YSI69 ST el S8 PVSI TEYSI 91'¥S1 orvel 91'¥C1 €I/1D
Iy Uy 3p ¥ $14 |47 R 4 qar ey uoqgren

1-ey spunodwod 10§ s)IYs AN Dy,

[1-91qRL




[wdd]

— o

€
(ZHIA 00%) S1DdD Ul T Jo wnnoads JIAN H; TS

—
—

14 €2ty

o

\



v

(ZHIN 00%) *P-OSINA W! € Jo winadads YN H; IS

[wdd] o Z b g 8 ol

B
owL f%

HO HO




[wdd]

S

(ZHIN 009) °P-OSINA ! &p Jo winxpdads YN H, TS

_V_

mw—._r _.0

XL

|



[wedd]

9

(ZHIX 009) °P-OSIAA WI qp Jo wnxpddds JYIAN H, 1S

n o




[wieled]

L

(ZHIN 009) *P-OSINA Ul 9% Jo winaoads JIAN H; ‘1S

—

[

H

o
(0] JL fvo

00" ~0™0



[wdd]

8

(ZHIA 009) °P-OSINA Ul Py Jo wnaoads JIAN H; ‘TS

-

_ﬁ_ﬂ,o L
o Lo
Toko okl



[wdd]

6

(ZHIN 009) *P-OSINA Ul 3¢ Jo winaoads JIAN H; ‘1S

—
—_—
——
"'H.._“‘

L4 nNIZO _

wﬁ@#
> 3



ot

(ZHIA 009) *P-OSINA ! Jp Jo winoads YIAN H, IS

b reeytig

o

.
\
HN 0>0"

ANCl
N

fvo
~o%0 U NH



1T

(ZHIN 009) *P-OSINA W 3 Jo winoads YAN H; TS

b regyig %

de




[wdd]

4"

(ZHIN 009) *P-OSINA Ul Yp Jo wnyaads YIAN H, IS

Yy nr

Tf\Qw




[wdd]

€1

(ZHIN 009) *P-OSINA Ul 1 Jo wnxpdads YN H, 1S




[wdd]

0

14

(ZHIN 001) £10dD Ul 7 Jo wmaaads YN I, *TS

05 00l

051




ST

(ZHIN 00T) °P-OSINA UI € Jo umnoads JIAN D, TS

[wdd] 0 05 001 051 002
| | | ] ] | | ] | ] ] | ] ] ] ] | ] | ] ] | ]
¥ [ezyiin
(o] (o}
oJL fwo

HO HO



9T

(ZHIA 0ST) *P-OSIN ! ey Jo winodds JYIAN Iy, 7S

0s 00l 0sl 00z
_ 1 1 1 1 _ | 1 1 1 _ 1 1 | 1 _ 1
14 AT fw
o (0]
oJL Fwo



LT

(ZHIA 0ST) *P-OSINA Ul qp Jo wnaads YIAN D, :TS

[wdd] o 05 00l 051 002
! | ! ! ] ] | ! ! ! 1 | 1 1 ! ] | 1 1 ! 1 | ]
L4 T .w.w
JLo ofw
(o) (0]
HZI IZH
00~ ~07N0




8T

(ZHIN 0ST) °P-OSINA Ul 9 Jo wnadads JYIAN D, TS

[wdd] 0 05 00l 051
| |




6T

(ZHIA 0ST) *P-OSINA W! Py Jo winapdads YN D, TS

[wdd] 0 05 00l 051
| |

14 AT
NPT
o ? 2 o}




0¢

(ZHIN 0ST) °P-OSINA Ul 3¢ Jo wnadads JYIAN D, TS

[wdd] 0 05 ] 051 002
] | ] | | | | ! | ] ] | | ] ] ] | ] ] ] | | ]
14 ZH D _
(o] o
oJ\_ o

~
Q N N o~

O O




T¢

(ZHIN 0ST) °P-OSINA U! Ji Jo wnadads YIAN D, TS

05 v ] 051 002




[44

(ZHIN 0ST) °P-OSINA U 8§ Jo winoads YN Iy, TS

[wddl o 0% 001 051 002
1 l 1 1 1 1 I 1 1 1 1 l 1 1 1 1 I 1 1 1 1 I 1

VMNT__._.U
N
O

(o] (o]

