A Facile Catalyst-free Pudovik Reaction for the Synthesis of α-Amino Phosphonates

ABSTRACT

Some imines were synthesized by the reaction of 5-amino 1-naphthol with substituted aromatic aldehydes in ethanol under reflux conditions. Dialkyl phosphites underwent reaction with aromatic imines to give novel α-amino phosphonates. All the title compounds were characterized by elemental analysis, IR, 1H, 13C, 31P NMR and mass spectral data. All the newly-synthesized compounds (4a–j) exhibited moderate antibacterial and antifungal activity.

KEYWORDS

5-Amino-1-naphthol, imines, dialkyl phosphate, α-amino phosphonates, antimicrobial activity.

1. Introduction

α-Amino phosphonates are an important class of compounds since they are structural analogues of naturally-occurring α-amino acids as building blocks of peptides in biological systems. In addition to this the structural similarity with naturally-occurring α-amino acids gave momentum to the synthesis of α-amino phosphonic acids and their derivatives for applications in biological systems. α-Amino phosphonates possess an array of potential binding sites for both ammonium (phosphoryl group, nitrogen lone pair) and carboxylate (N-H bond) moieties. The α-amino phosphonate derivatives are gaining much importance in medicinal chemistry and their applications as enzyme inhibitors, pharmacological agents, herbicides, antibiotics and inhibitors of excitatory post-synaptic potential (EPSP) synthase and HIV protease. α-Amino phosphonic acids seem to be even closer analogues of their α-amino phosphonic counterparts due to their monobasic/acidic character and higher stability of the P=C bond of phosphonic acids compared with the P=O bond. There are now numerous reviews to guide the reader into this fascinating aspect of phosphorus chemistry. Moreover, extensive coverage of the role of phosphonates in living systems has been provided in books by Hildebrand and Henderson. The Pudovik reaction is one of the most convenient methods for the formation of P=C bonds and involves the addition of compounds of 5-amino 1-naphthol with substituted aromatic aldehydes (2a–j) in dry ethanol under reflux conditions to form different substituted imines (3a–j) (Scheme 1). In the second step, the imines were reacted with the respective dialkyl phosphites in dry ethanol at reflux temperature to obtain the α-amino phosphonates (4a–j) in high yields (75–84%). The second step of the reaction was completed at reflux temperature of ethanol with stirring for 3–4 h. The progress of the reaction was monitored by TLC analysis using ethyl acetate:n-hexane(4:6) as mobile phase. The crude products were obtained after removing the solvent under reduced pressure. The crude products were purified by column chromatography on silica gel using ethyl acetate:n-hexane (2:8) solvent mixture as eluent. The synthetic and analytical data of α-amino phosphonates (4a–j) are given in the experimental part.

The IR spectra of the title compounds (4a–j) show absorption bands at 3520–3340 cm⁻¹ for O-H stretching vibrations. The N-H and P=O stretching vibrations are observed in the regions 3310–3100 cm⁻¹ and 1290–1210 cm⁻¹, respectively. The aromatic O-H proton signal appears as a singlet in the range of δ 10.31–9.69 ppm. The aromatic protons of 4a, b, c resonate as multiplets in the region δ 7.89–6.51 ppm. The N-H proton signal appears as a triplet in the range δ 2.42–3.89 ppm. The methylene oxy protons resonate as a multiplet in the region δ 4.28–3.89 ppm. The P-O-CH₂, CH₂, CH₃, CH₄, proton signal appears as a multiplet in the region δ 3.76–1.25 ppm. The methyl protons appear as a triplet in the region δ 2.17–2.75 ppm (t, J 6–11 Hz). The 13C NMR data of 4a, b, c, d and e are given in the experimental part. The 31P NMR signals appeared as singlets in the range δ 23.16–18.59 ppm. The LCMS data of 4a, c, d, f, h and j are given in the experimental section.

