

Effect of additives on the post-thaw quality of Aksaray Malaklı dog semen

C. Öztürk^{1#} & Ş. Güngör²

¹Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Aksaray University, Aksaray, Turkey

²Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey

(Submitted 17 December 2020; Accepted 14 February 2022; Published 15 April 2022)

Copyright resides with the authors in terms of the Creative Commons Attribution 4.0 South African Licence.

See: <http://creativecommons.org/licenses/by/4.0/za>

Condition of use: The user may copy, distribute, transmit and adapt the work, but must recognise the authors and the South African Journal of Animal Science.

Abstract

The goal of this study was to determine effects of trehalose (T) and Trolox (TX) additives on post-thaw viability of canine sperm after freezing. The sperm-rich portions of ejaculates obtained from 15 dogs were divided into three aliquots, which were diluted with Tris-based extender (TBE) (control), TBE + T (25 mM), and TBE + TX (1 mM) and put into straws. The samples were equilibrated at 4 °C for 1.5 hours, then frozen in liquid nitrogen vapour for 15 minutes and plunged into liquid nitrogen. Plasma membrane and acrosome integrity (PMAI) and high mitochondrial membrane potential (HMMP) were evaluated after thawing the straws in a water bath at 37 °C for 30 seconds. Motility, percentage of live spermatozoa, and hypo-osmotic swelling (HOS) were determined using phase-contrast microscopy. Motility (53.00 ± 6.46%), percentage of live spermatozoa (62.97% ± 6.84%), and HOS (40.40 ± 7.11%) of T were significantly higher ($P < 0.05$) than the control (40.50 ± 4.76%, 50.63% ± 4.78%, and 30.47% ± 5.59%) and TX (40.50 ± 4.76%, 50.96 ± 5.84%, and 33.02% ± 8.77%) respectively. The PMAI and HMMP levels were higher ($P < 0.05$) in T (35.51 ± 8.72 and 24.36 ± 7.15%) than in the control (19.18 ± 3.49 and 12.04 ± 3.83%). The TX group (35.62 ± 8.21%) had significantly higher PMAI ($P < 0.05$) than the control (12.04 ± 3.83%). Thus, addition of T protected canine spermatozoa against cryogenic injury. Nonetheless, additional dose-response trials are recommended to determine the effects of Trolox on the quality of canine semen more accurately.

Keywords: acrosome integrity, cryoprotection, mitochondrial membrane potential, plasma membrane, trehalose, Trolox

#Corresponding author: canerozturkvt@gmail.com

Introduction

Semen cryopreservation is applied routinely in canine species. With the high demand for pure dog breeds, assisted reproduction techniques are used increasingly in dog species (Van den Berghe *et al.*, 2018). However, a dearth of studies on artificial insemination and sperm cryopreservation in dogs limits assisted breeding practices in dog species (Gobello & Corrada, 2003).

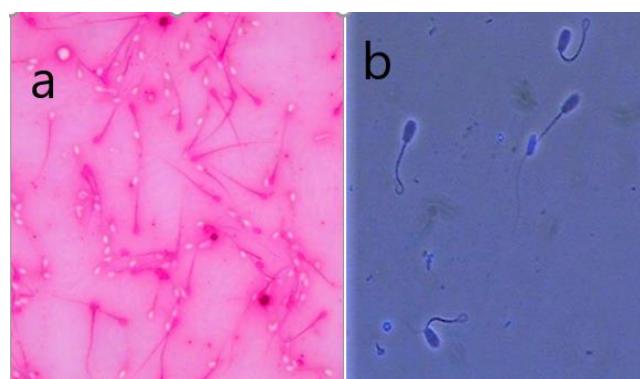
Sperm cells may be damaged by changes in osmotic pressure and intracellular ice formation during freezing, a condition referred to as 'cold shock injury', which occurs when living cells are cooled to 0 °C (Hagiwara *et al.*, 2009). The freezing process exerts a negative effect on sperm vitality, both physically and chemically, by damaging the sperm membrane. The free radicals formed during the freezing process lead to oxidative stress, which creates cold shock in the cells (Salvador *et al.*, 2006). Antioxidants can neutralize the free radicals, as demonstrated in several studies (Abadjieva *et al.*, 2020; Rostami *et al.*, 2020).

