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Abstract 

The objective of the study was to determine, through deep learning, the predictability of milk 

yield from a cow's side-view, rear-view image, or a combination of the two. The data size of 1 238 image 

pairs (the side-view and rear-view images) from 743 Holstein cows in their first or second parity, and 

their corresponding first-lactation, 305-day milk yield values were used to train and test Deep Learning 

models. The data were first split into the training and testing data at a ratio of 80:20, respectively. The 

training data were augmented four times, then again divided into training and validation data at the ratio 

of 4:1, respectively. Three principal analyses were done, the prediction of milk yield using rear-view 

images, using side-view images, and using a merge of the side-view and rear-view images. In all three 

analyses, poor predictions were observed, i.e., R2 values ranging from 0.30 to 0.38, the mean absolute 

error ranging from 1112.9 kgs to 1148.3 kgs, the root mean square error values ranging from 1401.2 

kg to 1480.5 kg, and the mean absolute error percentages ranging from 17.0 to 17.6%. Hypothesis 

tests were done to check whether there was any difference between these three prediction models. 

There was no significant difference in performance between the prediction models. It was concluded 

that predicting the 305-day milk yield of Holstein cows using either view had the same level of accuracy, 

and no additional benefits were derived from using both the rear and side views. 

Keywords: combined-view images; computer vision; Holstein cows; linear conformation traits; rear-

view images; side-view images; 305-day milk yield  
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Introduction 

Dairy production plays a critical role in employment creation and food security. In South Africa, 

the dairy industry is the fifth largest agricultural sector and one of the highest employment creation 

sectors (Ogundeji et al., 2021). As an effect of COVID-19, dairy production costs have sharply increased 

over the two years, primarily due to maize and soya prices (FAO, 2021; Milk Producers Organization, 

2020). Based on the FAO (2020) report, South Africa's milk production dropped by ~5% in 2019 (FAO, 

2021). This has resulted in job losses and the need to cull low-producing cows to have a smaller herd 

of high-producing cows.  

Now more than ever, dairy farmers desire to predict each cow's milk yield, especially when they 

are still heifers. Such predictions aid farmers in making better cow replacement and culling decisions, 
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feeding information, mating decisions, financial planning, and detecting deviating yield patterns that 

may indicate mastitis. Farmers, however, cannot use techniques such as genomic selection, with higher 

prediction accuracy, on all the animals in the herd because of expense and availability of the service at 

national level. Farmers often resort to using linear-type traits correlated with milk yield to make milk 

yield predictions albeit laborious, time-consuming, and requiring some level of expertise. Linear type 

traits (LTT) or conformation traits are objective descriptions of an animal's body, udder, and leg 

conformation (Harris, 2015). The weighting of traits in the selection indices when using linear-type traits 

is dependent on the literature used, as it varies widely. The question then is, can computer vision deep 

learning be deployed as a prediction tool for milk yield using linear type traits? Deep learning allows the 

machine to compute and assign necessary weights to the traits for prediction, making the prediction 

analysis easier and less laborious. 

Deep learning is a machine learning method based on artificial neural networks (ANN) with 

representation learning (Hordri et al., 2017). Representation learning is when the machine is supplied 

with data, and it learns the representation by itself. Convolutional neural networks (CNN) used in deep 

learning allow the use of visual data for prediction; this is called computer vision deep learning. A 

convolutional neural network is a subcategory of an ANN composed of numerous building blocks, such 

as convolution layers, pooling layers, and fully-connected layers (Patil & Rane, 2021). Convolutional 

neural networks can automatically extract features on an image, learn to associate each feature with 

another, and the whole image can be used to assign outputs and make predictions. 

