v South African Soclety for Animal Sclence m‘;”ﬂiﬁ'ﬁ&?&rﬁ}?’é'

\ ,5asas 75N

South African Journal of Animal Science 2020, 50 (No. 3)

Association of polymorphisms of vasoactive intestinal peptide and its receptor with
reproductive traits of turkey hens

L. Hosseinpour?, S. Nikbin'*, N. Hedayat-Evrigh' & G. Elyasi-Zarringhabaie®
1Department of Animal Science, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
% East Azarbaijan Agricultural and Natural Resources Research and Education Center, Animal Science Research
Institute of Iran, Agricultural Research, Education and Extension Organization (AREEQO), Tabriz, Iran

(Received 26 February 2018, Accepted 21 May 2019, First published online 31 May 2020)

Copyright resides with the authors in terms of the Creative Commons Attribution 4.0 South African License.
See: http://creativecommons.org/licenses/by/4.0/za
Condition of use: The user may copy, distribute, transmit and adapt the work, but must recognize the authors and the South African
Journal of Animal Science

Abstract

The aim of this study was to identify variations of vasoactive intestinal peptide (VIP) and VIP receptor-
1 (VIPR-1) genes that might be associated with turkey reproductive traits. One hundred twenty turkey hens
were recorded for age at first egg (AFE), first egg weight (FEW), egg number (EN), total egg weight (TEW),
laying period (LP), and broodiness. The DNA was isolated from blood samples and subjected to PCR
amplification of the meleagrine VIP and VIPR-1 genes. The SNPs were detected by single-strand
conformation polymorphism and the variant DNA fragments were sequenced. One mutation in 3’-UTR of VIP
(G5846A) and two SNPs in intron 2 of VIPR-1 (C17687T and A17690T) were found, all of them novel. The
associations of the three detected SNPs with the reproductive traits of turkeys were evaluated. The detected
polymorphisms were used for marker-trait association analyses. The results of association analysis showed
that G5846A on 3’ UTR of VIP has a significant association with LP, EN, TEW, and AFE. The G allele of
G5846A was the favourable SNP allele for LP, EN, and TEW traits. The AA genotype of A17690T on intron 2
of VIPR-1 was significantly associated with higher LP, EN, and TEW. AGAA haplotype showed association
with higher EN and TEW. These results suggest that the SNPs in 3’-UTR of VIP and intron 2 of VIPR-1
genes may influence egg production traits in turkey hens.
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Introduction

Reproduction traits have been of primary interest to breeders in the poultry industry. Many
environmental factors such as photoperiod and nutritional diet (Liu, 2004; Lewis & Gous, 2006) can affect
reproduction performance, and genetic factors also influence these traits (Miazi et al., 2012; Nikbin et al.,
2018; Zhu et al., 2018). It has been shown that immunization against vasoactive intestinal peptide (VIP)
inhibits reproduction via neuronal and hormonal pathways (Son et al., 2016; Vistoropsky et al., 2016). The
effects of VIP and its receptor (VIPR-1) genes on the reproduction traits of poultry have recently been a
focus of interest (Xu et al., 2011; Ngu et al., 2015; Pu et al., 2016).

VIP is a 28-amino acid polypeptide that belongs to a family of regulating peptides such as secretin
(Sheward et al., 1995). VIP is a prolactin (PRL)-releasing factor that can promote the secretion of PRL (El
Halawani et al., 1990; Kansaku et al., 2016). VIP antibody injection inhibits broodiness and reduces serum
PRL in incubating hens (Sharp et al.,, 1998). Active immunization against VIP in turkey hens terminates
broodiness and increases egg production (El Halawani et al., 2000). The VIP gene is located on
chromosome 2 of turkey and has 6 exons (NCBI ref no: NC_015012.2). The association of VIP and VIPR-1
polymorphisms with egg production of chicken has been reviewed (Xu et al., 2011; Pu et al., 2016).