Sugars may cause membrane damage during freezing and thawing. On the other hand, they may interact with the phospholipids in the membrane and thus protect by increasing the surface area, preventing cell damage during thawing (Bucak & Tekin, 2007). Trehalose (T) is one of the most frequently used disaccharides, which is reported to protect the sperm cells from cryodamage by regulating the osmotic pressure during preservation (El-Badry *et al.*, 2017). Trehalose can balance the extracellular and intracellular osmotic pressures during freezing (Pan *et al.*, 2017). Sugars, including T, play an important role in maintaining sperm viability after thawing by serving as an energy source and reducing intracellular ice crystal formation (Zhang *et al.*, 2016). Trehalose has been demonstrated to exert a cryoprotectant effect

successfully during semen freezing when added to the sperm extender for freezing goat (Aboagla & Terada, 2003), ram (Gungor *et al.*, 2018), and dog (Yamashiro *et al.*, 2007) sperm.

Trolox (TX) (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) is the water-soluble analogue of vitamin E (Giulivi & Cadenas, 1993). Trolox is a cell-permeable and water-soluble antioxidant with protective properties against oxidative stress and apoptosis (Minaei *et al.*, 2012). Vitamin E is reported to decrease lipid peroxidation by neutralizing the lipid peroxide and alkoxyl radicals, which cause loss of both motility and membrane fluidity in spermatozoa (Agarwal *et al.*, 2003). In studies conducted on human sperm, TX was demonstrated to affect the spermatological parameters positively (Taylor *et al.*, 2009; Minaei *et al.*, 2012).

The present study aimed to investigate the effects of T and TX additives in Tris extender on the spermatological parameters of Aksaray Malaklı semen after the freezing–thawing process. Previous studies investigated the efficiency of TX in Rottweiler semen (Evangelista *et al.*, 2014) and the efficiency of the diluent containing T in the cryopreservation of Poodle sperm (Yamashiro *et al.*, 2007). However, studies on the freezing of Aksaray Malaklı semen are scarce. Therefore, in the present study, the spermatological parameters of Aksaray Malaklı semen were evaluated with fluorescence microscopy and flow cytometry.


Material and Methods

Ethical approval for the present study was obtained from the Ethics Committee of Mehmet Akif Ersoy University (2016/242). Fifteen fertile male Aksaray Malaklı dogs (age 2–3 years) were used to obtain the ejaculates for the experiments, which were collected in graded plastic tubes with digital manipulation (Kutzler, 2005) once a week for four weeks. These fractions were evaluated. The second fraction contained more than 70% subjective motility and above 250×10^6 spermatozoa/mL, which was rich in sperm. The sperm volume was determined with grade semen collection glasses.

All chemicals in the present study were purchased from AppliChem and Sigma Chemical Co. (St. Louis, Missouri, USA). Tris-based extender (TBE) (Tris 297.58 mM, citric acid 96.32 mM, and fructose 82.66 mM) was used as the main semen diluent. On the day of semen collection, 15% fresh egg yolk was added to TBE, followed by centrifugation at 6000 rpm for 15 min, removal of the supernatant, and addition of 6% glycerol to the precipitate. The mixed ejaculates were diluted separately with TBE (control), TBE + T (25 mM) (Gungor *et al.*, 2018), and TBE + TX (1 mM) (modified from Silva *et al.*, 2013) forming the three treatment groups, to reach a final concentration of 400×10^6 spermatozoa/mL. The samples were loaded into mini straws (0.25 mL) and equilibrated at 4 °C for 1.5 hours. After equilibration, the straws were frozen in nitrogen vapour (−100/−120 °C) for 15 min and then stored in liquid nitrogen. After at least three months' storage, the straws were thawed in a water bath at 37 °C for 30 seconds.

To determine semen motility, at least five microscopic fields were examined for each semen sample drop at 400x magnification under a phase-contrast microscope at 37 °C. The mean motility values were expressed as percentage motility. The concentration of the spermatozoa (in mL) was determined using the hemocytometric method (Akalin, 2015).