Yot W
(o] OX VAO (o]




€¢

(ZHIA 0ST) *P-OSINA ! 4 Jo wnpdads JIAN D, TS
002

00l
I

051
I 1 | !

4 LTS
N



144

(ZHIN 0ST) °P-OSINA Ul Iy Jo wnxpoads YN g, TS

[wdd] 0 05 0ol 05l
| |

Ylegytig




S¢

(ZHIN 009) *P-OSINA W! ep Jo wnaoads YIAN XSOD €S

[wdd] z4 A 14 9 8
] | | ] 1 1 | ! ] ! | ] I 1 | ! !

g ]
B —

| tln ™ N
9 -

Yroeeyiig

- Rise

| 0 o 9

_ (0] (o]
n X )} .

i o>~ /o070

. * g
T o - a

_ & " .
|
=
=
.M. 1l




9¢

(ZHIA 009) *P-OSINA ! qf Jo wnapoads YIAN XSOD €S

[wdd] z4 FA 9

et

1



M — : 4

LC

(ZHIN 009) *P-OSINA W of Jo unadads JIAN XASOD €S

[wdd] z4 z ¥ 9 8

I oy
o Jzﬂ_ Uﬂ\o
- 80\ /oHo/Q

T

%
.
- k &
\ :




(ZHIA 009) *P-OSINA ! Py Jo wnapoads YIAN XSOD €S

[wdd] z4 z 2
| | | ! | | ] ] 1 ] | | ]

] ]

0 — -
breeyiig L H

- O

m O O -]

: R . —
o J\oHo\ /oHoJ\

] - LA |
b poas

6l "
M — " .

| 4 &

[ * .

i F e
4 |
<)
3 -

j i



6¢

(ZHIA 009) °P-OSINA Ul 3¢ Jo wnaoads JYIAN ASOD €S

o : | : :
H m
o0 | m )
] . m " \.
- P ”
! |
| m o [} ﬂ a :
.. e A
| SR
| m wid
| T A
v . ' ™
™ ! &" - b e
y ; m Pleaig
1 *ﬁ*- | i g —.mf\nmeMﬂ
7] . w SO U

S

[]

LA



(ZHIN 009) *P-OSIN W! J§ Jo winadads YN XSOD €S

[wdd] z4 0 z

(013

preeyiig

o&o o(o
@U\HZI IZ%
HN- 0>0~ ~oRo “NH

[

i

T



T€

(ZHIN 009) °P-OSIAA Ul 8p Jo winxdads YIAN ASOD €S

[wdd] z4 z r 9 8
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -
0 — L4 gy tg
| %,
Vi A -
R o] o
i NH HN i —
T ARG
ol = - w ﬁl\‘a * -
I 4] $
i i ..\L. - —

T



[wdd] z4

0

[43

(ZHIN 009) °P-OSIAA Ul yp Jo wnaydads YIAN XASOD €S

[

T

7

[

BLIT



€€

(ZHIA 009) *P-OSINA ! I Jo wnoads YN XSOD €S

[wddlza o 4 14 3
! ! | ! 1 ! | 1 ] ! | ! ! 1 | I 1 ]

e

. Yrezytig

1 N

AR

i @/\o NH HN N o

] F@ o E

| 0 rd
s | -

i . %

@

7 i o
o 4

4 " -

- n : Q &

. [ ]
| ]

@ q

2 i o
7 | o
=
- _
=]

[

[

V

Ml



143

(ZHIN 009) °P-OSIAA Ur ep Jo wnxdads JAN DOSH S

[wdd] z4 z ¥ 9 8 ol

002
|

3 Y

i # €2ytin

<
%

00l
|
u

05
|

[wdd] 14

NI




[wdd] z4

S€

(ZHIA 009) °P-OSIAA U qp Jo wnaydads YIAN DOSH :+S

Z r 9

ftes
owﬂ _._fzwo
oHox /oHo

14




00l 051 002

05

[wdd] 14

[wedd] z4
| |

9¢

(ZHIA 009) °P-OSIAA U 9% Jo winadads YIAN DOSH :+S

vim&::o

NH

0>o0”

e
o,

"
/oW_/\o/Q




LE

(ZHIA 009) °P-OSIAA Ul pp Jo wnaydads YN DOSH :+S

[wdd] z4 Z v 9 8 oL zl
] | ] ] | | | ] ] | ] ] ] | | ] ] | | | ] | |

ra
OI
o

7] vreeytia

| OJLO Ofﬂ\o
- NH HN
g T X LT

I 00" ~No~o

[ ]

S — .
S

7 ==
2- -

=y o 5

o -
I o e
.