2. Results and Discussion

A series of new α-amino phosphonates was synthesized in a two-step process. The synthetic route involves the condensation of 5-amino-1-naphthol (I) with different substituted aromatic aldehydes (2a–j) in dry ethanol under reflux conditions to form different substituted imines (3a–j) (Scheme 1). In the second step, the imines were reacted with the respective dialkyl phosphites in dry ethanol at reflux temperature to obtain the α-amino phosphonates (4a–j) in high yields (75–84%). The second step of the reaction was completed at reflux temperature of ethanol with stirring for 3–4 h. The progress of the reaction was monitored by TLC analysis using ethyl acetate:n-hexane(4:6) as mobile phase. The crude products were obtained after removing the solvent under reduced pressure. The crude products were purified by column chromatography on silica gel using ethyl acetate:n-hexane (2:8) solvent mixture as eluent. The synthetic and analytical data of α-amino phosphonates (4a–j) are given in the experimental part.

The IR spectra of the title compounds (4a–j) show absorption bands at 3520–3340 cm⁻¹ for O-H stretching vibrations. The N-H and P=O stretching vibrations are observed in the regions 3310–3100 cm⁻¹ and 1290–1210 cm⁻¹, respectively. The aromatic O-H proton signal appears as a singlet in the range of δ 10.31–9.69 ppm. The aromatic protons of 4a, b, c resonate as multiplets in the region δ 7.89–6.51 ppm. The N-H proton signal appears as a triplet in the range δ 2.42–3.89 ppm. The methylene oxy protons resonate as a multiplet in the region δ 4.28–3.89 ppm. The P-O-CH₂, CH₂, CH₃, CH₄, proton signal appears as a multiplet in the region δ 3.76–1.25 ppm. The methyl protons appear as a triplet in the region δ 2.17–2.75 ppm (t, J 6–11 Hz). The 13C NMR data of 4a, b, c, d and e are given in the experimental part. The 31P NMR signals appeared as singlets in the range δ 23.16–18.59 ppm. The LCMS data of 4a, c, d, f, h and j are given in the experimental section.

2.1. Biological Activity

The antibacterial and antifungal activities of the test compounds were evaluated by the disc diffusion method and their effect was compared with the standard antibiotic Ampicillin and antifungal agent Nystatin. The antibacterial role of all the title compounds (4a–j) was assayed against the growth of Escherichia coli.
coli and Pseudomonas aeruginosa at two different concentrations, 100 µg disc$^{-1}$ and 250 µg disc$^{-1}$ (Table 1). The majority of the compounds exhibited moderate activity against both bacteria. Ampicillin was used as a standard reference compound to compare the activities of these compounds. The compounds (4a–j) (Table 1) were screened for their antifungal activities against Aspergillus niger and Fusarium moniliforme along with the standard fungicide Nystatin. It is gratifying to observe that all the compounds (4a–j) exhibited moderate antifungal activity compared with that of the reference compound.

3. Experimental

Melting points were determined in open capillary tubes on a Mel-temp apparatus (Tempo Instruments and Equip (Pvt.) Ltd., Mumbai, India) and were uncorrected. IR spectra were recorded in KBr pellets using a Perkin-Elmer 240-c FT-IR spectrometer (Waltham, MA, USA). 1H, 13C and 31P NMR spectra were recorded on a Bruker AMX 400 MHz spectrometer (Ettlingen, Germany) operating at 400 MHz for 1H, 100 MHz for 13C and 161.9 MHz for 31P. Some compounds were recorded in DMSO-d_6 and a few compounds were recorded in CDCl$_3$ and the chemical shifts were referenced to TMS (1H and 13C) and 85% H$_3$PO$_4$ (31P). Microanalytical data were obtained from the University of Hyderabad, Hyderabad, India.

3.1. Synthesis of Different Substituted Imines (3)

To a stirred solution of 5-amino 1-naphthol (0.002 mol) in 30 mL of dry ethanol, different substituted aromatic aldehydes (0.002 mol) in 10 mL of dry ethanol were added at 20 °C. After stirring for 2 h at reflux temperature, formation of the intermediates, substituted imines 3a–j was ascertained by TLC analysis, using ethyl acetate:n-hexane (4:6) as eluent. The imines 3a–j were used for the next reaction step without further purification and isolation.