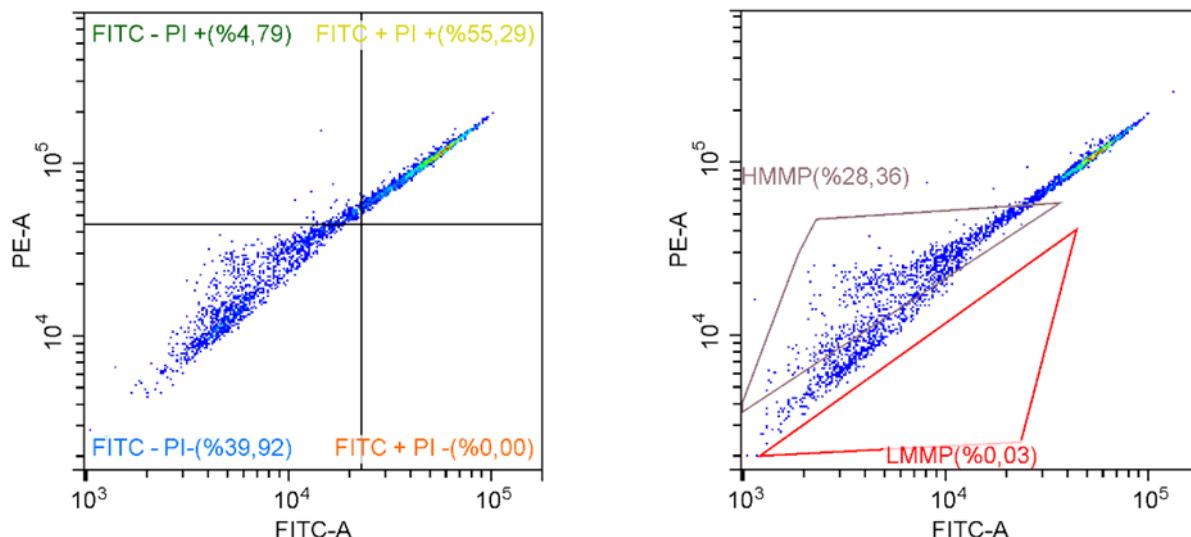

The viability of the spermatozoa was evaluated using Eosin-Nigrosin staining. One drop of Eosin dye and one drop of Nigrosin dye were added to the sperm sample on a slide. Three hundred spermatozoa were counted under a phase-contrast microscope at 400x magnification. Spermatozoa were characterized as live or dead based on whether their head did not (head appears white) or did absorb the stain (head appears pink) (Figure 1a). The results were expressed as percentage live ratio (Akalin, 2015).

Figure 1 Images of dog sperm typical of those used to measure viability (a) and hypo-osmotic swelling (b)

To each semen sample, 40 μ L was added to 400 μ L of the HOS-test solution [0.9 g fructose and 0.49 g trisodium citrate per 100 mL], followed by incubation at 37 °C for 30 min (Figure 1b). Three hundred spermatozoa were counted under a phase-contrast microscope at 400x magnification. The spermatozoa with intact membranes and twisted tails were recorded, and the results were expressed as percentage ratio (Kulaksız, 2009). The Cytoflex flow cytometer (Beckman Coulter) with a 50 mW laser output (488 nm laser beam) and 610 \pm 20 nm, 585 \pm 42 nm, and 525 \pm 40 nm emission filters was employed for the analyses, and about 10×10^3 events were gated.