VIP induces its effects by interacting with its specific receptor, namely intestinal peptide receptor-1
(VIPR-1), which is located on the membrane surface of the anterior pituitary cells in birds (El Halawani et al.,
1990). VIPR-1 is a glycoprotein, and belongs to the class Il subfamily of the 7-transmembrane G-protein-
coupled receptors superfamily (Gaudin et al., 1998). Xu et al. (2011) reported that VIP and its receptor affect
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reproduction traits of poultry via influencing gonadotropin releasing hormone (GnRH) secretion. It has been
proved that the VIPR-1 gene influences the endocrine mechanism of broodiness and, hence, involves the
regulation of broodiness in avian species. (Kansaku et al., 2001; Chaiseha et al., 2004). Although the
expression of the VIPR-1 gene occurs in both the hypothalamus and the pituitary, only the variation of its
MRNA expression in the pituitary has been associated with reproductive traits (Chaiseha et al., 2004). You et
al. (2001) stated that variation in the expression of VIPR-1 is associated with changes in the reproductive
traits of egg-laying quail. Although several research projects have studied the effects of VIP and VIPR-1
expressions at transcriptional level (Chaiseha et al., 2004; Kansaku et al., 2001; You et al., 2001) and
translational level (El Halawani et al., 2000; Kang et al., 2002) on reproductive traits of avians, studies on the
influences of VIP and VIPR-1 DNA variations on reproductive traits of turkey hens are scarce. Indigenous
turkeys of Iran have relatively low reproductive performance. To develop an indigenous turkey industry, the
reproductive traits of the turkeys must be improved. The objective of this study is therefore to investigate the
polymorphism of turkeys’ VIP and VIPR-1 genes and their association with reproductive traits, including AFE,
EN, EW, LP and broodiness behaviour of the native turkey of northwest Iran.

Materials and Methods

In this research, 120 turkey hens were used from the turkey research station of north-western Iran.
Genomic DNA was extracted from the whole blood of the turkeys according to a modified protocol of Bailes
et al. (2007). Reproductive traits, including egg number (EN), age at first egg (AFE), first egg weight (FEW),
total egg weight (TEW), egg weight (EW), laying period (LP), and broodiness behaviour, were recorded from
the turkey hens. All of the hens were kept in individual cages. Duration of laying was recorded as laying
period. All laid eggs were counted and weighed to provide EN and TEW records, respectively. The hens that
showed broodiness behaviour after a few layings were recorded as broody hens. The duration of the
recording was from 10 March to 15 October. All recording and blood sample collections were performed in
accordance with the protocol approved by the Animal Welfare Committee of University of Mohaghegh
Ardabili.

Two pairs of primers were designed by Primer3 v. 0.4.0 software (Koressaar & Remm, 2007;
Untergasser et al., 2012) based on the sequence of VIP (GenBank NC_015012.2.1) and VIPR (GenBank
XM_019616272.1) genes. The designed primers F: 5'- tgaaggacacctagcaaactc -3' and R: 5-
acttcacacgttctcttgctc -3' were used to amplify exon 6 and 3’-UTR of the VIP gene (VIPe6). To amplify exon 2
and a part of intron 2 of the VIPR gene (VIPRe2), the forward and reverse primers were designed as F: 5'-
tcccccaggttgcagaag -3' and R: 5'- tgcagaatcgtggagatgtg -3'. The targeted fragments were 433 and 316 bp for
VIPe6 and VIPRe2, respectively. Polymerase chain reaction (PCR) was performed in a reaction volume of
25 L containing 50—100 ng of the genomic DNA, 12.5 yL PCR Mastermix (Cinnagen, Iran), 1 yL of 10 uM of
each primer and 2 yL 10 mM dNTPs, and 8.1 pL ddH,O. The PCR program that was used was 5 min pre-
denaturation at 95 °C; 32 amplification cycles of 95 °C for 30 seconds; 59.5 °C for 30 seconds; 72 °C for 1
min; and final extension at 72 °C for 10 min. The PCR products were examined by electrophoresis on 1.5%
agarose gel stained by GelRed® nucleic acid gel stain (Biotium Inc, Hayward, CA).