Various linear type traits are correlated with milk yield (MY), e.g., angularity (ANG), rump width 

(RW), and most udder traits (Campos et al., 2015; Harris, 2015; Khan & Khan, 2016). Since these traits 

can be seen earlier in a cow's life, they are often used to predict milk yield and quality. The variability in 

the results of these correlations is liberal. For example, Campos et al. (2015) found a phenotypic 

correlation of 0.19 between rear udder width and milk yield, whereas Khan & Khan (2016) found the 

correlation between milk yield and rear udder width to be 0.54. Such variability can be bewildering in 

making predictions, especially when establishing trait weights in selection indices. Khan & Khan (2016) 

imputed the variations to differences in visual judgment. Therefore, it is important to consider using 

computer vision deep learning as a predictive tool as the prediction analysis will be automated and 

standardized such that biases due to differences in human judgement will be minimized. 

Linear-type traits are visible and can be seen earlier in a cow's life, making them salient 

indicators of production traits with which they are correlated. The side and rear views of cows can 

provide images of the udder, rump, and angularity. Unlike other prediction methods such as genomic 

selection, taking images does not require special skills or expert knowledge. The images can easily be 

taken using a cellphone, making milk yield prediction easy and convenient.  

The use of computer vision deep learning to predict milk yield is currently low, although it has a 

huge potential to be used (Ozkaya, 2015). The major challenge with using computer vision deep 

learning for predicting milk yield is that it does not directly report the specific features used to make 

predictions and the weights assigned to each feature. There may be a need for feature silencing to get 

more specified information on the actual traits used for prediction and their contribution to the prediction 

process. Capturing all the features necessary for milk predictions in one picture may be challenging.  

 The broad objective of the study was to determine, through deep learning, the predictability of 

milk yield from a cow's image data. The specific objectives were to: 

1. Determine the predictability of 305-day milk yield using a cow's rear-view image  

2. Determine the predictability of 305-day milk yield using a cow's side-view image 

3. Determine the predictability of 305-day milk yield using a combination of a cow's side-view 

and rear-view image 
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Materials and Methods 

All the cows used for this research were reared under a pasture-based system. They were all 

milked twice a day. The first milking commenced either at 0300h or 0400h and the last milking either at 

1400h or 1500h, depending on the farm. 

There is no rule of thumb on the minimum required sample size, especially when dealing with 

continuous variables for Deep Learning. Many factors influence this decision, e.g., complexity of the 

algorithm or the complexity of the problem (Blatchford et al., 2021). For this research, a data size of 2 

476 images were used (both side-view and rear-view): 1 238 images for each image view. Three 

hundred sixty image pairs were from farm A, 260 pairs were from farm B, 394 pairs were from farm G, 

and 224 pairs were from farm M. Some of the photos were of the same cow but viewed differently; 

therefore, all the pictures were different. The actual number of cows used in the analysis was 743: 228 

from farm A, 151 from farm B, 241 from farm G, and 123 from farm M. Table 1 summarises the number 

of cows and the number of images used from each farm.  

Table 1 Description of data: the number of cows and the number of images from each farm 

Farm number of cows number of images for each image view 

A 228 360 

B 151 260 

G 241 394 

M 123 224 

Total 743 1 238 

The data consisted of cows' rear-view images, side-view images, and the cows' corresponding 

305-day milk yield values from the first lactation. The pictures taken were of cows within their first or 

second lactation. These were the cows born between 2017, 2018, and early 2019. Milk yield data was 

prospective for cows within their first lactation, yet retrospective for cows within their second lactation. 

Milk yield prediction is pertinent earlier in a cow's life, hence the use of first lactation milk yield. Photos 

were from cows with body condition scores (BCS) of 3.25–3.75. The BCS range was selected to filter 

out the most malnourished, over-conditioned, and diseased cows. The images were taken from cows 

in various days-in-milk, irrespective of the lactation stage. Image capturing was done between 07:00 

and 18:00. This means that the images included cows in different phases with respect to hours before 

or after milking. This was done to randomize the fullness of the udder with milk as it differs widely on 

one cow in a day depending on whether it has been milked. 