The fluorescent isothiocyanate-conjugated peanut agglutinin (FITC-PNA)/propidium iodide (PI) probes were used for multi-parameter sperm analysis and PMAI evaluation. The sperm samples were thawed at 37 °C for 30 seconds, and a concentration of 5×10^6 sperm cells (10 μ L) diluted in 496 μ L of PBS was used for analysis. In a dark room, 5 μ L FITC/PNA and 3 μ L PI were mixed and then incubated at 37 °C for 30 min. All the PMAI analyses were performed with CytExpert 2.2 software (Inanc *et al.*, 2019). Sample results have been shown in Figure 2a. The JC-1 (5,5',6,6'-tetrachloro1,1'3,3'-tetramethyl benzimidazolyl-carbocyanine iodide)/PI molecular probes were used to determine HMMP. The sperm samples were thawed at 37 °C for 30 seconds, and a concentration of 5×10^6 sperm cells (10 μ L) diluted in 487 μ L of PBS was used for the analysis. In a dark room, 10 μ L of JC-1 and 3 μ L of PI were mixed and then incubated at 37 °C for 30 min. After the incubation, the same protocol was used as for PMAI evaluation, and the debris was gated out. The PMAI and HMMP evaluations were performed using CytExpert 2.2 software (Inanc *et al.*, 2019). Sample results for the PMAI and HMMP analysis are shown in Figure 2a and Figure 2b, respectively.

Figure 2 Flow cytometric examination of dog sperm stained with FITC-PNA/PI (a) and JC-1
a: FITC + PI - = plasma membrane intact with acrosome staining; FITC + PI + = plasma membrane damaged sperm with acrosome staining
b: HMMP = high mitochondrial membrane potential; LMMP = low mitochondrial membrane

The data obtained from the analyses were examined for normality with the Shapiro-Wilks and Kurtosis tests and for homogeneity of variance with the Levene test. The results were expressed as mean \pm standard errors. ANOVA was performed, followed by Duncan's post-hoc test to determine the differences between the groups. Statistical analyses were performed for the data from post-thaw sperm samples. Treatment effects with *P*-values of <0.05 were considered statistically significant. All the analyses were performed using the SPSS (Version 21, IBM Corp., Armonk, New York, USA) software package.

Results and Discussion

The T solution had a protective effect on the viability of the spermatozoa (Table 1). In the T group, the post-thaw motility, live, and HOS were significantly higher from those in the control group (*P* <0.05), while no significant difference was observed in these measurements between the TX group and the control groups (*P* >0.05). The T group exhibited significantly higher values in the PMAI and HMMP levels compared with the control group (*P* <0.05). The TX group exhibited significantly higher values in the PMAI level (*P* <0.05) and no significant differences in HMMP levels (*P* >0.05) compared with the control group.

Table 1 Responses to adding trehalose and Trolox to the extender used in freezing dog semen

Response variable	Control extender	Control + trehalose	Control + Trolox
Motility, %	40.50 ± 0.61 ^b	53.00 ± 0.83 ^a	38.67 ± 0.78 ^b
Percent live cells, %	50.63 ± 0.62 ^b	62.97 ± 0.88 ^a	50.96 ± 0.75 ^b
Hypo-osmotic swelling, %	30.47 ± 0.72 ^b	40.40 ± 0.91 ^a	33.02 ± 1.18 ^b
PMAI	19.18 ± 1.74 ^b	35.51 ± 4.36 ^a	35.62 ± 4.10 ^a
HMMP	12.04 ± 1.92 ^b	24.36 ± 4.72 ^a	19.40 ± 3.51 ^{ab}

PMAI: plasma membrane and acrosome integrity, HMMP: high mitochondrial membrane potential

Cryopreservation can cause extensive chemical and physical damage to the cells of all mammalian species by affecting the cell membranes (Watson, 2000). The mechanism underlying this damage is the lipid peroxidation (LPO) of the cell membrane induced by the ROS species during osmotic stress and transition from the lipid phase (Câmara *et al.*, 2011). In the present study, the effects of T and TX on characteristics of the sperm cells that were determined microscopically (motility, live-dead, and HOS) and using flow cytometry (HMMP and PMAI) after freezing and thawing were evaluated in dog semen.