To identify polymorphisms for each gene, the single-strand conformation polymorphism (SSCP)
method was performed. The PCR products were electrophoresed on 8% polyacrylamide gel and the bands
were visualized using the silver staining method. The PCR products of patterns that were obtained for each
locus were sequenced commercially (Macrogen, South Korea).

BioEdit software (Hall, 1999) was used to align the sequences of patterns for each locus to find
polymorphisms. PopGen32 software was used (Yeh et al., 2000) to identify genotype and allele frequencies
of the candidate genes and Hardy-Weinberg equilibrium (HWE., The association of polymorphisms or
haplotypes with the traits was analysed using SAS GLM procedure (SAS Institute Inc., Cary, NC, USA).
Multiple comparisons of Tukey’s test were performed for means separation. The x2 distribution test was
performed for broodiness trait for each biallelic locus.

Results
The descriptive statistics of the recorded traits of the turkey hens are shown in Table 1.


https://www.ncbi.nlm.nih.gov/nucleotide/1121973603?report=genbank&log$=nuclalign&blast_rank=1&RID=X1KZHPHW015

Hosseinpour et al., 2020. S. Afr. J. Anim. Sci. vol. 50 347

Table 1 Descriptive statistics of reproductive traits of turkey hens

Traits Mean se Min Max
Laying period (day) 136.09 4.94 38 201
Egg number 50.81 2.19 13 90
First egg weight (gr) 72.46 0.73 61.4 86.1
Total egg weight (gr) 3940.05 180.66 1000.7 6982.2
Age at first egg (day) 246.94 0.86 240 281
Egg weight (gr) 76.8 0.51 66.8 86.5

The identified SNPs of VIPe6 and VIPRe2 are shown in Figure 1. A substitution of G with A was
detected in VIPe6 at position 5846 bp (G5846A), which occurred in 3’-UTR region of the VIP gene.
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Figure 1 Polyacrylamide gel image and genotypes of (a) VIPe6, and (b) VIPRe2, and sequence
electropherograms showing SNP sites (c): G5846A for VIPe6, and (d): C17687T and A17690T for VIPRe2

A transition in position of 17687 bp (C17687T) and a transversion in position of 17690 bp (A17690T)
were detected in intron 2 of VIPR gene. Both sequences were submitted to NCBI GenBank. Accession
numbers for VIPRe2 were MG770236-MG770237 and for VIPe6 were MG770238-MG770239. Allele and
genotype frequencies of VIPe6 and VIPRe2 loci are presented in Table 2. Three genotypes were observed
for VIPe6, and two genotypes were observed for VIPRe2. The highest genotype frequency was detected for
AA of VIPe6 (0.85), while GG of VIPe6 was the lowest (0.04). Observed heterozygosity of VIPe6 was 0.11,
and no heterozygous genotype was observed for VIPRe2. The effective number of alleles per loci were
1.2532 and 1.4751 for VIPe6 and VIPRe2, respectively. The results of chi-square test revealed significant
deviations from Hardy-Weinberg equilibrium (HWE) for both loci (Table 2).
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Table 2 Genotype and allele frequencies, effective number of allele and Hardy-Weinberg equilibrium test for
the polymorphic loci in the turkey hens.

Genotype Expected . HWE
Locus Na Ne Allele frequency frequency heterozygosity Nei Test
A G AA AG GG 017
VIPe6 2 1.25 0.905 0.095 0.85 0.11 0.04 ' 0.17 b
A T AA AT TT 0.32
VIPRe2 2 1.48 0.202 0.798 0.20 0.00 0.80 ' 0.32 b

na: number of alleles. ne. effective number of alleles, HWE: Hardy-Weinberg equilibrium
**significant difference from equilibrium

The results of association analysis are presented in Table 3. The statistical analysis revealed that
G5846A on the 3-UTR region of VIP gene has associations with EN, TEW, and AFE (P <0.05). No
significant association of G5846A with LP, FEW, or EW was found. The GG genotype of VIPe6 was
associated with higher LP and AFE (P <0.05). However, AG was a favourable genotype for EN and TEW
traits compared with those of the AA genotype, while no significant difference was observed between the AG
and GG genotypes for EN and TEW.