BIER
=
= -
S




8¢

(ZHIA 009) *P-OSINA ! 3 Jo unxdads YN DOSH S

[wed] 24 z 12 9 8 ol
] | I ! ! | 1 1 1 | ! 1 ! | ! ! 1 | 1 ! ! |

[}
0'
o

1 v CITAY, _
2 J\_ _/m

=0
. N N 0~
0 O
=

ml o

T o

T L -
h _| =i
= o

. .

L =3
- sl
o

B30
=
=
S




6¢€

(ZHIN 009) °P-OSIAA Ul Jp Jo winadads YIAN DOSH :+S

[wddlza o 4 14 9 8
1 1 | ! ] ! | ! ! ] | ! ! 1 | ] ! 1 | 1 ! !

]
OI
o AT 1) .wm.

- J\o ofT

(0] 0]
G T

_ I \
- HN= 620~ ~o~o ~NH
gl
L =]

_ EH.

_ - .

_ L1
ml -
=]

= L =]

a9

ﬁl 5

= .

L ]

7] #l =
e
=
=
=l

[]



orlL

0zl

[wde] z4

ov
(ZHIN 009) °P-OSINA uI 3p Jo winaydads YIAN DOSH S

L4

Yo

Yo
owzu U_ﬁ\o X
Ko %k’

YR

[




1%

(ZHIA 009) °P-OSIAA Ul yp Jo wnaydads YN DOSH :+S

[wddlz4 o Z r 9 8

00z
I

05l
|

/

o

o =
\ I
/ I
(@) Z
O»_%:

o

\

00l
I
=]

05

[wdd] 14

O



t4
(ZHIA 009) °P-OSIA Ul I Jo wnaydads YN DOSH :+S

[wddlz4 o Z v 9 8 ol zl

002
|

Q
g

00l
|

05
|

[wdd] 14




1374

7 Jo wnx)dads paxeajuy :gS

[-uo
0°08¢ 009 008 0001 0ocl 0ovl 0091 0081 000¢ 00¥C 008¢ 00cg 009¢ 0°000%
(] 1 1 1 1 1 1 1 1 1 1 1 1 - O.@m

b ez tin BS4

e
Y

“¢°
| S

(0]

| 09

| 9

0L 1%

| SL

08

| 68

06

| S6

001

-9°¢01



144
€ Jo win.ydads paeayuy :§S
[-wo
0°08¢ 009 008 0001 0021 00v1 0091 0081 000¢ 00¥¢ 008¢ 00C¢ 009¢ 0°000%
(] 1 1 1 1 1 1 1 1 1 1 1 1 O.o.v

| 0S

Yreegiig 'S¢

L
o JL Fmo

HO HO

09

[ S9

0L

L%

' SL

[ 08

| S8

[ 06

| S6

8001



008¢

009

008

0001

00c1

174

e Jo winapdads paserjuy :S

[-uo
0ov1 0091 0081 000¢ 00vc 008¢

00ce

009¢

0°000v

e
o ﬂ_ﬂ U_\o
oHO\/ \/owf_,o

0ov

Sy

S

| SS

09

| S9

0L 1%

| SL

| 08

| S8

| 06

| S6

001

Ye0l



9t
qp Jo win)dads paeayuy :§S
[-wo

0°08¢ 009 008 0001 001 00v1 0091 0081 000¢ 00¥¢ 008¢ 00ce 009¢  0°000¥%
(] 1 1 1 1 1 1 1 1 1 1 1 1 O.N.v