Trolox is an antioxidant that is safe for use at high concentrations (Mata-Campuzano *et al.*, 2014). The production of ROS inside the sperm cell occurs mainly in the diluent and during the freezing and thawing processes, and the use of TX during freezing can prevent the oxidative stress caused by these ROS (da Silva Maia *et al.*, 2010). TX exhibits high efficacy as a free radical scavenger, even in relatively longer incubations at physiological temperatures (Dominguez-Rebolledo *et al.*, 2010). Trolox is an important additive for which positive catalysed LPO and hydrogen peroxide concentration results have been reported in ram sperm cryopreservation (da Silva Maia *et al.*, 2010). Nekoonam *et al.* (2016) reported that the addition of TX to the diluent in human sperm increased the mitochondrial membrane potential and reduced DNA damage. The production of reactive oxygen species (ROS) in the semen cell occurs mainly in the diluent and during freezing and thawing, and the use of TX during freezing can prevent the oxidative stress caused by these free radicals (da Silva Maia *et al.*, 2010). Moreover, TX exerts a positive effect on the motility parameters of human sperm after thawing (Taylor *et al.*, 2009; Minaei *et al.*, 2012). However, in the present study, the addition of TX did not exert any protective effect on the motility and HMMP levels, which represent the effect on the mitochondrial activity. In contrast, previous studies reported a positive effect on dog sperm motility (Peixoto *et al.*, 2013). Several studies reported the association of mitochondrial activity with sperm motility (Martinez-Pastor *et al.*, 2004; Espinoza *et al.*, 2009). Nekoonam *et al.* (2016) reported that motile spermatozoa and the HMMP levels in human sperm were higher in the 40 mM TX supplementation group. On the other hand, Evangelista *et al.* (2014) reported that TX was inefficient in terms of dog sperm motility and HOS test results, which was consistent with the findings of the current study. Therefore, it may be inferred that TX exerted a protective effect only at higher amounts.

Trehalose is reported to exhibit antioxidative and cryoprotectant properties in the prevention of cold shock that occurs during freezing–thawing (Malo *et al.*, 2010). Trehalose increases the stability of the membrane phospholipid bilayer by inserting itself in the layer (Aboagla & Terada, 2003). The increase in the GSH-PX activity caused by T is thought to be an indicator of its antioxidative capacity. Diluents with hypertonic properties and high doses of T (50 and 75 mM) increased the GSH-PX activity during cryopreservation (Atessahin *et al.*, 2008). It is possible that T promotes the preservation of the functional integrity of acrosome and mitochondria, which improves sperm motility after thawing (Liu *et al.*, 2016). A study of the effects of T on ram sperm viability and membrane integrity revealed that the best results of 73.1% and 38.0%, respectively, were obtained for the 25 mM group (Gungor *et al.*, 2018). Yamashiro *et al.* (2007) examined the freezing–thawing motility results in dog semen and reported that the diluent containing T exerted protective effects. Moreover, the addition of T to canine semen extender resulted in positive effects on serum motility, vitality, and acrosome integrity (Yıldız *et al.*, 2000), which is consistent with the findings of the present study. The mitochondria responsible for the movement of spermatozoa are located in the midpiece of the cell. Freezing sperm cells increases oxygen free radical formation, causing damage to the midpiece. Lipid peroxidation also causes damage to the sperm cell and a decrease in the motion characters (Piomboni *et al.*, 2012). In the current study, the T supplementation group presented a higher value of HMMP compared with the other groups, suggesting the protective effect of T against oxidative stress.

Conclusion

Trehalose exerts a cryoprotective effect on spermatozoa motility, viability and HOS, whereas TX has no effect on any of these characteristics of preserved semen. Also, T (25 mM) imparted a protective effect on the HMMP and PMAI levels after the semen samples were thawed. Further studies are required that involve the use of various TX concentrations for cryopreservation of Aksaray Malakli semen.

Acknowledgments

This research was supported by Coordination Committee of Scientific Research Projects of Aksaray University (BAP no. 2017/008).

Authors' contributions

CÖ (ORCID ID: 0000-0003-0566-0684) and SG (ORCID ID: 0000-0003-3460-522X) designed the study, analysed the data and wrote the manuscript. CÖ was responsible for laboratory analyses (semen motility, viability and hypoosmotic swelling test). SG was responsible for laboratory analyses (flow cytometry examination).

Conflict of Interest

The authors declare that there is no conflict of interest.