The AA genotype of VIPRe2 was associated with greater LP, EN, and TEW (P <0.05). No significant
association of A17690T with AFE, FEW, and EW was found. The sequencing results showed four
haplotypes for the turkeys. The haplotypes’ association results are presented in Table 3. The haplotype
AAAG was favourably associated with EN and TEW. The AAGG turkeys showed later puberty and had
higher AFE compared to the other haplotypes (P <0.05). The results of chi-square analysis revealed that
none of the polymorphisms on VIPe6 and VIPRe2 was associated with the broodiness of the turkeys.

Table 3 Association of VIPe6 and VIPRe2 genes and the haplotypes with egg production traits of indigenous
turkey hens

Genotype Layjng Egg First_ egg Tota_l egg _Age at E_gg
period number weight weight first egg weight
< AA 133.61°+4.13 4855+ 1.81 72.3+0.59 3786.25° + 150.24 246.28"+ 0.67 76.67 £0.4
§ AG 149.91°+10.92  65.55%+ 4.93 72.13 £+ 1.57 5121.15%+ 397.5 245.82°+1.77 77.9+1.07
GG 155.75°+ 18.11 61.50°+8.18 71.55 2.6 4602.5% + 659.18 261.75%+ 2.92 74.88 2.6
P-value 0.2151 0.0032 0.9588 0.0061 0.0001 0.32
< TT 131.92°+359  47.79°+ 1.66 72.65 + 0.55 3687.0°+ 132.12 246.58 + 0.68 76.78 £ 0.37
% AA 151.79°+7.85  62.26°+ 3.27 72.80 +1.21 4819.59%+ 289.15 248.89 + 1.49 77.24+0.8
Y povalue 0.023 0.0001 0.9077 0.0005 0.16 0.596
T TTAA 132.7+4.46  48.22°+2.02 72.19 £ 0.62 3744.5°+162.1 246.34°+0.72 76.83+0.4
S AAAA 1455+1839 54.00°+834  72.92+252 4207.4° + 668.36 244.5°+2.98 77.8+1.77
§ AAAG 149.9+11.08  65.55°+5.03 72.13 + 1.54 5121.1%+ 403.04 245.81°+ 1.8 77.9+1.07
AAGG 163.25+18.39 615"+ 8.34 71.55 + 2.56 4602.5° + 668.36 261.75%+ 2.98 74.87+1.8
P-value 0.22 0.01 0.55 0.015 0.0001 0.49

Data are expressed as mean + SD. Within a row values followed by different letters differ significantly at the 0.05 level by
the Tukey test

Discussion

In the present study, both VIPe6 and VIPRe2 gene regions showed polymorphisms. This is the first
report for the SNP in the 3’-UTR region of avian VIP. The number of reports in this region is limited. VIP/Apol
(Xu et al., 2011), VIP/Hinfl, and VIP/Vspl (Vu & Ngu, 2016) have been reported in chickens, but were not
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matched with the current findings on 3’-UTR region of VIP in turkey. Differences in SNPs between the two
species in the same region of the gene might be due to different evolutionary processes with different rates
of mutation on the orthologues in the different species. Most of the turkeys had the AA genotype. However,
only a low frequency (9%) of G allele was observed. Therefore, the homozygote GG appeared rarely (4%) in
this study.

In VIPRe2, both detected SNPs (C17687T and A17690T) were novel and have never been reported in
turkeys. Only two haplotypes were detected for VIPRe2 in the turkeys. Since no similar work on this gene
has been found, the frequencies of the alleles at these loci were not available for comparison. However,
Zhou et al. (2008) stated that there are seven variation sites in the region from exon 6 to exon 11 in
chickens. Two more SNPs were reported by Pu et al. (2016) in exon 4 (G373T) and exon 6 (A313G) of
laying quail. Chicken VIPR1/Tail, VIPR1/Hahl, and VIPR1/Tagl polymorphisms (Vu & Ngu, 2016; Xu et al.,
2011) did not match with SNPs of VIPRe2 of the present study either.