[ S¥

v[egytiy 1 0S
(e
(0] (0]
o (o)
Lo ol 09
J 9

0L

B

L%

[ SL

08

| 68

06

[ S6

1001

ve0l



LY
I Jo winaydads paeayuy :§S
[-wo

0°08¢ 009 008 0001 00¢I 0ovI 0091 0081 000¢ 00¥¢ 008¢ 00ce 009¢ 0°000%
(] 1 1 1 1 1 1 1 1 1 1 1 1 O. ‘—H m

| SS

09

ol S0

[ OL

[ SL
L%

[ 08

[ S8

06

| S6

001

R0



174

P Jo win)dads paeyuy :§S

[-wo
0°08¢ 009 008 0001 00¢I ool 0091 0081 000¢ 00t¢ 008¢ 00T¢ 009¢ 0°000%
Ll 1 1 1 1 1 1 1 1 1 1 1 1 O.mm
09
AT
<6 |
o (o) <9
J\W_ﬂ %H/w
o>o0” No~o
T0L
" CL
L%

08
( BS
( 06
" C6

1001

- Ce0l



6v
3 Jo winydads paeayuy :gS
[-wo

0°08¢ 009 008 0001 00¢1 0ovI 0091 0081 000¢ 00¥¢ 008¢ 00ce 009¢  0°000%
(] 1 1 1 1 1 1 1 1 1 1 1 1 I o..vm

b3

) _ & { ~
| 05 Alio

Y egytig ﬁ " 09

| OL

[ SL
L%

| 08

68

06

[ S6

001

8201



0°08¢

009

008

0s

J¥ Jo winaydads paaeajuy :SS

[-wo
0001 00¢I 00vI 0091 0081 000¢C

00¥¢

008¢ 00ce 009¢

0°000v

HN

I

14

(o)

\e<a
o M_ﬂ U_\\o

o~ ~o~o NH

00¢

| SS

09

| S9

0L

[ SL 1%

| 08

| 68

| 06

| S6

001

v01



0°08¢

009

008

1S

8§ Jo winaydads paseajuy :SS

0001 00¢I 00v1 0091

[-wo

0081 000¢T 00¥¢ 008¢ 00ce 009¢  0°000%

0 sy
breaytio | 0§
R
109
| S9
0L

L%
[ SL

| 08

g 8
C 06

| S6

001

- 8°¢01



0°08¢

009

008

000T

00<1

0ovI

[4°]

(§ Jo wna)dads pareajuy :gS

[-wo
0091 008I 000¢

00¥¢C 008¢ 00ce 009¢

0°000v

v MNI:.O ..-~N
L,
o Oy \¢°
/OFF\HZ_._ _._zH/xho\
070”7 ~0~No

0cy

Sv

[0S

B3

09

[ S9

0L 19

SL

08

68

06

" S6

001
8101




0°08¢

009

008

000T

€9

I Jo wnxdads pareajuy :6S

[-wo
00<1 00v1 0091 008I

000¢T 00¥¢C

008¢

00ce

009¢

0°000v

F0vS

09

[ S9

0L

SL

L%

| 08

S8

06

" S6

~L'66



NMR Elucidation of compounds

Characterization of compound 1 was completed using proton (‘H) and carbon (*C) NMR. The "H NMR chemical shifts for

this compound were assigned with reference to Figure 1.

Figure 1: Expanded structure of 2, showing distinctive protons.

Alkylation of the eight hydroxyl groups in 1 with methyl-2-bromoacetate afforded 2, which result in the appearance of a
singlet at 4.30 ppm due to the methylene protons of OCH,CO group (Hs, Figure 2), integrating to sixteen. This signal
appears at a lower frequency due to the deshielding nature of the neighbouring oxygen atom and carbonyl group. The
signals associated with the methoxy groups appear as a singlet at 3.77 ppm, integrating to twenty four. The signals related
to the two aromatic resorcin[4]arene protons appear as a singlet at 6.58 ppm for H; protons (meta to the hydroxyl groups)
and at 6.20 ppm due to the H, protons (ortho to the hydroxyl group), each of these signals integrating to four. The proton
signal of H; appears at a lower frequency compared to the H, protons. The signal related to the methine protons (H,) which
bridge the aromatic moieties, appears as a triplet at 4.57 ppm, integrating to four. The signals associated with the undecyl
“feet” (R) give rise to a quartet at 1.90 ppm (integrating to eight), a multiplet at 1.20-1.30 ppm (integrating to seventy two),
and a triplet at 0.87 ppm (integrating to twelve) due to the terminal methyl groups of the “feet”. The two singlet peaks at
6.58 ppm and 6.20 ppm for H; and H, protons, respectively, indicate the symmetric positions of these protons in a crown

(C4) conformation.(1, 2)

Subsequent hydrolysis of compound 2 using a potassium hydroxide solution (2 M KOH) in ethanol under reflux for 3 hours
(Scheme 1, main paper), gave 3 in 93% yield after re-crystallisation from methanol/water in a 1:1 ratio.(3) Compound 3
was characterised from its proton and carbon NMR spectra. The '"H NMR chemical shifts for this compound were assigned

with reference to Figure 2.
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R=Cy Hy

Figure 2: Expanded structure of 3, showing distinctive protons.