References

Abadjieva, D., Yotov, S., Mladenova, V., Lauberte, L., Kalvanov, I., Krasilnikova, J., Telesheva, G. & Kistanova, E., 2020. Positive effect of natural antioxidant oregonin from *Alnus incana* bark on ram semen quality stored at 5 °C for 48 h. Res. Vet. Sci. 131, 153-158. <https://doi.org/10.1016/j.rvsc.2020.04.021>

Aboagla, E.M. & Terada, T., 2003. Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing. Biol. Reprod. 69, 1245-1250. <https://doi.org/10.1095/biolreprod.103.017889>

Agarwal, A., Saleh, R.A. & Bedaiwy, M.A., 2003. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril. 79, 829-843. [https://doi.org/10.1016/S0015-0282\(02\)04948-8](https://doi.org/10.1016/S0015-0282(02)04948-8)

Akalin, P.P., Bulbul, B., Coyan, K., Baspinar, N., Kirbas, M., Bucak, M.N., Gungor, S. & Ozturk, C., 2015. Relationship of blood and seminal plasma ceruloplasmin, copper, iron and cadmium concentrations with sperm quality in Merino rams. Small Ruminant Res. 133, 135-139. <https://doi.org/10.1016/j.smallrumres.2015.08.019>

Atessahin, A., Bucak, M. N., Tuncer, P. B. & Kizil, M., 2008. Effects of anti-oxidant additives on microscopic and oxidative parameters of Angora goat semen following the freeze-thawing process. Small Ruminant Res. 77(1), 38-44. DOI:10.1016/j.smallrumres.2008.03.002

Bucak, M.N. & Tekin, N., 2007. Kryoprotektanlar ve gamet hücrelerinin dondurulmasında kryoprotektif etki . Ankara Üniversitesi Veteriner Fakültesi Dergisi , 54 (1) , 67-72 . (in Turkish) DOI: 10.1501/Vetfak_0000000255

Câmara, D.R., Silva, S.V., Almeida, F.C., Nunes, J.F. & Guerra, M.M., 2011. Effects of antioxidants and duration of pre-freezing equilibration on frozen thawed ram semen. Theriogenology 76, 342-350. <https://doi.org/10.1016/j.theriogenology.2011.02.013>

da Silva Maia, M., Bicudo, S.D., Sicherle, C.C., Rodello, L. & Gallego I.C.S., 2010. Lipid peroxidation and generation of hydrogen peroxide in frozen-thawed ram semen cryopreserved in extenders with antioxidants. Anim. Reprod. Sci. 122(1-2), 118-123. <https://doi.org/10.1016/j.anireprosci.2010.08.004>

Domínguez-Rebolledo, Á. E., Fernández-Santos, M. R., Bisbal, A., Ros-Santaella, J. L., Ramón, M., Carmona, M., Martínez-Pastor, F. & Garde, J. J., 2010. Improving the effect of incubation and oxidative stress on thawed spermatozoa from red deer by using different antioxidant treatments. Reprod. Fertil Dev. 22(5), 856-870. DOI: 10.1071/RD09197

El-Badry, D.A., El-Maaty, A.M.A. & Gamal, A., 2017. The effect of trehalose supplementation of INRA-82 extender on quality and fertility of cooled and frozen-thawed stallion spermatozoa. J. Equine Vet. Sci. 48, 86-92. <https://doi.org/10.1016/j.jevs.2016.08.020>

Espinosa, J., Schulz, M., Sanchez, R. & Villegas, J., 2009. Integrity of mitochondrial membrane potential reflects human sperm quality. Andrologia. 41, 51-54. DOI: 10.1111/j.1439-0272.2008.00878.x

Evangelista, L.D.M., Celestino, F., Souza, I., Branco, M., Mota, L.H.C.M. & de Souza, J.A.T., 2014. Addition of Trolox® Tris-egg yolk to the extender on cryopreservation of semen from the Rottweiler breed dogs. Acta Vet. Bras. 8(2), 118-119.

Giulivi, C. & Cadenas, E., 1993. The reaction of ascorbic acid with different heme iron redox states of myoglobin: Antioxidant and prooxidant aspects. FEBS Letters. 332(3), 287-290. [https://doi.org/10.1016/0014-5793\(93\)80651-A](https://doi.org/10.1016/0014-5793(93)80651-A)

Gobello, C. & Corrada, Y., 2003. Biotechnology in canine reproduction: an update. Analecta Vet. 23, 30-37.