3.2. Typical Procedure for the Synthesis of 4a–j

A solution of diethyl/dibutyl phosphite in 15 mL of dry ethanol was added dropwise to a stirred solution of substituted imines 3a–j at 20 °C. After completion of the addition the temperature of the reaction was raised to reflux and the reaction mixture was stirred for 3–4 h. Completion of the reaction was ascertained by TLC analysis using ethyl acetate:n-hexane (4:6) mixture. The solvent was removed in a rotary evaporator and the crude product was purified by column chromatography on silica gel.
100–200 mesh using ethyl acetate:n-hexane (2:8) mixture as eluent to obtain the pure compounds. The compounds were characterized by 1H, 13C, and 31P NMR, IR and mass spectral data.

3.3. Spectral Data

3.3.1. Diethyl (5-bromo-2-hydroxyphenyl)(5-hydroxynaphthalen-1-ylamino) methylphosphonate (4a)

Yield 82 %; solid, m.p. 129–130 °C. R. 0.5. δ8 (400 MHz, CDCl3): 10.27 (1H, s, -OH), 9.88 (1H, s, -OH), 7.73–6.51 (9H, m, Ar-H), 5.99 (1H, t, J 10.2 Hz, -NH), 5.32 (1H, dd, J 9.6,15.6 Hz, -P-CH), 4.08–3.89 (4H, m, -OCH2-CH=CH2), 1.85 (d, J 9.7 Hz, P-O-CH2-CH2-CH2-CH3) and 1.37 ppm (d, J 7.5 Hz, P-O-CH2-CH2-CH2-CH3); δ31P (CDCl3): 22.3 ppm; ν31P (KBr): 3450 (-OH), 3364 (-OH), 3100 (-NH), 1235 (P=O) and 727 cm–1 (P-Caliphatic). m/z (LCMS): 431 (M+), 386 (M+ - H2O) ppm; 1H-13C (2D-COSY): found: C, 52.51, H, 4.69; N, 2.95 %.

3.3.2. Diethyl (5-bromo-2-hydroxyphenyl)(5-hydroxynaphthalen-1-ylamino)methylethylphosphate (4b)

Yield 84 %; solid, m.p. 135–137 °C. R. 0.55. δ8 (400 MHz, CDCl3): 10.27 (1H, s, -OH), 9.88 (1H, s, -OH), 7.73–6.51 (9H, m, Ar-H), 5.99 (1H, t, J 10.2 Hz, -NH), 5.32 (1H, dd, J 9.6,15.6 Hz, -P-CH), 4.08–3.89 (4H, m, -OCH2-CH=CH2), 1.85 (d, J 9.7 Hz, P-O-CH2-CH2-CH2-CH3) and 1.37 ppm (d, J 7.5 Hz, P-O-CH2-CH2-CH2-CH3); δ31P (CDCl3): 22.3 ppm; ν31P (KBr): 3495 (-OH), 3235 (-OH), 3003 (-NH), 1276 (P=O) and 727 cm–1 (P-Caliphatic). m/z (LCMS): 457 (M+), 412 (M+ - H2O) ppm; 1H-13C (2D-COSY): found: C, 52.51, H, 4.69; N, 2.95 %.

3.3.3. Diethyl (4-hydroxy-3-methoxynaphthalen-1-ylamino)methylethylphosphate (4c)

Yield 80 %; solid, m.p. 138–140 °C. R. 0.45. δ8 (400 MHz, CDCl3): 9.91 (1H, s, -OH), 9.72 (1H, s, -OH), 7.56–6.51 (9H, m, Ar-H), 5.74 (1H, t, J 7.6 Hz, -NH), 5.01 (1H, dd, J 12.16 Hz, -P-CH), 4.08–3.94 (4H, m, -OCH3) 3.73 (3H, s, -OCH3), and 1.12 ppm (6H, d, J 6.8 Hz, -CH3); δ31P (CDCl3): 153.6 (C-1), 147.4 (C-3), 146.2 (C-4), 146.1 (C-5), 126.9 (C-9), 125.3 (C-9), 125.1 (C-7), 124.9 (C-9), 124.6 (C-12), 124.5 (C-12), 115.2 (C-8), 112.8 (C-12), 108.2 (C-2), 108.2 (C-6), 26.5 (d, J 9 Hz, P-O-CH2-CH3), 59.7 (Ar-OCH3), 53.6 (-P-CH2) and 16.2 ppm (d, J 6.5 Hz, P-O-CH2-CH3); δ31P (KBr): 21.17 ppm; ν31P (KBr): 3510 (-OH), 3340 (-OH), 3125 (-NH), 1270 (P=O), and 750 cm–1 (P-Caliphatic). m/z (LCMS): 487 (M+); 1H-13C (2D-COSY): found: C, 52.51, H, 4.69; N, 2.95 %.