Hydrolysis of 2 confirmed by the disappearance of the methoxy group signal (singlet at 3.77 ppm) in 3. The signal
associated with the methylene protons of OCH,CO (H;s Figure 3) appears as a pair of doublets at 4.23 ppm and 4.41 ppm,
each of these signals integrates to eight. Compared to the singlet signal for the methylene protons for 2 in non-polar
solvent (CDCls), this splitting clearly shows that in polar organic solvent (DMSO), there is weak intramolecular hydrogen
bonding. The signals related to the two aromatic resorcin[4]arene protons (H; and Hy,) appear as a slightly broad singlet
(compared to the aromatic protons signals for 2 in CDCl;). One appears at 6.49 ppm for H; protons and the other at 6.20
ppm due to the H, protons, each of these integrates to four. The signal associated with the methine protons (H;) appears as
a triplet at 4.48 ppm, integrating to four. The signals related to the “feet” have resolved into three signals: a quartet at 1.75

ppm, multiplets at 1.20-1.29 ppm, and a triplet at 0.82ppm. These signals maintain their associated integration.

The appearance of the methylene protons (Hs) as two doublets and the slight broadening of the two aromatic protons (H;
and H,), show that compound 3 is flexible and mainly exists in a boat conformation with C,, symmetry on NMR time

scale.
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The 'H NMR spectrum for 4b displays signals characteristic for both units. The signal associated with the methyl protons
of the ester group appears as a doublet at 3.64 ppm, integrating to twenty four. The signal related to the alanine o-protons
appears as a quartet at 4.42 ppm, integrating to eight. The signal due to the methyl group attached to the B-carbon appears

as a triplet at 1.34 ppm, integrating to twenty four. The amide NH protons signal for this derivative appears as two
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doublets at 7.82 ppm and 7.80 ppm, each integrating to four.

The signal for the methylene protons of the OCH,CO groups (Hs) appears as a pair of quartets at 4.35 ppm and 4.24 ppm,

each of these integrates to eight. This splitting could be attributed to the presence of two chiral amino acid units on each
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Figure 3: Expanded structure of 4a-i, showing distinctive protons.



aromatic ring making these protons (Hs) diastereotopic.(4, 5) The signals for the aromatic ring protons (H;and H,) appear
as two singlets in the 'H NMR spectrum, one at 6.73 ppm (for H;), and the other at 6.56 ppm (for H,). The signal for the
H; protons at 4.67 ppm is a triplet, integrating to four. The signal related to the undecyl “feet” (R, Figure 3) is largely

unchanged from 4a, and maintains the associated multiplicity and integration.

Coupling of L-phenyl alanine methyl ester to the octa-acyl chloride resorcin[4]arene 3 afforded compound 4¢ in 71 %
yield. The '"H NMR spectrum exhibits signals for the phenyl alanine residue and the resorcin[4]arene scaffold. The signal
associated with the methyl protons of the ester group at 3.59 ppm is a doublet, integrating to twenty four. The signal
associated with the o-protons at 4.64 ppm appears as a quartet, integrating to eight. The signal associated with the -
protons splits into four pairs of doublets at 3.11 ppm, 3.04 ppm, 3.03 ppm, and 2.87 ppm due to coupling with the o-
protons. Each of these integrates to four. The signals related to the phenyl rings at the side chains appear as a multiplet at
7.04-7.15 ppm, integrating to 40. The amide NH protons signal for this compound appears as two doublets at 7.77 ppm

and 7.60 ppm, each of these integrates to four.