The desired rear-view features were rump width and rear udder depth, height, and width. From 

the side-view, the desired features were angularity and udder depth. The cow images were taken as 

the cows were in the pastures. This was because there was minimal interference from the farm 

operations when the cows were in the fields, and the cows were more relaxed, making it easier to take 

pictures. The distance between the photographer and the cow varied from one picture to another. This 

was done to create a model that works regardless of the cow’s distance from the photographer. Since 

the images were not captured in the chronology of the cow IDs, cow IDs were written down in the order 

of photo capturing. At least two images in every ten images taken showed the cow’s ID to make sure 

the order in the book was synchronised with the order of the images. 

Data pre-processing involved image renaming, image editing, elimination of images of cows 

that were out of range, the preparation of CSV files with image names and their corresponding milk 

yield values and finally, augmentation of only the training and validation images. The first step was to 

rename the images from the autogenerated image name to the identity of the cow in the picture. Since 
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each cow had a side-view and rear-view image, each image name contained either an S for side-view 

or an R for rear-view at the end of the ID. A letter was put at the beginning of the ID to delineate images 

from different farms. For example, image G18123S would be a side-view image (signified by S) of the 

cow 18123 from Glen-herd farm (denoted by G). Some cows had more than one image for the same 

view. The iterations would be denoted by "(X)" after the image name: where X is the iteration number. 

For example, "G18123S (2)" would be the second side-view image of the cow 18123 from Glen-herd.  

Some images contained more than one cow, which could interfere with the prediction analysis. 

Cows appearing in the background were shaded out, leaving just one cow in each image. The edited 

images from all four farms were then put into one computer folder. The names of each image were then 

extracted and put on a CSV spreadsheet. The spreadsheet contained three columns, one for the side 

view images, another for the rear-view images, and the last one for the 305-day milk yield records for 

each cow.  

Twenty percent of the data were randomly extracted and pasted onto a separate CSV 

spreadsheet from the initial CSV file to make the testing data. The initial CSV file remained with 80% of 

the data, constituting the training and validation (TV) data. The TV images were augmented using the 

training and validation CSV information to generate more samples for analysis and reduce overfitting. 

It is salient to note that the testing data, different from the validation data, was not augmented. This was 

so that none of the permutated images from the TV samples reappeared in the test data, resulting in 

the model falsely performing well during model testing. However, an analysis was done where all the 

data was augmented, then the test data, constituting 20% of all the data created, was randomly drawn. 

Data augmentation is the artificial generation of extra training data from the available ones 

(O’Mahony et al., 2020), thereby increasing the generalization ability of the model and reducing 

overfitting. There are various augmentation types, i.e., flipping, stretching, rotation, scaling, shearing, 

padding, cropping, and adding Gaussian noises. Not all augmentation types are best for every case. 

For example, this study deals with measurement traits, and augmentation techniques that distort image 

proportions or shapes, e.g. shear and stretching, reduce the data quality and prediction accuracy. The 

augmentation methods included in this study were random noise, 25-degree random rotation either to 

the left or the right and a horizontal flip. Figure 1 show illustrations of the three augmentation types used 

in this study. 

 
Figure 1 Images illustrating the augmentation methods used: b. flipping, d. rotating and c. noise 



 
51 Jembere et al., 2024. S. Afr. J. Anim. Sci. vol. 54 

 
 

 

  

 

Four random selections from these three augmentation methods were used for each picture. 

This means that one of the three augmentation methods was reused. However, it did not produce the 

same image as one out of the four augmented images would be a combination of two augmentations. 

For each original image used, there were five permutations, i.e., the original image plus four augmented 

images.  

The images that were created after image augmentation had unique identifiers. Firstly, they all 

had an underscore at the beginning of the image name to sequentially separate them from the 

unaugmented images. Since there were four augmentations, each augmented image had an aug_1 to 

aug_4 written at the end of the actual image name. For example, the second augmentation of the image 

G18123R had the image name “_G18123R_aug_2”. 