In this research, the polymorphic loci were not in HWE. This may have happened because of factors
such as selection, mutation, and/or migration, which influence allele and genotype frequencies through
generations (Falconer & Mackay, 1996). Since the population was under selection, immigration of new
males, and deviation from HWE were predictable.

The current research is the first attempt to investigate the relationship of the VIP and VIPR-1 loci
polymorphism with reproductive traits in turkey. Replacing the allele A with the allele G of VIPe6 was a
synonymous mutation. Substituting A with G significantly increased EN and TEW in AG hens. The GG
genotype also showed longer LP. These results showed that the G allele was the favourable allele for LP,
EN, and TEW traits. However, it was also associated with higher AFE in the turkey hens. Although the
mutation of 3'-UTR has no effect on the amino acid sequence of the related protein, it may alter the
appropriate expression of the VIP gene. It was revealed that SNP in 3-UTR can be associated with
phenotype changes via altering expression of the gene responsible for the phenotype (Yue et al., 2017,
Zhang et al., 2016). Many studies have proved that SNPs in 3'-UTR may regulate expression of their genes
(Reamon-Buettner et al., 2007; Kataoka et al., 2016; Zuo et al., 2014). Changes in the 3’-UTR sequence are
significantly associated with mRNA stability (Kamiyama et al.,, 2007) and could influence the rates of
localization, translation, and mRNA degradation (Reamon-Buettner et al., 2007). Recent studies revealed
that miRNA reacts with 3-UTR of mRNA, which may negatively regulate the gene transcripts and,
consequently, alter the related protein synthesis (Dumortier & Obberghen, 2012; Egervari et al., 2016).
Additionally, it may influence adenylation of 3’-UTR and/or cleavage, which accordingly affects gene
expression (Liu et al., 2010; Skeeles et al., 2013). The importance of the SNPs in 3'-UTR and its effect on
the regulation of the gene expression cannot be ignored. Therefore, the substitution of G5846A might
influence the VIP gene expression through this way, and thus the reproductive traits of the turkey hens. Zhou
et al. (2010) reported a significant association between a polymorphism of intron 2 of the chicken VIP and
egg numbers from 90 to 300 days old, and AFE.

Prolactin gene expression and its plasma concentrations are influenced by VIP levels in the anterior
pituitary gland (Chaiseha et al., 2004; Kansaku et al., 2001). Since prolactin affects egg production and
serum oestrogen level (Zhang et al., 2007), its influence of VIP level on egg production traits can be
explained. Meek et al. (2016) reported that VIP increased the level of pepsinogen secretion from the
stomach by affecting the parasympathetic nerves, which resulted in improved digestion and indirectly
increased the energy, protein, and minerals that are required for egg production. This can also affect the
total weight of the egg produced during a period by maintaining the chicken’s physiological condition (Bu et
al., 2015; Van Emous et al., 2015). On the other hand, the VIP gene stimulates growth hormone releasing
hormone (GHRH) secretion by stimulating the secretion of ghrelin. The secretion of GHRH causes the
release of growth hormone (Osterstock et al., 2010). Consequently, growth hormone increases follicles and
egg production in poultry (Pitts et al., 1996).

The effect of VIP on GnRH via the VIP receptors in species of both mammals and poultry was
reported (Christian & Moenter, 2008), such that VIP and its receptor, which affect GnRH, can reduce AFE in
poultry (Xu et al., 2011). It may explain how G5846A is responsible as an effective SNP on LP, EN, TEW,
and AFT traits.

Although this SNP has never previously been reported, similar to the current result, other
polymorphisms of VIP showed significant influence on EN of chickens. Zhou et al. (2010) revealed that the
VIP/Vspl SNP associated with EN from 90 to 300 days of age and that VIP/Hinfl influenced broodiness in
chickens. Xu et al. (2011) also reported three polymorphisms, VIP/Apol, VIPR1/Tagl, and VIPR1/Hhal,
associated with egg number at 300 days old.