The signal for the diastereotopic methylene protons of the OCH,CO groups (Hs) appears as a pair of quartets at 4.28 ppm
and 4.20 ppm, each integrating to eight. The signals related to the aromatic protons appear as two singlets, one at 6.89 ppm
related to H; protons in Figure 7 and the other at 6.33 ppm due to the H, protons. Each of these integrates to four. The
signal related to the H, protons appears as a triplet at 4.64 ppm and integrates to four. The signals associated with the

undecyl “feet” are unchanged.

The 'H NMR spectrum for 4d derivative displays signals characteristic for both units. The signal related to the methyl
protons of the ester group appears as a doublet at 3.62 ppm, integrating to 24. The signal related to the o-protons (Figure
3) appears as a quartet at 4.47 ppm, integrating to eight. The signals associated with the B- and y-protons appear as
multiplets at 1.45-1.67 ppm, integrating to twenty four protons. The signals for the methyl groups attached to the &-
carbon atoms appear at a higher frequency as two triplets at 0.87 ppm and 0.77 ppm, each of these integrates to 24. The
signal associated with the amide NH protons appears as two doublets at 8.02 ppm and 7.79 ppm, each of these integrates

to four.

The signal for the diastereotopic methylene protons of the OCH,CO groups (Hs) appears as a pair of quartets at 4.36 ppm
and 4.46 ppm, integrating to eight each. The signals related to the H; and H, protons appear as two singlets at 6.89 ppm
for H; and at 6.53 ppm for H,. Each integrates to four. The signal associated with the H, protons appears as a triplet at

4.77 ppm, integrating to four. The signals related to the undecyl “feet” are unchanged.

Reaction of the octa-acyl chloride resorcin[4]arene 3 with L-proline methyl ester afforded compound 4e in 69 % yield.
The 'H NMR spectrum exhibits signals for both moieties. The signal related to the methyl protons of the ester group
appears as a doublet at 3.69 ppm, integrating to twenty four. The signal related to the a-protons at 4.38 ppm is a quartet,
integrating to eight. The signals associated with the - and y-protons appear as multiplets at 1.90-2.15 ppm, integrating to

thirty two. The signal related to the 3-protons appears as a multiplet at 3.56 ppm, integrating to sixteen.

The signal for the methylene protons of the OCH,CO groups (Hs, Figure 3) appears as a broad doublet at 4.48 ppm,
integrating to 16. This broadening could be attributed to the slow rate of conformational interchange of the proline-

pyrrolidine ring.(6) The signals related to the aromatic resorcin[4]arene protons (H; and H,) appear as a broad singlet,
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one at 6.82 ppm for H; protons and the other at 6.38 ppm for H, protons. Each of these integrates to four. The signal for
H, at 4.68 ppm is a triplet and integrates to four. The signals related to the undecyl “feet” (R), remain essentially

unchanged.

Compound 4f was synthesised in 64 % yield by reacting L-tryptophan methyl ester with the octa-acid resorcin[4]arene 3.
The 'H NMR spectrum for this derivative displays signals characteristic for both units. The signal related to the methyl
protons of the ester group at 3.68 ppm appears as a doublet, integrating to twenty four. The signal associated with the -
protons at 4.71 ppm appears as a quartet, integrating to eight. The signal assigned to the B-protons at 3.11-3.25 ppm
appears as a multiplet due to coupling to the o-protons and integrates to sixteen. The signal assigned to the NH protons
of the indole ring (Figure 3) appears as two singlets at 10.42 ppm and 10.32 ppm, each of these integrates to four. The
signal assigned to the tryptophan-7’-protons at 7.48 ppm appears as a triplet. The signal assigned to the tryptophan-4’-
protons at 7.29 ppm appears as pair of doublets. The signal related to the tryptophan-5’-protons at 7.02 ppm is a triplet.
The signal assigned to the tryptophan-6’-protons at 7.00 ppm appears as a triplet. The signal assigned to the tryptophan-
2’-protons at 6.90 ppm is a singlet. Each of these signals integrates to eight protons. The signal related to the amide NH

protons appears as two doublets at 7.63 ppm and 7.55 ppm, each integrates to four.

The signal for the diastereotopic methylene protons of the OCH,CO groups (Hs, Figure 3) appears as a pair of quartets at
4.26 ppm and 4 32 ppm, each of these signals integrates to eight. The signals associated with the aromatic resorcin[4]arene
protons appear as two singlets at 6.80 ppm for H; and at 6.47 ppm for H, protons, each of these signals integrates to four.
The signal related to the methine protons (H,) appears as a triplet at 4.63 ppm, integrating to four. The signals related to

the undecyl “feet” are unchanged.