3.3.4. Diethyl (4-hydroxy-3-methoxynaphthalen-1-ylamino)methylphosphonate (4d)

Yield 81 %; solid, m.p. 142–144 °C. R. 0.6. δ8 (400 MHz, CDCl3): 9.88 (1H, s, -OH), 9.69 (1H, s, -OH), 7.52–6.61 (9H, m, Ar-H), 5.70 (1H, t, J 10.2 Hz, -NH), 5.02 (1H, dd, J 12.15,18 Hz, -P-CH), 4.08–3.95 (4H, m, -OCH3), 3.72 (3H, s, -OCH3), 1.54–1.28 (8H, m, -CH2-CH2-), 1.35 ppm (d, J 8.5 Hz, P-O-CH2-CH2-CH2-CH3), δ31P (CDCl3): 154.6 (C-1), 153.7 (C-3), 147.5 (C-5), 147.4 (C-6), 146.1 (C-1), 132.9 (C-9), 132.7 (C-7), 127.2 (C-10, 126.1 (C-6), 122.6 (C-5), 115.5 (C-4), 115.3 (C-2), 114.8 (C-6), 114.6 (C-2), 60.41 (d, J 8.5 Hz, P-O-CH2-CH2-CH2-CH3), 57.7 (-P-CH2), 54.7 (Ar-OCH3) 30.2 (d, J 14 Hz, P-O-CH2-CH2-CH2-CH3), 18.6 (d, J 10.6 Hz, P-O-CH2-CH2-CH2-CH3) and 13.5 ppm (d, J 8 Hz, P-O-CH2-CH2-CH2-CH3); δ31P (KBr): 23.10 ppm; ν31P (KBr): 3503 (-OH), 3364 (-OH), 3100 (-NH), 1235 (P=O) and 729 cm–1 (P-Caliphatic). m/z (LCMS): 487 (M+); 1H-13C (2D-COSY): found: C, 52.51, H, 4.69; N, 2.95 %.

Table 1 Antimicrobial activity of compounds 4a–j.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Antibacterial activity</th>
<th>Antifungal activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Escherichia coli 100 µg disc−1</td>
<td>Pseudomonas aeruginosa 100 µg disc−1</td>
</tr>
<tr>
<td>4a</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>4b</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4c</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4d</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>4e</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>4f</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>4g</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4h</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>4i</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4j</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nystatin</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
3.3.6. Diethyl (5-hydroxynaphthalen-1-ylamino)(3-nitrophenyl)methylphosphonate (4f)

Yield 79%; solid, m.p. 140–142 °C. R 0.47. δ (400 MHz, CDCl₃): 10.10 (1H, s, -OH), 7.76–6.64 (10H, m, Ar-H), 6.21 (1H, t, J 8 Hz, -NH), 5.16 (1H, dd, J 12, 14 Hz, -P-CH), 4.91–3.98 (4H, m, -OCH₂) and 1.89 ppm (6H, t, J 11 Hz, -CH₃); δ (CDCl₃): 19.95 ppm; ν max (KBr): 3433 (O-H), 3162 (N-H), 1274 (P=O) and 769 cm⁻¹ (P-Caliphatic); m/z (LCMS): 487 (M+H); Calc. for C₂₁H₂₄N₅O₅: C, 62.80; H, 5.98; N, 3.48 %; found: C, 62.79; H, 5.94; N, 3.49 %.