The augmented file names and their corresponding milk yields were then annexed to the rows 

on the TV CSV spreadsheet. The spreadsheet now contained both the TV augmented data and TV 

unaugmented data. The validation data was a randomly selected 20% of the TV sample after 

augmentation. Random splitting of the validation data from the training data was put on the model 

command after importing the TV CSV file into the model. Therefore, two CSV files were imported into 

each model but there were three data splits; training, validation, and testing data. All the split ratios 

used in this research were based on a recommendation by Majurski (2019). 

Data analyses was divided into hyperparameter optimisation and the actual tests using the 

optimal parameters. Hyperparameter optimisation is the process of establishing a set of optimal 

hyperparameters for a learning algorithm in machine learning. A hyperparameter is a parameter whose 

value regulates the learning process. The grid search hyperparameter tuning method was used to 

establish the optimum parameters for each model. The following parameters were examined, the best 

learning rate, whether to use a learning rate decay, whether to use dropouts, and the optimum number 

of epochs. Due to lower Central Processing Unit memory, the batch size could not be raised above 32. 

Therefore, the batch size for all the trials was kept at 32.  

Batch size is the number of needed samples before the model is updated during model training. 

Batch size’s significant impact is on training time and not on performance (Kandel & Castelli, 2020). 

The larger the batch size, the faster the computation. A learning rate decay/schedule is a predefined 

structure that regulates the learning rate between epochs or iterations as the learning progresses. The 

number of epochs is the number of complete passes on all the training data. Dropout is when some 

features on the image are randomly left out during model training.  

Hyperparameter optimisation and the actual tests were done for three models: prediction of 

milk yield using rear-view only; MY prediction using side-view images only, and milk yield prediction 

using both side-view and rear-view images. All the analyses were carried out using the Xception pre-

trained deep learning network (Chollet, 2017). A pre-trained network is a saved network that, previously, 

was trained on a large-scale task with a large data set. These networks are used for novel tasks through 

transfer learning, a process where some layers on the network are altered to suit a specific task but 

keeping the integrity of the network. For example, in this study, the loss function for the Xception network 

was changed to mean absolute error because the network was being used for a regression task. Due 

to inadequate graphics processing unit (GPU) space, the models were trained on a Central Processing 

Unit (CPU) allocator.  

The images and their corresponding milk yield values were called onto the model through the 

CSV files. The model using the rear-view images used only two columns from the CSV files, the milk 

yield column and the rear-view image name column, the model using the side-view images used only 

the milk yield and the side-view columns, and the model using a combination of the two image views 

used all three columns on the CSV spreadsheet. 
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The best number of epochs was 35 for the side-view, 38 for the rear-view and 50 for the 

combined-view. For all the pieces of training, no dropouts were included, and the Adam optimizer was 

used. An optimizer is an algorithm or method used to change the attributes, such as the weights 

assigned to image features, of a deep learning model in order to reduce the losses. The Adam optimizer 

is the best optimizer for image processing problems. A learning rate schedule was used for the rear-

view only, with the initial learning rate being 0.0006 for all training. The side-view and the integrated 

view had no learning rate decay, and their learning rates were 0.0005 and 0.0006, respectively. Table 

2 shows the optimum parameters used for the side, the rear images, and a combination of the two.  

Table 2 Optimum hyperparameters for the side-view, the rear-view, and the combined-view 

Hyperparameter Side-view analysis Rear-view analysis Combined-view analysis 

Optimizer Adam Adam Adam 

Initial learning rate 0.0005 0.0006 0.0006 

Learning rate scheduler No Yes No 

Batch size 32 32 32 

The final epochs number 35 38 50 

Drop out No No No 

The Root Mean Square Error (RMSE), mean absolute error (MAE), and coefficient of 

determination (R2) values were used to evaluate and update trait weights. The same statistical tools, 

plus the root mean square error (RMSE) and the mean absolute percentage error (MAPE), were used 

to report the research findings from the testing data. Of these measures, a good predictive model should 

have a value close to 0 for RMSE, MAE, and MAPE and a value close to 1 for the R2. For the R2 values, 

the cut-off points were: 0.00–0.10 = negligible correlation; 0.10–0.39 = weak correlation; 0.40–0.69 = 

moderate correlation; 0.70–0.89 = strong correlation, and 0.90–1.00 = very strong correlation (Schober 