The '"H NMR spectrum for 4g exhibits signals for both residues. The signal related to the z-butyl protons, which protects
the carboxylic group, is a doublet at 1.40 ppm, integrating to seventy two. The signal for the o-protons of this amino acid
is a quartet at 4.46 ppm, integrating to eight. The signal for the B-protons appears as two pairs of doublets at 3.70 ppm
and 3.54 ppm due to coupling to the o-protons and each integrates to eight. The signal related to the ¢-butyl protons at the
side chain, which protects the hydroxyl groups, at 1.09 ppm is a doublet, integrating to seventy two. The amide NH

protons signal appears as two doublets at 7.27 ppm and 7.24 ppm, each integrates to four (Figure 3).

The signal related to the diastereotopic methylene protons of the OCH,CO groups (Hs, Figure 3) appears as four doublets
at 4.36 ppm, 4.28 ppm, 4.25 ppm, and 4.18 ppm, each of these integrate to four. The presence of two serine units with
bulky #-butyl groups at side chains per each aromatic ring could affect this splitting. The signals associated with the
aromatic protons H; and H, appear as two singlets: one at 6.73 ppm (for H;), and the other at 6.53 ppm (for H,), each
integrates to four. The signal related to H, appears as a triplet at 4.63 ppm, integrating to four. The signals related to the

undecyl “feet” are unchanged.

The 'H NMR spectrum for 4h derivative displays signals characteristic for both moieties. The signal associated with the
methyl protons of the ester group, is a singlet at 3.70 ppm, integrating to 24. The signal assigned to the a-protons for this
amino acid at 4.44 ppm is a quartet, integrating to eight. The signal related to the B-protons appears as two multiplets at
1.96 ppm and 2.13 ppm due to coupling to the a-protons, each integrates to eight. The signal related to the y-protons

appears as a multiplet at 2.36 ppm, integrating to sixteen. The signal related to the methyl protons of the ester group at
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the side chain, appears as a singlet at 3.58 ppm, integrating to twenty four. The amide NH protons signal appears as two

doublets at 7.66 ppm, integrating to eight.

The signal for the diastereotopic methylene protons of the OCH,CO groups (Hs, Figure 3) appears as a pair of quartets at
4.30 ppm and 4.32 ppm. Each of these integrates to eight. The signals associated with the H; and H, (aromatic ring
protons) appear as two singlets, at 6.81 ppm for H; and at 6.55 ppm for H,, each integrates to four. The signal for H,

appears as a triplet at 4.69 ppm, integrating to four. The signals related to the undecyl “feet” are essentially unchanged.

The 'H NMR spectrum for 4i displays signals characteristic for both moieties. The signals related to the aromatic protons
of carboxybenzyl group (Cbz) and the benzyl ester group (Bn) appear as a multiplet at 7.26-7.36 ppm, integrating to 80.
The signal for the methylene protons of Cbz group appears at 5.13 ppm as a multiplet due to coupling with the o.-protons,
and the one associated with the benzyl ester group (Bn) appears at 4.77 ppm, as a singlet, each integrates to 16. The
signal related to the o-protons appears as a quartet at 4.44 ppm, integrating to eight. The signal for the B-protons appears
as two multiplets at 1.82 ppm and 1.78 ppm due to coupling with the a-protons, each integrates to eight. The signals
related to the y- and d-protons appear as a multiplet at 1.39 ppm, integrating to 32. The signal for the e-protons appears as
a quartet at 3.10 ppm, integrating to 16. The signal for the eNH-protons appears as a broad triplet at 6.61 ppm,

integrating to eight. The amide NH protons signal appears as a pair of doublets at 7.61 ppm, and integrates to eight.

The signal for the diastereotopic methylene protons of the OCH,CO groups (Hs, Figure 3) appears as a pair of quartets at
4.27 ppm and 4.35 ppm. Each integrates to eight. The signals related to the aromatic ring protons (H; and Hy) appear as
two singlets, each integrates to four: one at 6.84 ppm (for H;) and the other at 6.59 ppm (for H,). The signal for H; appears

as a triplet at 4.68 ppm, integrating to four protons.
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