Gungor, S., Ata, A. & Inanc, M.E., 2018. Effects of trehalose and catalase on the viability and kinetic parameters of cryopreserved ram sperm. Acta Sci Vet. 46, 1577. <https://doi.org/10.22456/1679-9216.83865>

Hagiwara, M., Choi, J.H., Devireddy, R.V., Roberts, K.P., Wolkers, W.F. & Makhlof, A., 2009. Cellular biophysics during freezing of rat and mouse sperm predicts post-thaw motility. Biol. Reprod. 81, 700-706. <https://doi.org/10.1095/biolreprod.109.076075>

Inanc, M.E., Gungor, S., Ozturk, C., Korkmaz, F., Bastan, I. & Cil, B., 2019. Cholesterol-loaded cyclodextrin plus trehalose improves quality of frozen-thawed ram sperm. Vet Med. 64(3), 118-124. <https://doi.org/10.17221/146/2018-VETMED>

Kutzler, M. A. (2005). Semen collection in the dog. *Theriogenology* 64(3), 747-754. <https://doi.org/10.1016/j.theriogenology.2005.05.023>

Kulaksız, R. & Daşkin A., 2009. Farklı antioksidanlarla dondurulan Saanen teke spermasının in vitro ve in vivo değerlendirilmesi. *Vet J Ankara Univ.* 56, 201-205.

Liu, J., Tanrikut, C., Wright, L.D., Gloria, L.Y., Toner, M., Biggers, J.D. & Toth, T.L., 2016. Cryopreservation of human spermatozoa with minimal non-permeable cryoprotectant. *Cryobiology*. 73, 162-167. <https://doi.org/10.1016/j.cryobiol.2016.08.004>

Malo, C., Gil, L., Gonzalez, N., Cano, R., De Blas, I. & Espinosa, E., 2010. Comparing sugar type supplementation for cryopreservation of boar semen in egg yolk based extender. *Cryobiology* 61(1), 17-21. <https://doi.org/10.1016/j.cryobiol.2010.03.008>

Martinez-Pastor, F., Johannisson, A., Gil, J., Kaabi, M., Anel, L., Paz, P. & Rodriguez-Martinez, H., 2004. Use of chromatin stability assay, mitochondrial stain JC-1, and fluorometric assessment of plasma membrane to evaluate frozen thawed ram semen. *Anim. Reprod. Sci.* 84, 121-133. <https://doi.org/10.1016/j.anireprosci.2003.12.006>

Mata-Campuzano, M., Álvarez-Rodríguez, M., Tamayo-Canul, J., López-Urueña, E., de Paz, P., Anel, L., Martínez-Pastor, F. & Álvarez, M., 2014. Refrigerated storage of ram sperm in presence of Trolox and GSH antioxidants: Effect of temperature, extender and storage time. *Anim. Reprod. Sci.* 151(3-4), 137-147. DOI: 10.1016/j.anireprosci.2014.10.006

Minaei, M.B., Barbarestani, M., Nekoonam, S., Abdolvahabi, M.A., Takzare, N., Asadi, M.H. & Amidi, F., 2012. Effect of trolox addition to cryopreservation media on human sperm motility. *Iran. J. Reprod. Med.* 10(2), 99-104.

Nekoonam, S., Nashtaei, M.S., Zangi, B.M. & Amidi, F., 2016. Effect of trolox on sperm quality in normozoospermia and oligozoospermia during cryopreservation. *Cryobiology* 72(2), 106-111. <https://doi.org/10.1016/j.cryobiol.2016.02.008>

Pan, C.Y., Shuai, Y.U., Zhang, P.F., Bo, W., Zhu, Z.D., Liu, Y.Y. & Zeng, W.X., 2017. Effect of sucrose on cryopreservation of pig spermatogonial stem cells. *J. Integr. Agric.* 16(5), 1120-1129. DOI: 10.1016/S2095-3119(16)61489-2