A17690T and C17687T SNPs in VIPRe2 have not previously been reported. Based on the current
results, the two SNPs were close together. However, the authors found only one haplotype. Therefore, they
regarded them as one allele (A17690T) in statistical analysis. Different haplotypes from the two SNPs may
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be identified in larger populations. The A allele was a favourable allele for LP, EN, and TEW. The allele was
located in intron 2. Since the SNP was detected in the intron region, it would not cause any change in the
sequence of the protein. However, the SNPs in the intron region may affect transcription of the gene
(Berulava & Horsthemke, 2010) and consequently influence the level of VIPR. Olivier (2004) suggested that
intronic SNP may affect the level of expression of the gene. There are many reports about significant
association between intron regions and phenotypes (Anh et al., 2015; Berkowicz et al., 2012; Luna-Nevarez
et al., 2011). Other reports also indicated that any change in the intronic region was effective on the splicing
process, and consequently influenced the gene expression level (Komar, 2007). Several research articles
have been published about the potential effects of splicing on the trait phenotype (Faustino & Cooper, 2003;
Ho et al., 2011; Nissim-Rafinia & Kerem, 2002). Therefore, the SNP in intron 2 may change the expression
level of the VIPR-1 gene and then influence the phenotypes.

VIPR-1 is distributed widely in the gastrointestinal tract, genitourinary system, and other smooth
muscle and secreting glands. By binding to the G protein, VIPR-1 activates adenylyl cyclase and increases
cAMP (Ishihara et al., 1992). Therefore, VIPR-1 indirectly affects the activity of digestive gland cells and
consequently increases the digestive enzymes, improves feed efficiency, and thus increases egg production
in turkeys. The effect of VIP on gonadotropin-releasing hormone via VIPR-1 (Christian & Moenter, 2008) can
influence levels of gonadotropins and, as a result, the reproductive performance of turkeys. The expression
of the VIPR-1 gene showed a positive correlation with broodiness in chickens and turkeys, which affects egg
production directly (You et al., 2001). Several studies have shown association between VIPR-1 gene
polymorphisms and reproductive traits of avian species. VIPR-1 was introduced as an MAS marker for
decreasing the rate of broodiness and improving egg production (Zhou et al., 2008). Chaiseha et al. (2004)
revealed that the VIPR-1 gene plays a role in regulating broodiness in birds via influence on the endocrine
system. Association between polymorphisms of VIPR-1 and egg number of quail (Pu et al.,, 2016) and
chickens (Ngu et al., 2015) has also been reported. Similarly Zhou et al. (2008) showed that VIPR-1
polymorphisms affected incubation behaviour and age at first egg significantly. Similar to the present study,
Xu et al. (2011) did not find any association between the polymorphisms of VIPR-1 (VIPR-1/Hahl and VIPR-
1/Taql) and age at first egg in Ga Noi chickens. The statistical results revealed that the haplotype AAAG was
favourably associated with EN and TEW.

VIPe6 and VIPRe2 polymorphisms did not show association with broodiness of turkeys. These results
were in contrast with some reports on chickens and quail. This may occur because of the differences in
SNPs and species between the present study and previous research. Although Zhou et al. (2010)
demonstrated that C338T SNP in intron 2 of VIP was associated with incubation behaviour, the AGG indel in
5-UTR did not affect broodiness in chickens. Investigation of the VIPR-1 gene of chickens revealed that
C+598T in intron 2 is associated with frequency of broodiness, but VIPR-1 was found to have no effect on
broodiness frequency (Zhou et al., 2008).

Conclusion

Three novel SNPs were found (one SNP in 3’-UTR of VIP and two SNPs in intron 2 of VIPR-1). The
results revealed that these SNPs in meleagrine VIP and VIPR-1 were associated with egg production traits,
egg number, total egg weight, and laying period. The results can be used for selection and breeding
programmes, to improve the reproductive performance of turkey hens. The effects of the SNPs on the
expression level of the VIP and VIPR-1 genes require further investigation.
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