& Schwarte, 2018). The following are the equations for each of these evaluation techniques: 

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑ (𝒚𝒊 − �̂�𝒊)𝟐𝒏

𝒊=𝟏     𝑴𝑨𝑬 =
𝟏

𝒏
∑ |𝒚𝒊 − �̂�𝒊|𝒏

𝒊=𝟏  

where, for the ith record: 

y = observed value 

�̂� = predicted value 

N =total number of data points 

𝑹𝟐 = 𝟏 −
𝑺𝑺𝒓𝒆𝒔

𝑺𝑺𝒕𝒐𝒕
 

where the sum of squared residual has the following formula: 

𝑺𝑺𝒓𝒆𝒔 = ∑(𝒚𝒊 − 𝒚�̂�)𝟐

𝒊

= ∑ 𝒆𝒊
𝟐

𝒊

 

and the sum of squared total has the following formula: 

𝑺𝑺𝒕𝒐𝒕 = ∑(𝒚𝒊 − �̅�)𝟐

𝒊

 

For the ith value of the SSres and SStot: 

y = observed values 

�̂� = predicted value 

𝐞 𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥𝐬 = 𝐲𝐢 − 𝐲�̂� 

�̅� = mean of the observed data: 
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Results and discussion 

Table 3 shows the training, validation, and testing results for the side, rear and combined view 

models trained at their optimum parameters. The side-view model had a root mean square errors of 

146.1 kg, 625.8 kg, and 1460.7 kg for the model training, validation, and testing, respectively. The mean 

absolute error was 111.1 kg for the model training, 364.1 kilograms for the validation, and 1146.4 kg for 

the testing. For the side-view model training, validation, and testing, the R2 values were 0.99, 0.89, and 

0.32, respectively. The mean absolute percentage error was 0.18%.  

The root mean square errors for the training, validation and testing were 177.1, 615.9 and 

1480.5, respectively. The mean absolute errors were 134.6 kg for the model training, 373.6 for the 

validation, and 1149.3 for the testing. The R2 was as high as 0.99 for the model training and 0.90 for 

the validation, then drastically dropped to 0.30 for the testing. The mean absolute percentage error was 

only measured for the test data and was 0.17%. 

The combined-view model had an RMSE, MAE, and R2 of 134.7, 109.5, and 1.00, respectively, 

for the training. For the model validation, the RMSE, MAE, and R2 were 496.0, 312.9 and 0.93, 

respectively. The test data had RMSE, MAE, MAPE, and R2 values of 1401.2, 1112.9, 0.17 and 0.38, 

respectively. 

Table 3 Training, validation, and testing results for the side, rear and the combined view model trained 

at their optimum parameters 
 

Train 
  

Validation 
 

Testing 
   

 
RMSE MAE R2 RMSE MAE R2 RMSE MAE MAPE R2 

Side-view  146,1 111,1 0,994 625,8 364,1 0,893 1460,7 1146,4 0,18 0,32 

Rear-view 177,1 134,6 0,992 615,9 373,6 0,897 1480,5 1148,3 0,17 0,302 

Combined 

view 

134,7 109,5 0,995 496 312,9 0,933 1401,2 1112,9 0,17 0,375 

RMSE = Root mean square error, MAE = Mean absolute error, and R2 = coefficient of determination 

Three hypotheses were then tested, i.e., milk yield prediction is the same when using either the 

side-view or the rear-view images of cows, milk yield prediction is the same when using either the 

combined-view or only the rear-view images of cows, and milk yield prediction is the same when using 

either the combined-view or only the side-view images of cows. The two-tailed, paired t-test was used 

at a 95% significance level for all the tests. Table 4 shows the mean, variance, and the number of 

observations for the side, rear and combined view test data used for the t-test. The mean difference 

between the observed and predicted values was 1146.4 for the side-view, 1148.3 for the rear-view and 

1168.2 for the combined view. Table 5 shows the comparison between the side and the rear-view 

model, side and combined view model, and rear and combined view model. There was no difference in 

performance between all the models compared in table 5 (P >0.05).  