Peixoto, P.D.A., Coletto, Z.F., Moura, C.S., Almeida, F.C., Soares, P.C., Silva, S.V. & Guerra, M.M.P., 2013. Effect of Trolox and Glutathione reduced (GSH) addition on the in vitro viability of dog cryopreserved sperm. *Ciênc. anim. bras.* 14(4), 436-447. <http://dx.doi.org/10.5216/cab.v14i4.4600>

Piomboni, P., Focarelli, R., Stendardi, A., Ferramosca, A. & Zara, V., 2012. The role of mitochondria in energy production for human sperm motility. *Int. J. Androl.* 35(2), 109-124. <https://doi.org/10.1111/j.1365-2605.2011.01218.x>

Rostami, B., Ebrahimi, D., Sadeghipanah, H., Masoumi, R. & Shahir, M.H. 2020. Effects of supplementation of tris-egg yolk extender with different sugars and antioxidants on freezability of ram semen. *Cryobiology* 92, 62-66. DOI: 10.1016/j.cryobiol.2019.10.198

Salvador, I., Yaniz, J., Viudes-De-Castro, M.P., Gomez, E.A. & Silvestre, M.A., 2006. Effect of solid storage on caprine semen conservation at 5 °C. *Theriogenology* 64, 252-260. <https://doi.org/10.1016/j.theriogenology.2006.02.042>

Silva, S. V., Soares, A. T., Batista, A. M., Almeida, F. C., Nunes, J. F., Peixoto, C. A. & Guerra, M. M. P. (2013). Vitamin E (Trolox) addition to Tris-egg yolk extender preserves ram spermatozoon structure and kinematics after cryopreservation. *Animal reproduction science*, 137(1-2), 37-44. <https://doi.org/10.1016/j.anireprosci.2012.12.002>

Taylor, K., Roberts, P., Sanders, K. & Burton, P., 2009. Effect of antioxidant supplementation of cryopreservation medium on post-thaw integrity of human spermatozoa. *Reprod. BioMed. Clin.* 18(2), 184-189. [https://doi.org/10.1016/S1472-6483\(10\)60254-4](https://doi.org/10.1016/S1472-6483(10)60254-4)

Van den Berghe, F., Paris, M.C.J., Briggs, M.B., Farstad W.K. & Paris D.B.B.P., 2018. A two-step dilution tris-egg yolk extender containing Equex STM significantly improves sperm cryopreservation in the African wild dog (*Lycaon pictus*). *Cryobiology* 80, 18-25. <https://doi.org/10.1016/j.cryobiol.2017.12.095>

Watson, P.F., 2000. The Causes of Reduced Fertility with Cryopreserved Semen. *Anim. Reprod. Sci.* 60-61, 481-492. [https://doi.org/10.1016/S0378-4320\(00\)00099-3](https://doi.org/10.1016/S0378-4320(00)00099-3)

Yamashiro, H., Narita, K., Sugimura, S., Han, Y.J., Sugawara, A., Morohaku, K., Nakazato, F., Konno, T., Yoshida, M. & Sato, E., 2007. Trehalose enhanced the freezability of Poodle dog sperm collected by an artificial vagina (AV). *Anim. Reprod. Sci.* 102(1-2), 165-171. <https://doi.org/10.1016/j.anireprosci.2007.02.026>

Yeni, D., Inanc, M.E., Avdatek, F., Tuncer, P.B., Cil, B., 2018. Türkmen R & Taşdemir U. Supplementation of rosmarinic acid has reduced oxidative stress on bull spermatozoa following the freeze thawing process. *CryoLetters*. 39, 156-165.

Yıldız, C., Kaya, A., Aksoy, M. & Tekeli, T., 2000. Influence of sugar supplementation of the extender on motility, viability and acrosomal integrity of dog spermatozoa during freezing. *Theriogenology*. 54(4), 579-585. [https://doi.org/10.1016/S0093-691X\(00\)00373-3](https://doi.org/10.1016/S0093-691X(00)00373-3)

Zhang, M., Oldenhof, H., Sieme, H. & Wolkers, W.F., 2016. Freezing-induced uptake of trehalose into mammalian cells facilitates cryopreservation. *Biochim. Biophys. Acta*. 1858(6), 1400-1409. <https://doi.org/10.1016/j.bbamem.2016.03.020>