3.3.7. Diethyl (2,4-dichlorophenyl)(5-hydroxynaphthalen-1-ylamino)methylphosphonate (4g)

Yield 77%; solid, m.p. 150–151 °C. R 0.65. δ (400 MHz, CDCl₃): 9.93 (1H, s, -OH), 7.68–6.73 (9H, m, Ar-H), 5.68 (1H, t, J 7.6 Hz, -NH), 5.42 (1H, dd, J 8.0, 10.0 Hz, -P-CH), 4.28–4.09 (4H, m, -OCH₂) and 1.20 ppm (6H, t, J 6 Hz, -CH₃); δ (CDCl₃): 18.59 ppm; ν max (KBr): 3398 (-OH), 3162 (-NH), 1214 (P=O) and 732 cm⁻¹ (P-Caliphatic); Calc. for C₂₅H₃₂N₅O₅: C, 65.59; H, 6.99; N, 5.80 %.

3.3.8. Diethyl (2,4-dichlorophenyl)(5-hydroxynaphthalen-1-ylamino)methylphosphonate (4h)

Yield 77%; solid, m.p. 150–158 °C. R 0.65. δ (400 MHz, CDCl₃): 9.89 (1H, s, -OH), 7.71–7.09 (9H, m, Ar-H), 5.68 (1H, t, J 7.6 Hz, -NH), 5.42 (1H, dd, J 8.12 Hz, -P-CH), 4.11–3.93 (4H, m, O-CH₃), 1.69–1.41 (8H, m, -CH₂-) and 0.91 ppm (6H, t, J 8 Hz, -CH₃); δ (DMSO-d₆): 19.12 ppm; ν max (KBr): 3433 (O-H), 3162 (N-H), 1261 (P=O) and 760 cm⁻¹ (P-Caliphatic); Calc. for C₂₅H₃₁N₂P₂O₆: C, 58.79; H, 5.87; N, 5.76 %; found: C, 58.65; H, 5.78; N, 5.80 %.

3.3.9. Diethyl (5-hydroxynaphthalen-1-ylamino)(4-hydroxyphenyl)methylphosphonate (4i)

Yield 76%; solid, m.p. 150–151 °C. R 0.52. δ (400 MHz, DMSO-d₆): 10.31 (1H, s, -OH), 9.79 (1H, s, -OH), 7.77–6.92 (10H, m, Ar-H), 6.10 (1H, t, J 10 Hz, -NH), 5.08 (1H, dd, J 8.5, 13.0 Hz, -P-CH), 4.01–3.89 (4H, m, -OCH₂) and 1.19 ppm (6H, t, J 11 Hz, -CH₃); δ (DMSO-d₆): 19.95 ppm; ν max (KBr): 3366 (-OH), 3355 (-OH), 3310 (N-H), 1216 (P=O) and 732 cm⁻¹ (P-Caliphatic); Calc. for C₂₅H₂₅N₂O₅P: C, 62.80; H, 5.98; N, 3.48 %; found: C, 62.79; H, 5.94; N, 3.49 %.

3.3.10. Diethyl (5-hydroxynaphthalen-1-ylamino)(4-hydroxyphenyl)methylphosphonate (4j)

Yield 78%; solid, m.p. 148–150 °C. R 0.47. δ (400 MHz, DMSO-d₆): 10.21 (1H, s, -OH), 9.79 (1H, s, -OH), 7.76–6.64 (10H, m, Ar-H), 6.21 (1H, t, J 8 Hz, -NH), 5.16 (1H, dd, J 12, 14 Hz, -P-CH), 4.91–3.98 (4H, m, -OCH₂) and 1.89 ppm (6H, t, J 11 Hz, -CH₃) and 0.90 ppm (6H, t, J 10.5 Hz, -CH₃); δ (DMSO-d₆): 19.75 ppm; ν max (KBr): 3335 (-OH), 3261 (-OH), 3200 (-N-H), 1214 (P=O) and 768 cm⁻¹ (P-Caliphatic); Calc. for C₂₅H₂₅N₂O₅P: C, 65.59; H, 6.99; N, 3.06 %; found: C, 65.51; H, 6.95; N, 3.12 %.