Table 4 Mean differences, variances, and number of observations for the side, rear and combined view 

analysis 

  Side-view Rear-view Combined-view 

Mean difference 1146,4 1148,3 1168,2 

Variance 823121,6 876889,9 904968,7 

Observations 237 237 237 
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Table 5 Two-tailed, paired t-tests between the side, rear, and the combined model 

  Side vs rear view Side vs combined view Rear vs combined view 

Pearson Correlation 0,659 0,720 0,665 

Hypothesized Mean Difference 0 0 0 

DF 236 236 236 

t Stat -0,039 -0,482 -0,396 

P (T ≤ t) two-tail 0,969 0,630 0,693 

t Critical two-tail 1,970 1,970 1,970 

DF = degrees of freedom 

Tests were done to establish the effect of splitting the test data after augmentation. All the other 

parameters used in training and validating the models and the data split ratios were the same as in the 

tests where the test data was split before augmentation. The results of splitting the testing data after 

augmentation are shown in Table 6. For the rear-view, the model had an RMSE of 842.6 kg, an MAE 

of 525.1 kg, an MAPE of 0.08 and an R2 of 0.82 on the test data. The RMSE, MAE, MAPE and R2 were 

778.6, 492.6, 0.07 and 0.84, respectively, for the side-view model. For the combined-view model, the 

values were 821.3, 547.1, 0.09 and 0.82 for the RMSE, MAE, MAPE, and R2, respectively. 

Table 6 Test results for the rear-view, side-view and combined-view model where the test data was 

split after augmentation 

 
RMSE MAE MAPE R2 

side view  778,563 492,585 0,072 0,842 

rear-view  842,586 525,116 0,077 0,815 

combined view 821,348 547,121 0,086 0,824 

RMSE= Root mean square error, MAE= Mean absolute error and R2= coefficient of determination. 

Figure 2 shows scatter plots from the models where the test data was only split after 

augmentation and Figure 3 shows models where the test set was split before augmentation. The y-axis 

represents actual milk yield values and is colour-coded from light blue to purple. Light blue dots indicate 

cows with the lowest milk yield, and purple dots indicate cows with the highest milk yield. The x-axis 

shows the predicted milk yield.  

 
The performance of the established model for the prediction of milk yield from the cows' rear-

view images drastically dropped on the testing data compared to the validation. The drop in 

performance was most likely due to validation done on the augmented data. This drastically escalates 

the validation results, albeit making the model invariant to image rotations, colour changes or where the 

cow is facing in the image. 

 
Ozkaya (2015) predicted milk yield using rear udder images and reported a coefficient of 

determination of 0.66. The differences in performance from Ozkaya's study can be attributed to the non-

standardization of factors such as the milking time, cow's standing posture, camera pixel resolution, 

illumination conditions, camera location and settings, and distance from the cows in this study. The aim 

of not standardizing these factors was to create a model that was invariant to changes in factors such 

as how full the udder is with milk, the cow's standing posture, camera resolution, illumination in the 

environment, and distance of the cow from the camera. This, however, came at a cost, i.e., reduction 

in performance. 
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Figure 2 Scatter plots of the predicted vs the actual milk yield values from the rear (a), side (b) and 

combined view (c) models where the test data was split after augmentation 

 

Figure 3 Scatter plots of the predicted vs the actual milk yield values from the rear (a), side (b) and the 

combined view (c) models where the test data was split before augmentation  
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Ozkaya's analysis process was more supervised compared to this study. In the current study, 

the features extracted from the image and the trait weights were unknown. This suggests that some 

level of supervised learning may be necessary to give better predictions of milk yield from image data 

with the same data size. 

The rear-view model was also lower than other models that used linear type traits to predict 

milk yield, such as the ones used by Yakubu (2011) with an R2 of 0.69 when all conformation traits 

evaluated were considered and Gocheva-ilieva & Yordanova (2022) with an R2 ranging from 0.93 to 

0.95 when all assessed traits were considered. These studies used a wider range of linear type traits 

and not just traits seen from the posterior of the cow. Gocheva-Ilieva & Yordanova (2022) considered 

other factors that were not conformation traits, i.e. lameness, the farm, and locomotion (Gocheva-Ilieva 

& Yordanova, 2022) which, in turn, improved the performance of the regression. Yakubu (2011) used 

heart girth, fore right teat length, fore left teat length, rear right teat length, rear left teat length, udder 

circumference and udder height, and Gocheva-Ilieva & Yordanova (2022) used stature, chest width, 

rump width, rear legs (rear-view), rear leg set (side-view), hock development, bone structure, foot angle, 

foot depth, and udder width to predict milk yield. Therefore, there is a need to incorporate more 

conformation traits in the study, not just those viewed from the posterior.  

The accuracy of milk yield prediction from traits viewed from the side of a cow discovered in 

this research was generally low. As much as various research points out the correlation between some 

traits seen from the side of a cow, such as angularity and stature, there are few pieces of research, if 

any, addressing the predictability of milk yield based only on these traits. The poor performance can be 

imputed to either the absence of traits that adequately explain milk yield variability or the method of 

prediction used (computer vision deep learning) and the training data size. Again, there was a drop in 

performance from validation to testing which resulted from the validation being done on data containing 

augmented images and the model testing done on real, unaugmented images. 

Even though using both the side-view and the rear-view images to make MY predictions was 

expected to improve the prediction performance due to more conformation traits being considered, this 

did not confer substantial improvement in performance. The insignificant performance improvement 

after considering all traits is likely due to correlations between the side-view and the rear-view traits. 

This means that the poor performance when only one image view was considered was not because of 

inadequate traits to explain variability in milk yield. The only commendable explanation for the poor 

performance is that, currently, computer vision deep learning gives poor milk yield prediction.  

The applicability of this method of milk yield prediction is not limited to Holstein cows only. It 

extends to other dairy breeds such as Jersey, Ayrshire, Guernsey, Brown Swiss, and Shorthorn. Deep 

learning models specific to these breeds can be made. 

There was no difference in performance between the side-view and the rear-view model (p 

>0.05). This means the weight of side-view traits as gestalt in explaining variability in MY is the same 

as the rear-view traits weight. In other words, the side-view image is as essential as the rear-view in 

explaining variability in milk yield.  

When the test data was split after augmentation, the models performed exceptionally better 

than the one where the test data was split before augmentation. The better performance was because 

the model's test cases were not entirely new. Even though data augmentation improves learning by 

artificially increasing the sample size and training the model to be invariant to changes such as rotation, 

colour, and the direction the cow is facing on the image, it cannot be used for the testing data as some 

of the images are not entirely novel for the model. 

 
For all analyses, predictions were poorer for very high-producing cows, i.e. MY > 10000 kg 

(refer to the scatter plots). This could have been because of a limited number of cows within this range 

for proper model learning or because there is little trait difference between high-producing and very 

high-producing cows. Other factors besides linear conformation traits may be impelling a cow to move 
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from high milk production to very high milk production. These could be factors such as management, 

feed quality and availability and other genetic factors, such as feed conversion efficiency.  

Conclusions 

Predicting the 305-day milk yield of Holstein cows using either the side or the rear-view has the 

same level of accuracy. No additional benefits are derived from using a combination of the rear and the 

side view images. The predictions are, however, weak for all image views, i.e., the rear-view, the side-

view, and a combination of the rear-view and the side-view. The 305-day milk yield prediction was 

poorer for cows producing milk above ten thousand kilograms. It is recommended that certain aspects 

of the images be standardized to maximize prediction performance through image data, i.e. cow 

distance from the camera, cow postures, udder fullness and environmental illumination. This, however, 

will narrow down the types of images from which milk yield prediction can be made.  
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